Skip to main content

Estrogen and Bisphenol A in Hypertension

Abstract

Purpose of Review

Cardiovascular disease (CVD) is a non-subsiding disease that remains a leading cause of morbidity and mortality. CVD has been associated with endocrine disruptors, such as bisphenol A (BPA). This review critically summarizes existing findings on BPA and hypertension, with particular attention to genomic, non-genomic, molecular, and cellular mechanisms of action that render BPA as a cardiovascular estrogenic disruptor.

Recent Findings

Owing to its similar estrogenic structure, BPA has been shown to affect various phenotypes that are regulated by the natural hormone, estrogen. Indeed, BPA has been shown to interact with estrogen receptors, located both in the cell membrane and in the cytoplasm/nucleus. Given that estrogen plays an important role in cardiovascular physiology, a contributing role for BPA in CVD would not be unexpected. Existing literature, though limited, established BPA as a source of disruption in cardiovascular health, particularly hypertension. However, effects of BPA are largely dependent on the dose, patient gender, tissue, and developmental stage of the exposed tissue/organ.

Summary

Accumulating evidence argues for an adverse effect of BPA on blood pressure, with this effect being gender, dose, and time specific. Thus, comprehensive studies which take these factors and other parameters, like epigenetic factors, into account are warranted before a thorough understanding is at hand.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8(1):33 This review discusses the cardiovasculoprotective role of estrogen receptors and their dimorphic role in modulating the action of estrogen in cardiovascular disease.

    Article  Google Scholar 

  2. Gray LE. Twenty-five years after “wingspread”- environmental endocrine disruptors (EDCs) and human health. Curr Opin Toxicol. 2017;3:40–7. https://doi.org/10.1016/j.cotox.2017.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75–95. https://doi.org/10.1210/er.2008-0021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fardoun M, Dehaini H, Shaito A, Mesmar J, El-Yazbi A, Badran A, et al. The hypertensive potential of estrogen: an untold story. Vasc Pharmacol. 2020;124:106600. https://doi.org/10.1016/j.vph.2019.106600.

    Article  CAS  Google Scholar 

  5. Dehaini H, Fardoun M, Abou-Saleh H, El-Yazbi A, Eid AA, Eid AH. Estrogen in vascular smooth muscle cells: a friend or a foe? Vasc Pharmacol. 2018;111:15–21. https://doi.org/10.1016/j.vph.2018.09.001.

    Article  CAS  Google Scholar 

  6. Eid AH, Maiti K, Mitra S, Chotani MA, Flavahan S, Bailey SR, et al. Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol. 2007;293(3):H1955–61. https://doi.org/10.1152/ajpheart.00306.2007.

    Article  CAS  PubMed  Google Scholar 

  7. Fardoun MM, Nassif J, Issa K, Baydoun E, Eid AH. Raynaud’s phenomenon: a brief review of the underlying mechanisms. Front Pharmacol. 2016;7:438. https://doi.org/10.3389/fphar.2016.00438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knight DC, Eden JA. Phytoestrogens--a short review. Maturitas. 1995;22(3):167–75.

    Article  CAS  Google Scholar 

  9. Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24. https://doi.org/10.1016/j.pharmthera.2017.12.012.

    Article  CAS  PubMed  Google Scholar 

  10. Lecomte S, Demay F, Ferriere F, Pakdel F. Phytochemicals targeting estrogen receptors: beneficial rather than adverse effects? Int J Mol Sci. 2017;18(7):Artn 1381. https://doi.org/10.3390/Ijms18071381.

    Article  Google Scholar 

  11. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999;103(3):401–6. https://doi.org/10.1172/jci5347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herrington DM, Braden GA, Williams JK, Morgan TM. Endothelial-dependent coronary vasomotor responsiveness in postmenopausal women with and without estrogen replacement therapy. Am J Cardiol. 1994;73(13):951–2.

    Article  CAS  Google Scholar 

  13. Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T. Up-regulation of nitric oxide synthase by estradiol in human aortic endothelial cells. FEBS Lett. 1995;360(3):291–3.

    Article  CAS  Google Scholar 

  14. MacRitchie AN, Jun SS, Chen Z, German Z, Yuhanna IS, Sherman TS, et al. Estrogen upregulates endothelial nitric oxide synthase gene expression in fetal pulmonary artery endothelium. Circ Res. 1997;81(3):355–62.

