Skip to main content
Log in

Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will provide an in-depth coverage of the epidemiological and pre-clinical literature surrounding the role of dietary protein in hypertension, with a special emphasis on the history of our work on the Dahl salt-sensitive rat.

Recent Findings

Our studies have dedicated much effort into understanding the relationship between dietary protein and its effect on the development of salt-sensitive hypertension and renal injury. Our evidence over the last 15 years have demonstrated that both the source and amount of dietary protein can influence the severity of disease, where we have determined mechanisms related to immunity, the maternal environment during pregnancy, and more recently the gut microbiota, which significantly contribute to these diet-induced effects.

Summary

Deeper understanding of these dietary protein-related mechanisms may provide insight on the plausibility of dietary modifications as future therapeutic avenues for hypertension and renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

    Article  CAS  PubMed  Google Scholar 

  2. Hajjar I, Kotchen T. Regional variations of blood pressure in the United States are associated with regional variations in dietary intakes: the NHANES-III data. J Nutr. 2003;133(1):211–4. https://doi.org/10.1093/jn/133.1.211.

    Article  CAS  PubMed  Google Scholar 

  3. Kesteloot H, Joossens JV. Relationship of serum sodium, potassium, calcium, and phosphorus with blood pressure. Belgian Interuniversity Research on Nutrition and Health. Hypertension. 1988;12(6):589–93. https://doi.org/10.1161/01.hyp.12.6.589.

    Article  CAS  PubMed  Google Scholar 

  4. Stamler J, Caggiula A, Grandits GA, Kjelsberg M, Cutler JA. Relationship to blood pressure of combinations of dietary macronutrients. Findings of the Multiple Risk Factor Intervention Trial (MRFIT). Circulation. 1996;94(10):2417–23. https://doi.org/10.1161/01.cir.94.10.2417.

    Article  CAS  PubMed  Google Scholar 

  5. Vasdev S, Stuckless J. Antihypertensive effects of dietary protein and its mechanism. Int J Angiol. 2010;19(1):e7–e20.

    Article  Google Scholar 

  6. Hajjar IM, Grim CE, George V, Kotchen TA. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES III. Arch Intern Med. 2001;161(4):589–93. https://doi.org/10.1001/archinte.161.4.589.

    Article  CAS  PubMed  Google Scholar 

  7. Malhotra R, Lipworth L, Cavanaugh KL, Young BA, Tucker KL, Carithers TC, et al. Protein intake and long-term change in glomerular filtration rate in the Jackson Heart Study. J Ren Nutr. 2018;28(4):245–50. https://doi.org/10.1053/j.jrn.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe D, Machida S, Matsumoto N, Shibagaki Y, Sakurada T. Age modifies the association of dietary protein intake with all-cause mortality in patients with chronic kidney disease. Nutrients. 2018;10(11). https://doi.org/10.3390/nu10111744.

  9. Lentine K, Wrone EM. New insights into protein intake and progression of renal disease. Curr Opin Nephrol Hypertens. 2004;13(3):333–6. https://doi.org/10.1097/00041552-200405000-00011.

    Article  PubMed  Google Scholar 

  10. Fouque D, Laville M. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev. 2009;3:CD001892. https://doi.org/10.1002/14651858.CD001892.pub3.

    Article  Google Scholar 

  11. Sacks FM, Rosner B, Kass EH. Blood pressure in vegetarians. Am J Epidemiol. 1974;100(5):390–8. https://doi.org/10.1093/oxfordjournals.aje.a112050.

    Article  CAS  PubMed  Google Scholar 

  12. Elliott P, Stamler J, Dyer AR, Appel L, Dennis B, Kesteloot H, et al. Association between protein intake and blood pressure: the INTERMAP Study. Arch Intern Med. 2006;166(1):79–87. https://doi.org/10.1001/archinte.166.1.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24. https://doi.org/10.1056/NEJM199704173361601.

    Article  CAS  PubMed  Google Scholar 

  14. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, et al. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: results of the OmniHeart randomized trial. JAMA. 2005;294(19):2455–64. https://doi.org/10.1001/jama.294.19.2455.

    Article  CAS  PubMed  Google Scholar 

  15. Richter CK, Skulas-Ray AC, Champagne CM, Kris-Etherton PM. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk? Adv Nutr. 2015;6(6):712–28. https://doi.org/10.3945/an.115.009654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun D, Zhou T, Li X, Heianza Y, Liang Z, Bray GA, et al. Genetic susceptibility, dietary protein intake, and changes of blood pressure: the pounds lost trial. Hypertension. 2019. https://doi.org/10.1161/HYPERTENSIONAHA.119.13510.

  17. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Effect of high fat loading in Dahl salt-sensitive rats. Clin Exp Hypertens. 2009;31(5):451–61.

