Skip to main content

Advertisement

Log in

Measurement and Changes in Cerebral Oxygenation and Blood Flow at Rest and During Exercise in Normotensive and Hypertensive Individuals

  • Hypertension and the Brain (I Nasrallah, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Summarize the methods used for measurement of cerebral blood flow and oxygenation; describe the effects of hypertension on cerebral blood flow and oxygenation.

Recent Findings

Information regarding the effects of hypertension on cerebrovascular circulation during exercise is very limited, despite a plethora of methods to help with its assessment. In normotensive individuals performing incremental exercise testing, total blood flow to the brain increases. In contrast, the few studies performed in hypertensive patients suggest a smaller increase in cerebral blood flow, despite higher blood pressure levels. Endothelial dysfunction and increased vasoconstrictor concentration, as well as large vessel atherosclerosis and decreased small vessel number, have been proposed as the underlying mechanisms.

Summary

Hypertension may adversely impact oxygen and blood delivery to the brain, both at rest and during exercise. Future studies should utilize the newer, noninvasive techniques to better characterize the interplay between the brain and exercise in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. Jama. 2017;317(2):165–82. https://doi.org/10.1001/jama.2016.19043.

  2. Kernan WN, Ovbiagele B, Black HR, Bravata DM, Chimowitz MI, Ezekowitz MD, et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(7):2160–236. https://doi.org/10.1161/str.0000000000000024.

  3. Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, et al. 15-year longitudinal study of blood pressure and dementia. Lancet (Lond, Engl). 1996;347(9009):1141–5. https://doi.org/10.1016/s0140-6736(96)90608-x.

    Article  CAS  Google Scholar 

  4. Moonga I, Niccolini F, Wilson H, Pagano G, Politis M. Hypertension is associated with worse cognitive function and hippocampal hypometabolism in Alzheimer’s disease. Eur J Neurol. 2017;24(9):1173–82. https://doi.org/10.1111/ene.13374.

    Article  CAS  PubMed  Google Scholar 

  5. Cooper LL, Woodard T, Sigurdsson S, van Buchem MA, Torjesen AA, Inker LA, et al. Cerebrovascular damage mediates relations between aortic stiffness and memory. Hypertension (Dallas, Tex : 1979). 2016;67(1):176–82. https://doi.org/10.1161/hypertensionaha.115.06398.

    Article  CAS  Google Scholar 

  6. Ostergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36(2):302–25. https://doi.org/10.1177/0271678x15606723.

    Article  Google Scholar 

  7. •• Das AS, Regenhardt RW, Vernooij MW, Blacker D, Charidimou A, Viswanathan A. Asymptomatic cerebral small vessel disease: insights from population-based studies. J Stroke. 2019;21(2):121–38. https://doi.org/10.5853/jos.2018.03608This review describes the spectrum of asymptomatic cerebral lesions seen in patients with hypertension.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. 2007;14(1):12–7. https://doi.org/10.1097/HJR.0b013e3280128bbb.

    Article  Google Scholar 

  9. Hess NC, Smart NA. Isometric exercise training for managing vascular risk factors in mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci. 2017;9:48. https://doi.org/10.3389/fnagi.2017.00048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bediz CS, Oniz A, Guducu C, Ural Demirci E, Ogut H, Gunay E, et al. Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload. Front Hum Neurosci. 2016;10:174. https://doi.org/10.3389/fnhum.2016.00174.

  11. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27(4):476–83. https://doi.org/10.1172/jci101994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obrist WD, Thompson HK Jr, King CH, Wang HS. Determination of regional cerebral blood flow by inhalation of 133-Xenon. Circ Res. 1967;20(1):124–35. https://doi.org/10.1161/01.res.20.1.124.

    Article  CAS  PubMed  Google Scholar 

  13. Ogoh S, Ainslie PN. Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol (Bethesda, Md : 1985). 2009;107(5):1370–80. https://doi.org/10.1152/japplphysiol.00573.2009.

    Article  CAS  Google Scholar 

  14. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med Off Publ Soc Nucl Med. 1983;24(9):782–9.

    CAS  Google Scholar 

  15. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med Off Publ Soc Nucl Med. 1983;24(9):790–8.

    CAS  Google Scholar 

  16. Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2016;36(5):842–61. https://doi.org/10.1177/0271678x16636393.

    Article  CAS  Google Scholar 

  17. Lassen NA, Andersen AR, Friberg L, Paulson OB. The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1988;8(6):S13–22. https://doi.org/10.1038/jcbfm.1988.28.

    Article  CAS  Google Scholar 

  18. Yonekura Y, Nishizawa S, Mukai T, Fujita T, Fukuyama H, Ishikawa M, et al. SPECT with [99mTc]-d,l-hexamethyl-propylene amine oxime (HM-PAO) compared with regional cerebral blood flow measured by PET: effects of linearization. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1988;8(6):S82–9. https://doi.org/10.1038/jcbfm.1988.36.

