Skip to main content

Advertisement

Log in

A Contemporary Approach to Hypertensive Cardiomyopathy: Reversing Left Ventricular Hypertrophy

  • Hypertension and the Heart (B Upadhya, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To highlight pharmacological and non-pharmacological approaches to reversing hypertensive left ventricular hypertrophy (LVH). We identify high-risk phenotypes that may benefit from aggressive blood pressure (BP) management to prevent incident outcomes such as the development of atherosclerotic cardiovascular disease, stroke, and heart failure.

Recent Findings

LVH is a modifiable risk factor. Intensive BP lowering (systolic BP < 120 mmHg) induces greater regression of electrocardiographic LVH than standard BP targets. The optimal agents for inducing LVH regression include renin–angiotensinogen-aldosterone system inhibitors and calcium channel blockers, although recent meta-analyses have demonstrated superior efficacy of non-hydrochlorothiazide diuretics. Novel agents (such as sacubitril/valsartan) and non-pharmacological approaches (like bariatric surgery) hold promise but longitudinal studies assessing their impact on clinical outcomes are needed.

Summary

LVH regression is achievable with appropriate therapy with first-line antihypertensive agents. Additional studies are warranted to assess if intensive BP lowering in high-risk groups (such as blacks, women, and malignant LVH) improves outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Whelton PK, Carey R, Aronow WS, Casey D, Collins K, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. J Am Coll Cardiol. 2018;71:127–248.

    Google Scholar 

  2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020;141:e139–596.

    PubMed  Google Scholar 

  3. Cuspidi C, Sala C, Negri F, Mancia G, Morganti A. Prevalence of left-ventricular hypertrophy in hypertension: an updated review of echocardiographic studies. J Hum Hypertens Nature Publishing Group. 2012;26:343–9.

    CAS  PubMed  Google Scholar 

  4. Bang CN, Soliman EZ, Simpson LM, Davis BR, Devereux RB, Okin PM. Electrocardiographic left ventricular hypertrophy predicts cardiovascular morbidity and mortality in hypertensive patients: the ALLHAT study. Am J Hypertens. Oxford Academic. 2017;30:914–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rautaharju PM, Soliman EZ. Electrocardiographic left ventricular hypertrophy and the risk of adverse cardiovascular events: a critical appraisal. J Electrocardiol. 2014;47:649–54.

    PubMed  Google Scholar 

  6. Lehtonen AO, Puukka P, Varis J, Porthan K, Tikkanen JT, Nieminen MS, et al. Prevalence and prognosis of ECG abnormalities in normotensive and hypertensive individuals. J Hypertens. 2016;34:959–66.

    CAS  PubMed  Google Scholar 

  7. Armstrong AC, Gidding S, Gjesdal O, Wu C, Bluemke DA, Lima JAC. LV mass assessed by echocardiography and CMR, cardiovascular outcomes, and medical practice. JACC Cardiovasc Imaging; Elsevier. 2012;5(8):837–48.

  8. Bluemke DA, Kronmal RA, Lima JAC, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol Elsevier. 2008;52:2148–55.

    PubMed  PubMed Central  Google Scholar 

  9. Bouzas-Mosquera A, Broullón FJ, Álvarez-García N, Peteiro J, Mosquera VX, Castro-Beiras A. Association of left ventricular mass with all-cause mortality, myocardial infarction and stroke. PLoS One. 2012;7(9):e45570.

  10. Díez J, Frohlich EDA. Translational approach to hypertensive heart disease. Hypertension. 2010;55:1–8.

    PubMed  Google Scholar 

  11. Nwabuo CC, Vasan RS. Pathophysiology of hypertensive heart disease: beyond left ventricular hypertrophy. Curr Hypertens Rep Springer. 2020;22:11.

    PubMed  Google Scholar 

  12. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for themanagement of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  13. Schmieder RE, Martus P, Klingbeil A. Reversal of left ventricular hypertrophy in essential hypertension. JAMA. 1996;275:1507–13.

    CAS  PubMed  Google Scholar 

  14. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–6.

    PubMed  Google Scholar 

  15. Fagard RH, Celis H, Thijs L, Wouters S. Regression of left ventricular mass by antihypertensive treatment: a meta-analysis of randomized comparative studies. Hypertension. 2009;54:1084–91.