    Article  CAS  Google Scholar 

  18. Shimokawa T, Moriuchi A, Hori T, Saito M, Naito Y, Kabasawa H, et al. Effect of dietary alpha-linolenate/linoleate balance on mean survival time, incidence of stroke and blood pressure of spontaneously hypertensive rats. Life Sci. 1988;43(25):2067–75. https://doi.org/10.1016/0024-3205(88)90356-6.

    Article  CAS  PubMed  Google Scholar 

  19. Spradley FT, De Miguel C, Hobbs J, Pollock DM, Pollock JS. Mycophenolate mofetil prevents high-fat diet-induced hypertension and renal glomerular injury in Dahl SS rats. Phys Rep. 2013;1(6):e00137. https://doi.org/10.1002/phy2.137.

    Article  CAS  Google Scholar 

  20. Zhang HY, Reddy S, Kotchen TA. A high sucrose, high linoleic acid diet potentiates hypertension in the Dahl salt sensitive rat. Am J Hypertens. 1999;12(2 Pt 1):183–7. https://doi.org/10.1016/s0895-7061(98)00238-6.

    Article  CAS  PubMed  Google Scholar 

  21. Preuss HG, Knapka JJ, MacArthy P, Yousufi AK, Sabnis SG, Antonovych TT. High sucrose diets increase blood pressure of both salt-sensitive and salt-resistant rats. Am J Hypertens. 1992;5(9):585–91. https://doi.org/10.1093/ajh/5.9.585.

    Article  CAS  PubMed  Google Scholar 

  22. Young JB, Landsberg L. Effect of oral sucrose on blood pressure in the spontaneously hypertensive rat. Metabolism. 1981;30(5):421–4. https://doi.org/10.1016/0026-0495(81)90173-6.

    Article  CAS  PubMed  Google Scholar 

  23. Nevala R, Vaskonen T, Vehniainen J, Korpela R, Vapaatalo H. Soy based diet attenuates the development of hypertension when compared to casein based diet in spontaneously hypertensive rat. Life Sci. 2000;66(2):115–24. https://doi.org/10.1016/s0024-3205(99)00569-x.

    Article  CAS  PubMed  Google Scholar 

  24. Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension. 1994;23(2):195–9. https://doi.org/10.1161/01.hyp.23.2.195.

    Article  CAS  PubMed  Google Scholar 

  25. Mattson DL, Kunert MP, Kaldunski ML, Greene AS, Roman RJ, Jacob HJ, et al. Influence of diet and genetics on hypertension and renal disease in Dahl salt-sensitive rats. Physiol Genomics. 2004;16(2):194–203. https://doi.org/10.1152/physiolgenomics.00151.2003.

    Article  CAS  PubMed  Google Scholar 

  26. Mattson DL, Meister CJ, Marcelle ML. Dietary protein source determines the degree of hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension. 2005;45(4):736–41. https://doi.org/10.1161/01.HYP.0000153318.74544.cc.

    Article  CAS  PubMed  Google Scholar 

  27. De Miguel C, Lund H, Mattson DL. High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension. 2011;57(2):269–74. https://doi.org/10.1161/HYPERTENSIONAHA.110.154302.

    Article  CAS  PubMed  Google Scholar 

  28. Abais-Battad JM, Lund H, Fehrenbach DJ, Dasinger JH, Mattson DL. Rag1-null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein-induced hypertension and renal injury. Am J Phys Regul Integr Comp Phys. 2018;315(1):R28–35. https://doi.org/10.1152/ajpregu.00201.2017.

    Article  CAS  Google Scholar 

  29. Abais-Battad JM, Lund H, Fehrenbach DJ, Dasinger JH, Alsheikh AJ, Mattson DL. Parental dietary protein source and the role of CMKLR1 in determining the severity of Dahl salt-sensitive hypertension. Hypertension. 2019;73(2):440–8. https://doi.org/10.1161/HYPERTENSIONAHA.118.11994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geurts AM, Mattson DL, Liu P, Cabacungan E, Skelton MM, Kurth TM, et al. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Hypertension. 2015;65(2):447–55. https://doi.org/10.1161/HYPERTENSIONAHA.114.04179.

    Article  CAS  PubMed  Google Scholar 

  31. Abais-Battad JM, Alsheikh AJ, Pan X, Fehrenbach DJ, Dasinger JH, Lund H, et al. Dietary effects on Dahl salt-sensitive hypertension, renal damage, and the T lymphocyte transcriptome. Hypertension. 2019;74(4):854–63. https://doi.org/10.1161/HYPERTENSIONAHA.119.12927.

