Skip to main content

Advertisement

Log in

Female Sex, a Major Risk Factor for Salt-Sensitive Hypertension

  • Inflammation and Cardiovascular Diseases (A Kirabo, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

High dietary salt is a significant contributor to essential hypertension in clinical populations. However, although clinical studies indicate a higher prevalence of salt sensitivity in women over men, knowledge of salt-sensitive mechanisms is largely restricted to males, and female-specific mechanisms are presently being elucidated.

Recent Findings

Male-specific mechanisms of salt-sensitive hypertension are well published and predominantly appear to involve dysfunctional renal physiology. However, emerging novel evidence indicates that aldosterone production is sex-specifically heightened in salt-sensitive hypertensive women and female rodent models, which may be regulated by intra-adrenal renin-angiotensin system activation and sex hormone receptors. In addition, new evidence that young females endogenously express higher levels of endothelial mineralocorticoid receptors (MRs) and that endothelial MR is a crucial mediator of endothelial dysfunction in females indicates that the aldosterone-endothelial MR activation pathway is a novel mediator of salt-sensitive hypertension.

Summary

Heightened aldosterone levels and endothelial MR expression provide a 2-fold sex-specific mechanism that may underlie the pathology of salt-sensitive hypertension in women. This hypothesis indicates that MR antagonists may be a preferential treatment for premenopausal women diagnosed with salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dolan E, Stanton A, Thijs L, Hinedi K, Atkins N, McClory S, et al. Superiority of ambulatory over clinic blood pressure measurement in predicting mortality: the Dublin outcome study. Hypertension. 2005;46(1):156–61. https://doi.org/10.1161/01.HYP.0000170138.56903.7a.

    Article  CAS  PubMed  Google Scholar 

  2. Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambulatory Blood Pressure-International Study. Hypertension. 2014;64(3):487–93. https://doi.org/10.1161/HYPERTENSIONAHA.114.03694.

    Article  CAS  PubMed  Google Scholar 

  3. •• Shukri MZ, Tan JW, Manosroi W, Pojoga LH, Rivera A, Williams JS, et al. Biological sex modulates the adrenal and blood pressure responses to angiotensin II. Hypertension. 2018;71(6):1083–90. https://doi.org/10.1161/HYPERTENSIONAHA.117.11087Study that demonstrates that salt sensitivity is more prevalent in premenopausal women and associated with increased adrenal production of aldosterone.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Felder RA, White MJ, Williams SM, Jose PA. Diagnostic tools for hypertension and salt sensitivity testing. Curr Opin Nephrol Hypertens. 2013;22(1):65–76. https://doi.org/10.1097/MNH.0b013e32835b3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Iatrino R, Manunta P, Zagato L. Salt sensitivity: challenging and controversial phenotype of primary hypertension. Curr Hypertens Rep. 2016;18(9):70. https://doi.org/10.1007/s11906-016-0677-y.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberger MH, Miller JZ, Luft FC, Grim CE, Fineberg NS. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8(6 Pt 2):II127–34. https://doi.org/10.1161/01.hyp.8.6_pt_2.ii127.

    Article  CAS  PubMed  Google Scholar 

  7. Bray GA, Vollmer WM, Sacks FM, Obarzanek E, Svetkey LP, Appel LJ, et al. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. Am J Cardiol. 2004;94(2):222–7. https://doi.org/10.1016/j.amjcard.2004.03.070.

    Article  CAS  PubMed  Google Scholar 

  8. Chen J. Sodium sensitivity of blood pressure in Chinese populations. Curr Hypertens Rep. 2010;12(2):127–34. https://doi.org/10.1007/s11906-009-0088-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Elliott P, Dyer A, Stamler R. The INTERSALT study: results for 24 hour sodium and potassium, by age and sex. INTERSALT Co-operative Research Group. J Hum Hypertens. 1989;3(5):323–30.

    CAS  PubMed  Google Scholar 

  10. Michikawa T, Nishiwaki Y, Okamura T, Asakura K, Nakano M, Takebayashi T. The taste of salt measured by a simple test and blood pressure in Japanese women and men. Hypertens Res. 2009;32(5):399–403. https://doi.org/10.1038/hr.2009.31.