    CAS  PubMed  Google Scholar 

  16. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    CAS  PubMed  Google Scholar 

  17. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol. Circulation. 2003;108:684–90.

    CAS  PubMed  Google Scholar 

  18. Devereux RB, Dahlöf B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110:1456–62.

    CAS  PubMed  Google Scholar 

  19. Bertoluci C, Foppa M, Santos ABS, Branchi TV, Fuchs SC, Fuchs FD. Echocardiographic left ventricular reverse remodeling after 18 months of antihypertensive treatment in stage I hypertension. Results from the Prever-Treatment study. Am J Hypertens. Oxford Academic. 2018;31:321–8.

    CAS  PubMed  Google Scholar 

  20. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    CAS  PubMed  Google Scholar 

  21. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (cardio-sis): an open-label randomised trial. Lancet. 2009;374:525–33.

    PubMed  Google Scholar 

  22. • Soliman EZ, Byington RP, Bigger JT, Evans G, Okin PM, Goff DC, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with diabetes mellitus: action to control cardiovascular risk in Diabetes Blood Pressure Trial. Hypertens (Dallas, Tex 1979). 2015;66:1123–9 This study highlighted the benefit of intensive SBP lowering (< 120 mm Hg) on ECG-LVH regression compared with standard care (goal SBP < 140 mm Hg) in patients with diabetes mellitus.

    CAS  Google Scholar 

  23. •• Soliman EZ, Ambrosius WT, Cushman WC, Zhang ZM, Bates JT, Neyra JA, et al. Effect of intensive blood pressure lowering on left ventricular hypertrophy in patients with hypertension. Circulation. 2017;136:440–50 This study underscored the benefit of intensive SBP lowering (< 120 mmHg) on regression of ECG-LVH compared with standard care (goal SBP < 140 mmHg) in patients without diabetes mellitus.

    PubMed  PubMed Central  Google Scholar 

  24. Zhang K, Chen J, Liu Y, Wang T, Wang L, Wang J, et al. Diastolic blood pressure reduction contributes more to the regression of left ventricular hypertrophy: a meta-analysis of randomized controlled trials. J Hum Hypertens. 2013;27:698–706.

    CAS  PubMed  Google Scholar 

  25. •• Roush GC, Abdelfattah R, Song S, Ernst ME, Sica DA, Kostis JB. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium-sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: a systematic review and meta-analysis. J Clin Hypertens. 2018;20:1507–15 This contemporary meta-analysis underscores the differences in efficacy on LVM regression between different thiazide-type diuretic regimens. CHIP diuretics, and in particular chlorthalidone and indapamide, demonstrated superior efficacy for reducing LVM compared with HCTZ.

    CAS  Google Scholar 

  26. •• Salvetti M, Paini A, Bertacchini F, Stassaldi D, Aggiusti C, Agabiti Rosei C, et al. Changes in left ventricular geometry during antihypertensive treatment. Pharmacol Res. 2018;134:193–9 This contemporary meta-analysis highlights the inferiority of β-blockers on regression of echocardiographic LVM compared with CCBs, ACEi, ARBs, and diuretics.

    CAS  PubMed  Google Scholar 

  27. Cushman WC, Evans GW, Byington RP, Goff DC, Grimm RH, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    PubMed  Google Scholar 

  28. Franklin SS, Gokhale SS, Chow VH, Larson MG, Levy D, Vasan RS, et al. Does low diastolic blood pressure contribute to the risk of recurrent hypertensive cardiovascular disease events?: the Framingham Heart Study. Hypertension. 2015;65:299–305.

    CAS  PubMed  Google Scholar 

  29. Bangalore S, Messerli FH, Wun C-C, Zuckerman AL, DeMicco D, Kostis JB, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating To New Targets (TNT) trial. Eur Heart J. 2010;31:2897–908.

    CAS  PubMed  Google Scholar 

  30. Lip S, Tan LE, Jeemon P, McCallum L, Dominiczak AF, Padmanabhan S. Diastolic blood pressure J-curve phenomenon in a tertiary-care hypertension clinic. Hypertension. 2019;74:767–75.

    CAS  PubMed  Google Scholar 

  31. Kalkman DN, Brouwer TF, Vehmeijer JT, Berger WR, Knops RE, de Winter RJ, et al. J curve in patients randomly assigned to different systolic blood pressure targets: an experimental approach to an observational paradigm. Circulation. 2017;136:2220–9.