    Article  CAS  Google Scholar 

  15. Grande M, Carlström K, Stege R, Pousette A, Faxén M. Estrogens increase the endothelial nitric oxide synthase (ecNOS) mRNA level in LNCaP human prostate carcinoma cells. Prostate. 2000;45(3):232–7.

    Article  CAS  Google Scholar 

  16. Shaul PW. Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol. 2002;64:749–74. https://doi.org/10.1146/annurev.physiol.64.081501.155952.

    Article  CAS  PubMed  Google Scholar 

  17. Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation. 2017;24(6). https://doi.org/10.1111/micc.12380.

  18. Ansari MA, Roberts KN, Scheff SW. A time course of NADPH-oxidase up-regulation and endothelial nitric oxide synthase activation in the hippocampus following neurotrauma. Free Radic Biol Med. 2014;77:21–9. https://doi.org/10.1016/j.freeradbiomed.2014.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Conklin BR, Blin N, Yun J, Wess J. Identification of a receptor/G-protein contact site critical for signaling specificity and G-protein activation. Proc Natl Acad Sci U S A. 1995;92(25):11642–6.

    Article  CAS  Google Scholar 

  20. Chambliss KL, Shaul PW. Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev. 2002;23(5):665–86. https://doi.org/10.1210/er.2001-0045.

    Article  CAS  PubMed  Google Scholar 

  21. Prossnitz ER, Arterburn JB, Sklar LA. GPR30: a G protein-coupled receptor for estrogen. Mol Cell Endocrinol. 2007;265–266:138–42. https://doi.org/10.1016/j.mce.2006.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meyer MR, Haas E, Prossnitz ER, Barton M. Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell Endocrinol. 2009;308(1–2):9–16. https://doi.org/10.1016/j.mce.2009.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anwar MA, Samaha AA, Baydoun S, Iratni R, Eid AH. Rhus coriaria L. (Sumac) evokes endothelium-dependent vasorelaxation of rat aorta: involvement of the cAMP and cGMP pathways. Frontiers in pharmacology. 2018;9:688. https://doi.org/10.3389/fphar.2018.00688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eid AH. cAMP induces adhesion of microvascular smooth muscle cells to fibronectin via an Epac-mediated but PKA-independent mechanism. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2012;30(1):247–58. https://doi.org/10.1159/000339061.

    Article  CAS  Google Scholar 

  25. Chotani MA, Mitra S, Eid AH, Han SA, Flavahan NA. Distinct cAMP signaling pathways differentially regulate alpha2C-adrenoceptor expression: role in serum induction in human arteriolar smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;288(1):H69–76. https://doi.org/10.1152/ajpheart.01223.2003.

    Article  CAS  PubMed  Google Scholar 

  26. Motawea HK, Jeyaraj SC, Eid AH, Mitra S, Unger NT, Ahmed AA, et al. Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle alpha2C-adrenoceptors through the actin-binding protein filamin-2. American journal of physiology Cell physiology. 2013;305(8):C829–45. https://doi.org/10.1152/ajpcell.00221.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeyaraj SC, Unger NT, Eid AH, Mitra S, Paul El-Dahdah N, Quilliam LA, et al. Cyclic AMP-Rap1A signaling activates RhoA to induce alpha(2c)-adrenoceptor translocation to the cell surface of microvascular smooth muscle cells. American journal of physiology Cell physiology. 2012;303(5):C499–511. https://doi.org/10.1152/ajpcell.00461.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eid AH, Chotani MA, Mitra S, Miller TJ, Flavahan NA. Cyclic AMP acts through Rap1 and JNK signaling to increase expression of cutaneous smooth muscle alpha2C-adrenoceptors. Am J Physiol Heart Circ Physiol. 2008;295(1):H266–72. https://doi.org/10.1152/ajpheart.00084.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jankowski M, Rachelska G, Donghao W, McCann SM, Gutkowska J. Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc Natl Acad Sci U S A. 2001;98(20):11765–70. https://doi.org/10.1073/pnas.201394198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen H, Levine YC, Golan DE, Michel T, Lin AJ. Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem. 2008;283(7):4439–47. https://doi.org/10.1074/jbc.M709439200.