    Article  PubMed  Google Scholar 

  11. Lee M, Kim MK, Kim SM, Park H, Park CG, Park HK. Gender-based differences on the association between salt-sensitive genes and obesity in Korean children aged between 8 and 9 years. PLoS One. 2015;10(3):e0120111. https://doi.org/10.1371/journal.pone.0120111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhee MY, Kim JH, Kim YS, Chung JW, Bae JH, Nah DY, et al. High sodium intake in women with metabolic syndrome. Korean Circ J. 2014;44(1):30–6. https://doi.org/10.4070/kcj.2014.44.1.30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodrigues SL, Souza Junior PR, Pimentel EB, Baldo MP, Malta DC, Mill JG, et al. Relationship between salt consumption measured by 24-h urine collection and blood pressure in the adult population of Vitoria (Brazil). Braz J Med Biol Res. 2015;48(8):728–35. https://doi.org/10.1590/1414-431X20154455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flynn FW, Schulkin J, Havens M. Sex differences in salt preference and taste reactivity in rats. Brain Res Bull. 1993;32(2):91–5. https://doi.org/10.1016/0361-9230(93)90061-f.

    Article  CAS  PubMed  Google Scholar 

  15. Santollo J, Torregrossa AM, Daniels D. Sex differences in the drinking response to angiotensin II (AngII): effect of body weight. Horm Behav. 2017;93:128–36. https://doi.org/10.1016/j.yhbeh.2017.05.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krecek J, Novakova V, Stibral K. Sex differences in the taste preference for a salt solution in the rat. Physiol Behav. 1972;8(2):183–8. https://doi.org/10.1016/0031-9384(72)90358-7.

    Article  CAS  PubMed  Google Scholar 

  17. Chow SY, Sakai RR, Witcher JA, Adler NT, Epstein AN. Sex and sodium intake in the rat. Behav Neurosci. 1992;106(1):172–80. https://doi.org/10.1037//0735-7044.106.1.172.

    Article  CAS  PubMed  Google Scholar 

  18. Kojima S, Murakami K, Kimura G, Sanai T, Yoshida K, Imanishi M, et al. A gender difference in the association between salt sensitivity and family history of hypertension. Am J Hypertens. 1992;5(1):1–7.

    Article  CAS  Google Scholar 

  19. •• Faulkner JL, Harwood D, Bender L, Shrestha L, Brands MW, Morwitzer MJ, et al. Lack of suppression of aldosterone production leads to salt-sensitive hypertension in female but not male Balb/C mice. Hypertension. 2018;72(6):1397–406. https://doi.org/10.1161/HYPERTENSIONAHA.118.11303Study demonstrating that a high-salt diet induces increased aldosterone production, endothelial dysfunction, and hypertension only in female mice, which is abrogated by MR antagonism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Zhu J, Wei J, Jiang S, Xu L, Qu L, et al. New mechanism for the sex differences in salt-sensitive hypertension: the role of macula Densa NOS1beta-mediated tubuloglomerular feedback. Hypertension. 2020;75(2):449–57. https://doi.org/10.1161/HYPERTENSIONAHA.119.13822.

    Article  CAS  PubMed  Google Scholar 

  21. Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, et al. Sexual dimorphic pattern of renal transporters and electrolyte homeostasis. J Am Soc Nephrol. 2017;28(12):3504–17. https://doi.org/10.1681/ASN.2017030295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stachenfeld NS, Splenser AE, Calzone WL, Taylor MP, Keefe DL. Sex differences in osmotic regulation of AVP and renal sodium handling. J Appl Physiol (1985). 2001;91(4):1893–901. https://doi.org/10.1152/jappl.2001.91.4.1893.

    Article  CAS  Google Scholar 

  23. • Mitchell T, De Miguel C, Gohar EY. Sex differences in redox homeostasis in renal disease. Redox Biol. 2020;31:101489. https://doi.org/10.1016/j.redox.2020.101489Review summarizing salt-sensitive renal dysfunction mechanisms in males.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Pai AV, Maddox T, Sandberg K. T cells and hypertension: solved and unsolved mysteries regarding the female rat. Physiology (Bethesda). 2018;33(4):254–60. https://doi.org/10.1152/physiol.00011.2018Review summarizing sex-specific renal inflammatory mechanisms in the Dahl salt-sensitive rat model.