    PubMed  Google Scholar 

  32. Upadhya B, Rocco MV, Pajewski NM, Morgan T, Blackshear J, Hundley WG, et al. Effect of intensive blood pressure reduction on left ventricular mass, structure, function, and fibrosis in the SPRINT-HEART. Hypertension. 2019;74:276–84.

    CAS  Google Scholar 

  33. Simpson HJ, Gandy SJ, Houston JG, Rajendra NS, Davies JI, Struthers AD, et al. Left ventricular hypertrophy: reduction of blood pressure already in the normal range further regresses left ventricular mass Hypertension. Heart. 2010 [cited 2020 Aug 2];96:148–52. Available from: http://heart.bmj.com/

  34. Bacharova L, Chen H, Estes EH, Mateasik A, Bluemke DA, Lima JAC, et al. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging. Am J Cardiol. 2015;115:515.

    PubMed  Google Scholar 

  35. Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients a metaanalysis of 109 treatment studies. Am J Hypertens. 1992;5:95–110.

    PubMed  Google Scholar 

  36. Lønnebakken MT, Izzo R, Mancusi C, Gerdts E, Losi MA, Canciello G, et al. Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania salute network). J Am Heart Assoc. 2017;6:1–8.

    Google Scholar 

  37. Pucci G, Ranalli MG, Battista F, Schillaci G. Effects of β-blockers with and without vasodilating properties on central blood pressure. Hypertension. Lippincott Williams & Wilkins Hagerstown, MD; 2016;67:316–24.

  38. Kampus P, Serg M, Kals J, Zagura M, Muda P, Karu K, et al. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension. 2011;57:1122–8.

    CAS  PubMed  Google Scholar 

  39. Studinger P, Tabák ÁG, Chen C-H, Salvi P, Othmane TEH, Torzsa P, et al. The effect of low-dose carvedilol, nebivolol, and metoprolol on central arterial pressure and its determinants: a randomized clinical trial. J Clin Hypertens. 2013;15:910–7.

    CAS  Google Scholar 

  40. Eeftinck Schattenkerk DW, Van Den Bogaard B, Cammenga M, Westerhof BE, Stroes ESG, Van Den Born BJH. Lack of difference between nebivolol/hydrochlorothiazide and metoprolol/hydrochlorothiazide on aortic wave augmentation and central blood pressure. J Hypertens. 2013;31:2447–54.

    CAS  PubMed  Google Scholar 

  41. • Xing FW, Chen J, Zhao BL, Jiang J, Tang A, Chen Y. Real role of β-blockers in regression of left ventricular mass in hypertension patients. Med (United States). 2017;96(10):e6290. This current meta-analysis suggests that β-blockers may not be uniformly inferior to other classes of antihypertensives with respect to LVH regression by demonstrating a similar efficacy on reducing LVH between fat-soluble β-blockers, ACEi, and ARBs.

  42. Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH, Neaton JD, et al. Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the treatment of mild hypertension study (TOMHS). Circulation. 1995;91:698–706.

    CAS  PubMed  Google Scholar 

  43. Ernst ME, Davis BR, Soliman EZ, Prineas RJ, Okin PM, Ghosh A, et al. Electrocardiographic measures of left ventricular hypertrophy in the antihypertensive and lipid-lowering to prevent heart attack trial. J Am Soc Hypertens. 2016;10:930–8.

    PubMed  PubMed Central  Google Scholar 

  44. Ernst ME, Neaton JD, Grimm RH, Collins G, Thomas W, Soliman EZ, et al. Long-term effects of chlorthalidone versus hydrochlorothiazide on electrocardiographic left ventricular hypertrophy in the multiple risk factor intervention trial. Hypertension. 2011;58:1001–7.

    CAS  PubMed  Google Scholar 

  45. Ernst ME, Carter BL, Zheng S, Grimm RH. Meta-analysis of dose-response characteristics of hydrochlorothiazide and chlorthalidone: effects on systolic blood pressure and potassium. Am J Hypertens. 2010;23:440–6.