    Article  CAS  PubMed  Google Scholar 

  31. Gao X, Wang HS. Impact of bisphenol A on the cardiovascular system - epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health. 2014;11(8):8399–413. https://doi.org/10.3390/ijerph110808399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shankar A, Teppala S. Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J Environ Public Health. 2012;2012:481641. https://doi.org/10.1155/2012/481641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS. Association of urinary bisphenol A concentration with heart disease: evidence from NHANES 2003/06. PLoS One. 2010;5(1):e8673. https://doi.org/10.1371/journal.pone.0008673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aungst J. 2014 Updated safety assessment of bisphenol A (BPA) for use in food contact applications. In: SERVICES DOHH, editor.: Public Health Service Food and Drug Administration; 2014.

  35. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007;24(2):131–8. https://doi.org/10.1016/j.reprotox.2007.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology. 2006;147(6 Suppl):S56–S69. https://doi.org/10.1210/en.2005-1159.

  37. Morrissey RE, George JD, Price CJ, Tyl RW, Marr MC, Kimmel CA. The developmental toxicity of bisphenol A in rats and mice. Fundam Appl Toxicol. 1987;8(4):571–82.

    Article  CAS  Google Scholar 

  38. Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, et al. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ Health Perspect. 2009;117(10):1549–55. https://doi.org/10.1289/ehp.11342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. vom Saal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC, et al. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci U S A. 1997;94(5):2056–61.

    Article  CAS  Google Scholar 

  40. Das UN. Free radicals, cytokines and nitric oxide in cardiac failure and myocardial infarction. Mol Cell Biochem. 2000;215(1–2):145–52. https://doi.org/10.1023/A:1026579422132.

    Article  CAS  PubMed  Google Scholar 

  41. Moustafa GG, Ahmed AAM. Impact of prenatal and postnatal exposure to bisphenol A on female rats in a two generational study: Genotoxic and immunohistochemical implications. Toxicol Rep. 2016;3:685–95. https://doi.org/10.1016/j.toxrep.2016.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Genuis SJ, Beesoon S, Birkholz D, Lobo RA. Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. J Environ Public Health. 2012;2012:185731. https://doi.org/10.1155/2012/185731.

    Article  CAS  PubMed  Google Scholar 

  43. Yan SJ, Song WZ, Chen YM, Hong K, Rubinstein J, Wang HS. Low-dose bisphenol A and estrogen increase ventricular arrhythmias following ischemia-reperfusion in female rat hearts. Food Chem Toxicol. 2013;56:75–80. https://doi.org/10.1016/j.fct.2013.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan S, Chen Y, Dong M, Song W, Belcher SM, Wang HS. Bisphenol A and 17beta-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS One. 2011;6(9):e25455. https://doi.org/10.1371/journal.pone.0025455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Posnack NG, Brooks D, Chandra A, Jaimes R, Sarvazyan N, Kay M. Physiological response of cardiac tissue to bisphenol A: alterations in ventricular pressure and contractility. Am J Physiol-Heart C. 2015;309(2):H267–H75. https://doi.org/10.1152/ajpheart.00272.2015This original mansucript shows how BPA negatively impact electrical conduction and venticular contractility in excised rat hearts.

    Article  CAS  Google Scholar 

  46. Patel BB, Raad M, Sebag IA, Chalifour LE. Lifelong exposure to bisphenol A alters cardiac structure/function, protein expression, and DNA methylation in adult mice. Toxicol Sci. 2013;133(1):174–85. https://doi.org/10.1093/toxsci/kft026.

    Article  CAS  PubMed  Google Scholar 

  47. Bae S, Kim JH, Lim YH, Park HY, Hong YC. Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension. 2012;60(3):786−+. https://doi.org/10.1161/Hypertensionaha.112.197715.

    Article  PubMed  Google Scholar 

  48. Khalil N, Ebert JR, Wang L, Belcher S, Lee M, Czerwinski SA, et al. Bisphenol A and cardiometabolic risk factors in obese children. Sci Total Environ. 2014;470:726–32. https://doi.org/10.1016/j.scitotenv.2013.09.088.