    Article  CAS  Google Scholar 

  25. Ishii M, Atarashi K, Ikeda T, Hirata Y, Igari T, Uehara Y, et al. Role of the aldosterone system in the salt-sensitivity of patients with benign essential hypertension. Jpn Heart J. 1983;24(1):79–90. https://doi.org/10.1536/ihj.24.79.

    Article  CAS  PubMed  Google Scholar 

  26. Kawarazaki W, Fujita T. Aberrant Rac1-mineralocorticoid receptor pathways in salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2013;40(12):929–36. https://doi.org/10.1111/1440-1681.12177.

    Article  CAS  PubMed  Google Scholar 

  27. Caroccia B, Seccia TM, Campos AG, Gioco F, Kuppusamy M, Ceolotto G, et al. GPER-1 and estrogen receptor-beta ligands modulate aldosterone synthesis. Endocrinology. 2014;155(11):4296–304. https://doi.org/10.1210/en.2014-1416.

    Article  CAS  PubMed  Google Scholar 

  28. Grabek A, Dolfi B, Klein B, Jian-Motamedi F, Chaboissier MC, Schedl A. The adult adrenal cortex undergoes rapid tissue renewal in a sex-specific manner. Cell Stem Cell. 2019;25(2):290–6 e2. https://doi.org/10.1016/j.stem.2019.04.012.

    Article  CAS  PubMed  Google Scholar 

  29. Gwoo S, Kim YN, Shin HS, Jung YS, Rim H. Predictors of hyperkalemia risk after hypertension control with aldosterone blockade according to the presence or absence of chronic kidney disease. Nephron Clin Pract. 2014;128(3–4):381–6. https://doi.org/10.1159/000369138.

    Article  CAS  PubMed  Google Scholar 

  30. Kanashiro-Takeuchi RM, Heidecker B, Lamirault G, Dharamsi JW, Hare JM. Sex-specific impact of aldosterone receptor antagonism on ventricular remodeling and gene expression after myocardial infarction. Clin Transl Sci. 2009;2(2):134–42. https://doi.org/10.1111/j.1752-8062.2009.00094.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olivieri O, Pizzolo F, Ciacciarelli A, Corrocher R, Signorelli D, Falcone S, et al. Menopause not aldosterone-to-renin ratio predicts blood pressure response to a mineralocorticoid receptor antagonist in primary care hypertensive patients. Am J Hypertens. 2008;21(9):976–82. https://doi.org/10.1038/ajh.2008.234.

    Article  CAS  PubMed  Google Scholar 

  32. Brooks DL, Garza AE, Caliskan Guzelce E, Gholami SK, Treesaranuwattana T, Maris S et al. mTORC1 deficiency modifies volume homeostatic responses to dietary sodium in a sex-specific manner. Endocrinology. 2020;1;161(5):bqaa041 https://doi.org/10.1210/endocr/bqaa041.

  33. •• Faulkner JL, Kennard S, Huby AC, Antonova G, Lu Q, Jaffe IZ, et al. Progesterone predisposes females to obesity-associated leptin-mediated endothelial dysfunction via upregulating endothelial MR (mineralocorticoid receptor) expression. Hypertension. 2019;74(3):678–86. https://doi.org/10.1161/HYPERTENSIONAHA.119.12802Study demonstrating that endothelial MR expression is endogenously increased in female mice and humans, which is driven by endothelial progesterone receptor activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. • Faulkner JL, D, Kennard S, Antonova G, Clere N, Belin de Chantemèle EJ. Dietary sodium restriction sex-specifically impairs endothelial function via mineralocorticoid receptor-dependent reduction in NO bioavailability in Balb/C mice. In revision at Am J Physiol Heart Circ. Study demonstrating that low-salt diet–induced aldosterone production induces vascular dysfunction via reductions in NO bioavailability.

  35. • Faulkner JL, E, Kennard S, Antonova G, Jaffe IZ, Belin de Chantemèle EJ. Selective deletion of endothelial mineralocorticoid receptor protects from vascular dysfunction in sodium restricted female mice. In revision at Biology of Sex Differences. Study demonstrates that low-salt diet–induced aldosterone production leads to vascular dysfunction in female mice which is ablated by endothelial MR deletion.

  36. Morris RC Jr, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133(9):881–93. https://doi.org/10.1161/CIRCULATIONAHA.115.017923.