    CAS  PubMed  Google Scholar 

  46. Rodriguez CJ, Bibbins-Domingo K, Jin Z, Daviglus ML, Goff DC, Jacobs DR. Association of sodium and potassium intake with left ventricular mass. Hypertension. 2011;58:410–6.

    CAS  PubMed  Google Scholar 

  47. •• Roush GC, Abdelfattah R, Song S, Kostis JB, Ernst ME, Sica DA. Hydrochlorothiazide and alternative diuretics versus renin-angiotensin system inhibitors for the regression of left ventricular hypertrophy: a head-to-head meta-analysis. J Hypertens. 2018;36:1247–55 This meta-analysis demonstrated greater reductions in LVM by TTE with CHIP diuretics compared with ACEi and ARBs.

    CAS  PubMed  Google Scholar 

  48. Václavík J, Sedlák R, Plachý M, Navrátil K, Plášek J, Jarkovský J, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57:1069–75.

    PubMed  Google Scholar 

  49. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386:2059–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kosmala W, Sanders P, Marwick TH. Subclinical myocardial impairment in metabolic diseases. JACC Cardiovasc Imaging. 2017;10:692–703.

    PubMed  Google Scholar 

  51. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy. Circulation. 2003;108:1831–8.

    CAS  PubMed  Google Scholar 

  52. Schneider A, Schwab J, Karg MV, Kalizki T, Reinold A, Schneider MP, et al. Low-dose eplerenone decreases left ventricular mass in treatment-resistant hypertension. J Hypertens. 2017;35:1086–92.

    CAS  PubMed  Google Scholar 

  53. Bavishi C, Messerli FH, Kadosh B, Ruilope LM, Kario K. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials. Eur Heart J. 2015;36:1967–73.

    CAS  PubMed  Google Scholar 

  54. Ruilope LM, Dukat A, Böhm M, Lacourcière Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010:1255–66.

  55. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    PubMed  Google Scholar 

  56. Kario K, Sun N, Chiang F-T, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension. Hypertension. 2014;63:698–705.

    CAS  PubMed  Google Scholar 

  57. • Schmieder RE, Wagner F, Mayr M, Delles C, Ott C, Keicher C, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38:3308–17 This is the first randomized controlled trial to highlight the efficacy of angiotensin II receptor blocker neprilysin inhibitors (ARNI) on LVH regression measured by cMRI.

    CAS  PubMed  Google Scholar 

  58. • Williams B, Cockcroft JR, Kario K, Zappe DH, Brunel PC, Wang Q, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension. Hypertension. 2017;69:411–20 This randomized trial provides mechanistic insight that may underscore the utility of angiotensin II receptor neprilysin inhibitors (ARNI) on LVH regression through attenuation of central aortic pulse pressures.

    CAS  PubMed  Google Scholar 

  59. Desai AS, Solomon SD, Shah AM, Claggett BL, Fang JC, Izzo J, et al. Effect of sacubitril-valsartan vs enalapril on aortic stiffness in patients with heart failure and reduced ejection fraction. JAMA. 2019;322:1077.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    CAS  PubMed  Google Scholar 

  61. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation. 2019;140:1693–702.

    PubMed  Google Scholar 

  62. Lan NSR, Fegan PG, Yeap BB, Dwivedi G. The effects of sodium-glucose cotransporter 2 inhibitors on left ventricular function: current evidence and future directions. ESC Hear Fail. 2019;6(5):927–35.

  63. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med. 2001;344:3–10.

    CAS  PubMed  Google Scholar 

  64. Haring B, Wang W, Lee ET, Jhamnani S, Howard BV, Devereux RB. Effect of dietary sodium and potassium intake on left ventricular diastolic function and mass in adults ≤40 years (from the strong heart study). Am J Cardiol Elsevier. 2015;115:1244–8.

    CAS  Google Scholar 

  65. Jula AM, Karanko HM. Effects on left ventricular hypertrophy of long-term nonpharmacological treatment with sodium restriction in mild-to-moderate essential hypertension. Circulation. 1994;89:1023–31.

    CAS  PubMed  Google Scholar 

  66. Vaidya A, Bentley-Lewis R, Jeunemaitre X, Adler GK, Williams JS. Dietary sodium alters the prevalence of electrocardiogram determined left ventricular hypertrophy in hypertension. Am J Hypertens. 2009;22:669–73.