    Article  CAS  PubMed  Google Scholar 

  32. Dasinger JH, Alsheikh AJ, Abais-Battad JM, Pan X, Fehrenbach DJ, Lund H, et al. Epigenetic modifications in T cells: the role of DNA methylation in salt-sensitive hypertension. Hypertension. 2019. https://doi.org/10.1161/HYPERTENSIONAHA.119.13716.

  33. Lopez-Legarrea P, de la Iglesia R, Abete I, Navas-Carretero S, Martinez JA, Zulet MA. The protein type within a hypocaloric diet affects obesity-related inflammation: the RESMENA project. Nutrition. 2014;30(4):424–9. https://doi.org/10.1016/j.nut.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  34. Jantchou P, Morois S, Clavel-Chapelon F, Boutron-Ruault MC, Carbonnel F. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study. Am J Gastroenterol. 2010;105(10):2195–201. https://doi.org/10.1038/ajg.2010.192.

    Article  CAS  PubMed  Google Scholar 

  35. Jowett SL, Seal CJ, Pearce MS, Phillips E, Gregory W, Barton JR, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study. Gut. 2004;53(10):1479–84. https://doi.org/10.1136/gut.2003.024828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mohammad A, Ota F, Kassu A, Sorayya K, Sakai T. Modulation of oral tolerance to ovalbumin by dietary protein in mice. J Nutr Sci Vitaminol (Tokyo). 2006;52(2):113–20. https://doi.org/10.3177/jnsv.52.113.

    Article  CAS  Google Scholar 

  37. • Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016;351(6275):858–63. https://doi.org/10.1126/science.aac5560This study demonstrated that dietary antigens, in the form of whole proteins, are necessary for proper production of intestinal Tregs.

    Article  CAS  PubMed  Google Scholar 

  38. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. https://doi.org/10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  40. Macfarlane GT, Cummings JH, Allison C. Protein degradation by human intestinal bacteria. J Gen Microbiol. 1986;132(6):1647–56. https://doi.org/10.1099/00221287-132-6-1647.

    Article  CAS  PubMed  Google Scholar 

  41. Dai ZL, Zhang J, Wu G, Zhu WY. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 2010;39(5):1201–15. https://doi.org/10.1007/s00726-010-0556-9.

    Article  CAS  PubMed  Google Scholar 

  42. Davila AM, Blachier F, Gotteland M, Andriamihaja M, Benetti PH, Sanz Y, et al. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res. 2013;68(1):95–107. https://doi.org/10.1016/j.phrs.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. • Diether NE, Willing BP. Microbial fermentation of dietary protein: an important factor in diet(-)microbe(-)host interaction. Microorganisms. 2019;7(1). https://doi.org/10.3390/microorganisms7010019In-depth review on the reciprocal relationship between gut microbiota and proteolytic fermentation byproducts.

  44. Wen S, Zhou G, Song S, Xu X, Voglmeir J, Liu L, et al. Discrimination of in vitro and in vivo digestion products of meat proteins from pork, beef, chicken, and fish. Proteomics. 2015;15(21):3688–98. https://doi.org/10.1002/pmic.201500179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kar SK, Jansman AJM, Benis N, Ramiro-Garcia J, Schokker D, Kruijt L, et al. Dietary protein sources differentially affect microbiota, mTOR activity and transcription of mTOR signaling pathways in the small intestine. PLoS One. 2017;12(11):e0188282. https://doi.org/10.1371/journal.pone.0188282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu Y, Shi X, Lin X, Ye K, Xu X, Li C, et al. Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Front Microbiol. 2017;8:1395. https://doi.org/10.3389/fmicb.2017.01395.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Kim E, Kim DB, Park JY. Changes of mouse gut microbiota diversity and composition by modulating dietary protein and carbohydrate contents: a pilot study. Prev Nutr Food Sci. 2016;21(1):57–61. https://doi.org/10.3746/pnf.2016.21.1.57This study provides clear evidence for the adverse effects of a high casein diet on the microbiota composition and intestinal health of mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics. 2015;47(6):187–97. https://doi.org/10.1152/physiolgenomics.00136.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2017;49(2):96–104. https://doi.org/10.1152/physiolgenomics.00081.2016.

    Article  CAS  PubMed  Google Scholar 

  51. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–9. https://doi.org/10.1038/nature24628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. •• Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 2019;5. https://doi.org/10.1172/jci.insight.126241Recent publication demonstrating the interplay between increased salt consumption, antigen presenting cell activation, and changes to the gut microbiota.

  53. Abais-Battad JM, Saravia FL, Lund H, Dasinger JH, Fehrenbach DJ, Alsheikh AJ, et al. Role of gut microbiota and immunity in the dietary modulation of Dahl salt-sensitive hypertension. FASEB J. 2019;33:866.9.

    Google Scholar 

  54. Kenny LC, Black MA, Poston L, Taylor R, Myers JE, Baker PN, et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: the Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension. 2014;64(3):644–52. https://doi.org/10.1161/HYPERTENSIONAHA.114.03578.