    Article  CAS  PubMed  Google Scholar 

  49. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77. https://doi.org/10.1016/j.reprotox.2007.07.010.

    Article  CAS  PubMed  Google Scholar 

  50. Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, et al. Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol. 1998;142(1–2):203–14.

    Article  CAS  Google Scholar 

  51. Noguchi S, Nakatsuka M, Asagiri K, Habara T, Takata M, Konishi H, et al. Bisphenol A stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells. Toxicol Lett. 2002;135(1–2):95–3. Pii S0378–4274(02)00252–7. https://doi.org/10.1016/S0378-4274(02)00252-7.

    Article  CAS  PubMed  Google Scholar 

  52. Belcher SM, Chen YM, Yan SJ, Wang HS. Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17 beta-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology. 2012;153(2):712–20. https://doi.org/10.1210/en.2011-1772.

    Article  CAS  PubMed  Google Scholar 

  53. Pant J, Ranjan P, Deshpande SB. Bisphenol A decreases atrial contractility involving NO-dependent G-cyclase signaling pathway. J Appl Toxicol. 2011;31(7):698–702. https://doi.org/10.1002/jat.1647.

    Article  CAS  PubMed  Google Scholar 

  54. Marinko M, Novakovic A, Nenezic D, Stojanovic I, Milojevic P, Jovic M, et al. Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts. J Pharmacol Sci. 2015;128(2):59–64. https://doi.org/10.1016/j.jphs.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  55. • Anwar MA, Saleh AI, Al Olabi R, Al Shehabi TS, Eid AH. Glucocorticoid-induced fetal origins of adult hypertension: association with epigenetic events. Vascular Pharmacol. 2016;82:41–50. https://doi.org/10.1016/j.vph.2016.02.002An important review discussing how adult-onset hypertension may be intimately associated with epigenetic alteration resulting from fetal exposure to molecules like glucocorticoids.

    Article  CAS  Google Scholar 

  56. Alexander BT, Dasinger JH, Intapad S. Fetal programming and cardiovascular pathology. Compr Physiol. 2015;5(2):997–1025. https://doi.org/10.1002/cphy.c140036.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environmental health perspectives. 2002;110(11):A703-A7. https://doi.org/10.1289/ehp.021100703.

    Article  Google Scholar 

  58. Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen Comp Endocr. 2003;133(2):189–98. https://doi.org/10.1016/S0016-6480(03)00188-6.

    Article  CAS  PubMed  Google Scholar 

  59. Watson CS, Bulayeva NN, Wozniak AL, Alyea RA. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids. 2007;72(2):124–34. https://doi.org/10.1016/j.steroids.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  60. •• Chapalamadugu KC, Vandevoort CA, Settles ML, Robison BD, Murdoch GK. Maternal bisphenol A exposure impacts the fetal heart transcriptome. PLoS One. 2014;9(2):e89096. https://doi.org/10.1371/journal.pone.0089096A very interesting paper that elegantly shows how fetal exposure to BPA alters the heart transcriptome in rhesus monkeys (Macaca multatta).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • MohanKumar SM, Rajendran TD, Vyas AK, Hoang V, Asirvatham-Jeyaraj N, Veiga-Lopez A, et al. Effects of prenatal bisphenol A exposure and postnatal overfeeding on cardiovascular function in female sheep. J Dev Orig Health Dis. 2017;8(1):65–74. https://doi.org/10.1017/S204017441600057XAn important paper that sheds light on how prenatal exposure to BPA may have deleterious effects on cardiac functions, especially when animals becomes obese as they age.

    Article  CAS  PubMed  Google Scholar 

  62. vom Saal FS, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect. 2005;113(8):926–33. https://doi.org/10.1289/ehp.7713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This publication was made possible by an MPP Fund (#320133) from the American University of Beirut-Faculty of Medicine to and a Farouk Jabre Research Award to Dr. Ali Eid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Eid.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wehbe, Z., Nasser, S.A., El-Yazbi, A. et al. Estrogen and Bisphenol A in Hypertension. Curr Hypertens Rep 22, 23 (2020). https://doi.org/10.1007/s11906-020-1022-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1022-z

Keywords

  • Estrogen
  • Bisphenol A
  • Hypertension
  • Cardiovascular disease
  • Environmental pollution
  • Toxicology