    CAS  PubMed  Google Scholar 

  67. Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). Br Med J. 2007;334:885–8.

    Google Scholar 

  68. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, et al. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: the ENCORE study. Arch Intern Med. 2010;170:126–35.

    PubMed  PubMed Central  Google Scholar 

  69. Gardener H, Rundek T, Wright CB, Gu Y, Scarmeas N, Homma S, et al. A Mediterranean-style diet and left ventricular mass (from the Northern Manhattan study). Am J Cardiol. 2015;115:510.

    PubMed  Google Scholar 

  70. Lauer MS, Anderson KM, Levy D. Separate and joint influences of obesity and mild hypertension on left ventricular mass and geometry: the Framingham Heart Study. J Am Coll Cardiol Elsevier. 1992;19:130–4.

    CAS  PubMed  Google Scholar 

  71. Hinderliter A, Sherwood A, Gullette ECD, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. American Medical Association. 2002;162:1333.

    PubMed  Google Scholar 

  72. Schillaci G, Pasqualini L, Vaudo G, Lupattelli G, Pirro M, Gemelli F, et al. Effect of body weight changes on 24-hour blood pressure and left ventricular mass in hypertension: a 4-year follow-up. Am J Hypertens Oxford Academic. 2003;16:634–9.

    PubMed  Google Scholar 

  73. Lønnebakken MT, Mancusi C, Losi MA, Gerdts E, Izzo R, Manzi MV, et al. Weight loss facilitates reduction of left ventricular mass in obese hypertensive patients: the Campania Salute Network. Nutr Metab Cardiovasc Dis. 2019;29:185–90.

    PubMed  Google Scholar 

  74. Benotti PN, Wood GC, Carey DJ, Mehra VC, Mirshahi T, Lent MR, et al. Gastric bypass surgery produces a durable reduction in cardiovascular disease risk factors and reduces the long-term risks of congestive heart failure. J Am Heart Assoc. 2017;6(5):e005126.

  75. Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA. 2019;322:1271.

    PubMed Central  PubMed  Google Scholar 

  76. Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56.

    PubMed  Google Scholar 

  77. Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98:1763–77.

    PubMed  Google Scholar 

  78. Cuspidi C, Rescaldani M, Tadic M, Sala C, Grassi G. Effects of bariatric surgery on cardiac structure and function: a systematic review and meta-analysis. Am J Hypertens. 2014;27:146–56.

    PubMed  Google Scholar 

  79. • Aggarwal R, Harling L, Efthimiou E, Darzi A, Athanasiou T, Ashrafian H. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes Surg. 2016;26:1030–40 This meta-analysis highlights the role of bariatric surgery in reducing LVH in populations with severe obesity, further underscoring the need for further prospective studies examining the effects on CVD with this invasive, durable weight-loss intervention.

    PubMed  Google Scholar 

  80. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.

    CAS  PubMed  Google Scholar 

  81. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36:219–27.

    PubMed  Google Scholar 

  82. Mahfoud F, Lüscher TF. Renal denervation: Symply trapped by complexity? Eur Heart J. 2015;36:199–202.

    PubMed  Google Scholar 

  83. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–70.

    PubMed  Google Scholar 

  84. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet. 2018;391:2346–55.

    PubMed  Google Scholar 

  85. Lu D, Wang K, Liu Q, Wang S, Zhang Q, Shan Q. Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol Springer. 2016;105:648–56.

    PubMed  Google Scholar 

  86. Kordalis A, Tsiachris D, Pietri P, Tsioufis C, Stefanadis C. Regression of organ damage following renal denervation in resistant hypertension: a meta-analysis. J Hypertens. 2018;36:1614–21.

    CAS  PubMed  Google Scholar 

  87. Verdecchia P, Angeli F, Borgioni C, Gattobigio R, De Simone G, Devereux RB, et al. Changes in cardiovascular risk by reduction of left ventricular mass in hypertension: a meta-analysis. Am J Hypertens. 2003;16:895–9.

    PubMed  Google Scholar 

  88. Pierdomenico SD, Cuccurullo F. Risk reduction after regression of echocardiographic left ventricular hypertrophy in hypertension: a meta-analysis. Am J Hypertens. 2010;23:876–81.