    Article  CAS  PubMed  Google Scholar 

  55. Brantsaeter AL, Haugen M, Samuelsen SO, Torjusen H, Trogstad L, Alexander J, et al. A dietary pattern characterized by high intake of vegetables, fruits, and vegetable oils is associated with reduced risk of preeclampsia in nulliparous pregnant Norwegian women. J Nutr. 2009;139(6):1162–8. https://doi.org/10.3945/jn.109.104968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qiu C, Coughlin KB, Frederick IO, Sorensen TK, Williams MA. Dietary fiber intake in early pregnancy and risk of subsequent preeclampsia. Am J Hypertens. 2008;21(8):903–9. https://doi.org/10.1038/ajh.2008.209.

    Article  CAS  PubMed  Google Scholar 

  57. Dasinger JH, Abais-Battad JM, Fehrenbach DJ, Lund H, Zemaj J, Alsheikh AJ, et al. Downregulation of placental genes are associated with the development of maternal syndrome in Dahl salt-sensitive rats. Hypertension. 2019;74:A152.

    Article  Google Scholar 

  58. Liu J, Yang H, Yin Z, Jiang X, Zhong H, Qiu D, et al. Remodeling of the gut microbiota and structural shifts in preeclampsia patients in South China. Eur J Clin Microbiol Infect Dis. 2017;36(4):713–9. https://doi.org/10.1007/s10096-016-2853-z.

    Article  CAS  PubMed  Google Scholar 

  59. Lv LJ, Li SH, Li SC, Zhong ZC, Duan HL, Tian C, et al. Early-onset preeclampsia is associated with gut microbial alterations in antepartum and postpartum women. Front Cell Infect Microbiol. 2019;9:224. https://doi.org/10.3389/fcimb.2019.00224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nordqvist M, Jacobsson B, Brantsaeter AL, Myhre R, Nilsson S, Sengpiel V. Timing of probiotic milk consumption during pregnancy and effects on the incidence of preeclampsia and preterm delivery: a prospective observational cohort study in Norway. BMJ Open. 2018;8(1):e018021. https://doi.org/10.1136/bmjopen-2017-018021.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–80. https://doi.org/10.1016/j.cell.2012.07.008This study highlights the vast microbiotal changes that occur throughout pregnancy and impacts host metabolism, inflammation, and adiposity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5. https://doi.org/10.1073/pnas.1002601107.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Warren MF, Hallowell HA, Higgins KV, Liles MR, Hood WR. Maternal dietary protein intake influences milk and offspring gut microbial diversity in a rat (Rattus norvegicus) model. Nutrients. 2019;11(9). https://doi.org/10.3390/nu11092257.

  64. Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One. 2016;11(4):e0152751. https://doi.org/10.1371/journal.pone.0152751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salazar Garcia MD, Mobley Y, Henson J, Davies M, Skariah A, Dambaeva S, et al. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. J Reprod Immunol. 2018;125:25–31. https://doi.org/10.1016/j.jri.2017.10.048.

    Article  CAS  PubMed  Google Scholar 

  66. Darmochwal-Kolarz D, Saito S, Rolinski J, Tabarkiewicz J, Kolarz B, Leszczynska-Gorzelak B, et al. Activated T lymphocytes in pre-eclampsia. Am J Reprod Immunol. 2007;58(1):39–45. https://doi.org/10.1111/j.1600-0897.2007.00489.x.

    Article  CAS  PubMed  Google Scholar 

  67. Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Phys Regul Integr Comp Phys. 2017;313(6):R693–705. https://doi.org/10.1152/ajpregu.00259.2017.

    Article  CAS  Google Scholar 

  68. Cornelius DC, Amaral LM, Wallace K, Campbell N, Thomas AJ, Scott J, et al. Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy. Am J Phys Regul Integr Comp Phys. 2016;311(6):R1192–R9. https://doi.org/10.1152/ajpregu.00117.2016.

    Article  Google Scholar 

  69. Dasinger JH, Abais-Battad JM, Lund H, Fehrenbach DJ, Alsheikh AJ, Mattson DL. T lymphocytes contribute to the development of maternal syndrome in Dahl SS rats maintained on a low salt diet. FASEB J. 2018;32:911.2.

    Google Scholar 

Download references

Acknowledgments

We kindly thank Dr. David Mattson for his continued support and guidance. We also acknowledge funding sources: 19CDA34660184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justine M. Abais-Battad.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Inflammation and Cardiovascular Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasinger, J.H., Fehrenbach, D.J. & Abais-Battad, J.M. Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease. Curr Hypertens Rep 22, 13 (2020). https://doi.org/10.1007/s11906-020-1018-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-1018-8

Keywords

Navigation