    Article  PubMed  PubMed Central  Google Scholar 

  37. • Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res. 2019;42(1):6–18. https://doi.org/10.1038/s41440-018-0122-5Summary of a Japanese study that indicates that high dietary sodium induces renal vascular, rather than tubular, dysfunction which underlies salt-induced hypertension.

    Article  CAS  PubMed  Google Scholar 

  38. Fujita T, Ando K, Ogata E. Systemic and regional hemodynamics in patients with salt-sensitive hypertension. Hypertension. 1990;16(3):235–44. https://doi.org/10.1161/01.hyp.16.3.235.

    Article  CAS  PubMed  Google Scholar 

  39. Mark AL, Lawton WJ, Abboud FM, Fitz AE, Connor WE, Heistad DD. Effects of high and low sodium intake on arterial pressure and forearm vascular resistance in borderline hypertension. A preliminary report. Circ Res. 1975;36(6 Suppl 1):194–8. https://doi.org/10.1161/01.res.36.6.194.

    Article  CAS  PubMed  Google Scholar 

  40. Takeshita A, Imaizumi T, Ashihara T, Nakamura M. Characteristics of responses to salt loading and deprivation in hypertensive subjects. Circ Res. 1982;51(4):457–64. https://doi.org/10.1161/01.res.51.4.457.

    Article  CAS  PubMed  Google Scholar 

  41. Baric L, Drenjancevic I, Matic A, Stupin M, Kolar L, Mihaljevic Z, et al. Seven-day salt loading impairs microvascular endothelium-dependent vasodilation without changes in blood pressure, body composition and fluid status in healthy young humans. Kidney Blood Press Res. 2019;44(4):835–47. https://doi.org/10.1159/000501747.

    Article  CAS  PubMed  Google Scholar 

  42. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45. https://doi.org/10.1161/CIRCULATIONAHA.115.018226.

    Article  CAS  PubMed  Google Scholar 

  43. Huby AC, Otvos L Jr, Belin de Chantemele EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67(5):1020–8. https://doi.org/10.1161/HYPERTENSIONAHA.115.06642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suboc TM, Dharmashankar K, Wang J, Ying R, Couillard A, Tanner MJ et al. Moderate obesity and endothelial dysfunction in humans: influence of gender and systemic inflammation. Physiol Rep. 2013;1(3):e00058. https://doi.org/10.1002/phy2.58.

  45. Safar ME, Balkau B, Lange C, Protogerou AD, Czernichow S, Blacher J, et al. Hypertension and vascular dynamics in men and women with metabolic syndrome. J Am Coll Cardiol. 2013;61(1):12–9. https://doi.org/10.1016/j.jacc.2012.01.088.

    Article  PubMed  Google Scholar 

  46. • Davel AP, Lu Q, Moss ME, Rao S, Anwar IJ, DuPont JJ et al. Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J Am Heart Assoc. 2018;7(4):e007675. https://doi.org/10.1161/JAHA.117.007675. Study demonstrating that endothelial MR activation is a critical sex-specific mediator of endothelial dysfunction in female mice.

  47. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127–248. https://doi.org/10.1016/j.jacc.2017.11.006.

    Article  PubMed  Google Scholar 

  48. Meyer HE, Johansson L, Eggen AE, Johansen H, Holvik K. Sodium and potassium intake assessed by spot and 24-h urine in the population-based Tromso study 2015–2016. Nutrients. 2019;11(7):1619. https://doi.org/10.3390/nu11071619.

  49. Cogswell ME, Loria CM, Terry AL, Zhao L, Wang CY, Chen TC, et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA. 2018;319(12):1209–20. https://doi.org/10.1001/jama.2018.1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim JM, Kim TH, Lee HH, Lee SH, Wang T. Postmenopausal hypertension and sodium sensitivity. J Menopausal Med. 2014;20(1):1–6. https://doi.org/10.6118/jmm.2014.20.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by NIH R01HL130301, R01HL147639, R01HL155265 and AHA 19EIA34760167 to E.JBdC and 1 K99 HL146948-01 to JLF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Belin de Chantemèle.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Inflammation and Cardiovascular Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faulkner, J.L., Belin de Chantemèle, E.J. Female Sex, a Major Risk Factor for Salt-Sensitive Hypertension. Curr Hypertens Rep 22, 99 (2020). https://doi.org/10.1007/s11906-020-01113-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01113-6

Keywords

Navigation