    PubMed  Google Scholar 

  89. Costanzo P, Savarese G, Rosano G, Musella F, Casaretti L, Vassallo E, et al. Left ventricular hypertrophy reduction and clinical events. A meta-regression analysis of 14 studies in 12,809 hypertensive patients. Int J Cardiol. 2013;167:2757–64.

    PubMed  Google Scholar 

  90. Seliger SL, de Lemos J, Neeland IJ, Christenson R, Gottdiener J, Drazner MH, et al. Older adults, “malignant” left ventricular hypertrophy, and associated cardiac-specific biomarker phenotypes to identify the differential risk of new-onset reduced versus preserved ejection fraction heart failure: CHS (Cardiovascular Health Study). JACC Hear Fail. 2015;3:445–55.

    Google Scholar 

  91. Peters MN, Seliger SL, Christenson RH, Hong-Zohlman SN, Daniels LB, Lima JAC, et al. “Malignant” left ventricular hypertrophy identifies subjects at high risk for progression to asymptomatic left ventricular dysfunction, heart failure, and death: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Heart Assoc. 2018;7(4):e006619.

  92. • Pandey A, Keshvani N, Ayers C, Correa A, Drazner MH, Lewis A, et al. Association of cardiac injury and malignant left ventricular hypertrophy with risk of heart failure in African Americans. JAMA Cardiol. 2019;4:51 This observational study in black participants demonstrated a five-fold higher risk of incident HF with the presence of malignant LVH. Black men in particular demonstrated a 15-fold higher risk of HF compared with a referent group of black men without LVH or subclinical myocardial injury.

    PubMed  Google Scholar 

  93. • Lewis AA, Ayers CR, Selvin E, Neeland I, Ballantyne CM, Nambi V, et al. Racial differences in malignant left ventricular hypertrophy and incidence of heart failure: a multicohort study. Circulation. 2020;141:957–67 This multi-cohort study demonstrated a three-fold greater prevalence of malignant LVH in black participants compared with their white counterparts; the presence of malignant LVH was responsible for 33% and 11% of the excess hazard for HF among black men and women, respectively.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. • Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, et al. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol. 2018;258:257–61 In this observational study, the presence of LVH in women offset any gender-related protective effects on CVD reported between women and men without LVH.

    PubMed  Google Scholar 

  95. Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, et al. Gender differences in left ventricular structure and function during antihypertensive treatment. Hypertension. 2008;51:1109–14.

    CAS  PubMed  Google Scholar 

  96. De Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, et al. Lack of reduction of left ventricular mass in treated hypertension: the strong heart study. J Am Heart Assoc. 2013;2:e000144.

    PubMed  PubMed Central  Google Scholar 

  97. Mancusi C, Gerdts E, De Simone G, Abdelhai YM, Lonnebakken MT, Boman K, et al. Impact of isolated systolic hypertension on normalization of left ventricular structure during antihypertensive treatment (the LIFE study). Blood Press. 2014;23:206–12.

    CAS  PubMed  Google Scholar 

  98. Piskorz D. Hypertensive mediated organ damage and hypertension management. How to assess beneficial effects of antihypertensive treatments? High Blood Press Cardiovasc Prev. 2020;27(10):1887–920.

  99. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A, et al. 2016 European society of hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016.

  100. Flynn JT, Kaelber DC, Baker-Smith CM. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.

  101. Marcon D, Tagetti A, Fava C. Subclinical organ damage in children and adolescents with hypertension: current guidelines and beyond. High Blood Press Cardiovasc Prev. 2019;26:361–73.

    PubMed  Google Scholar 

Download references

Funding

This work is supported by contracts N01-HL25195 and HHSN268201500001I and 75N92019D00031from the National Heart, Lung, and Blood Institute (NHLBI) and NIH grants R01HL142983, HL080124, HL071039, HL077447, HL107385, 1R01HL126136, R01HL131532, and R01HL134168 (RSV). Dr. Vasan is also supported in part by the Evans Medical Foundation and the Jay and Louis Coffman Endowment from the Department of Medicine, Boston University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramachandran S. Vasan.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourdillon, M.T., Vasan, R.S. A Contemporary Approach to Hypertensive Cardiomyopathy: Reversing Left Ventricular Hypertrophy. Curr Hypertens Rep 22, 85 (2020). https://doi.org/10.1007/s11906-020-01092-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01092-8

Keywords

Navigation