  19. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16. https://doi.org/10.1002/mrm.25197.

    Article  PubMed  Google Scholar 

  20. Sourbron S, Ingrisch M, Siefert A, Reiser M, Herrmann K. Quantification of cerebral blood flow, cerebral blood volume, and blood-brain-barrier leakage with DCE-MRI. Magn Reson Med. 2009;62(1):205–17. https://doi.org/10.1002/mrm.22005.

    Article  PubMed  Google Scholar 

  21. Ainslie PN, Hoiland RL. Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol (Bethesda, Md : 1985). 2014;117(10):1081–3. https://doi.org/10.1152/japplphysiol.00854.2014.

    Article  Google Scholar 

  22. Hirasawa AI, Sato K, Yoneya M, Sadamoto T, Bailey DM, Ogoh S. Heterogeneous regulation of brain blood flow during low-intensity resistance exercise. Med Sci Sports Exerc. 2016;48(9):1829–34. https://doi.org/10.1249/mss.0000000000000948.

    Article  CAS  PubMed  Google Scholar 

  23. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20(1):45–52.

    Article  CAS  Google Scholar 

  24. Jorgensen LG, Perko G, Secher NH. Regional cerebral artery mean flow velocity and blood flow during dynamic exercise in humans. J Appl Physiol (Bethesda, Md : 1985). 1992;73(5):1825–30.

    Article  CAS  Google Scholar 

  25. Verbree J, Bronzwaer AS, Ghariq E, Versluis MJ, Daemen MJ, van Buchem MA, et al. Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. J Appl Physiol (Bethesda, Md : 1985). 2014;117(10):1084–9. https://doi.org/10.1152/japplphysiol.00651.2014.

    Article  Google Scholar 

  26. Pollard VPD. Cerebral oxygenation: near infrared spectroscopy. Principles and practice of intensive care monitoring. New York: McGraw-Hill Professional; 1998.

    Google Scholar 

  27. Pollard V, Prough DS, DeMelo AE, Deyo DJ, Uchida T, Stoddart HF. Validation in volunteers of a near-infrared spectroscope for monitoring brain oxygenation in vivo. Anesth Analg. 1996;82(2):269–77.

    CAS  PubMed  Google Scholar 

  28. Ogoh S, Sato K, Okazaki K, Miyamoto T, Secher F, Sorensen H, et al. A decrease in spatially resolved near-infrared spectroscopy-determined frontal lobe tissue oxygenation by phenylephrine reflects reduced skin blood flow. Anesth Analg. 2014;118(4):823–9. https://doi.org/10.1213/ane.0000000000000145.

    Article  CAS  PubMed  Google Scholar 

  29. • Hirasawa A, Kaneko T, Tanaka N, Funane T, Kiguchi M, Sorensen H, et al. Near-infrared spectroscopy determined cerebral oxygenation with eliminated skin blood flow in young males. J Clin Monit Comput. 2016;30(2):243–50. https://doi.org/10.1007/s10877-015-9709-4This study shows the experimental set-up for measuring cerebral oxygenation with NIRS while eliminating the artifacts caused by skin blood flow.

    Article  PubMed  Google Scholar 

  30. Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage. 2014;85(Pt 1):6–27. https://doi.org/10.1016/j.neuroimage.2013.05.004.

  31. Lee Y, Kim T. Assessment of hypertensive cerebrovascular alterations with multiband Look-Locker arterial spin labeling. J Magn Reson Imaging. 2017;47:663–72. https://doi.org/10.1002/jmri.25812.

    Article  PubMed  Google Scholar 

  32. Kang CK, Park CA, Lee H, Kim SH, Park CW, Kim YB, et al. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension (Dallas, Tex : 1979). 2009;54(5):1050–6. https://doi.org/10.1161/hypertensionaha.109.140350.

    Article  CAS  Google Scholar 

  33. Sokolova IB, Sergeev IV, Dvoretskii DP. Influence of high blood pressure on microcirculation in cerebral cortex of young rats. Bull Exp Biol Med. 2016;160(3):298–9. https://doi.org/10.1007/s10517-016-3155-2.

    Article  CAS  PubMed  Google Scholar 

  34. Rizzoni D, De Ciuceis C, Porteri E, Paiardi S, Boari GE, Mortini P, et al. Altered structure of small cerebral arteries in patients with essential hypertension. J Hypertens. 2009;27(4):838–45. https://doi.org/10.1097/HJH.0b013e32832401ea.

    Article  CAS  PubMed  Google Scholar 

  35. Muller M, van der Graaf Y, Visseren FL, Mali WP, Geerlings MI. Hypertension and longitudinal changes in cerebral blood flow: the SMART-MR study. Ann Neurol. 2012;71(6):825–33. https://doi.org/10.1002/ana.23554.

    Article  PubMed  Google Scholar 

  36. Launer LJ, Lewis CE, Schreiner PJ, Sidney S, Battapady H, Jacobs DR, et al. Vascular factors and multiple measures of early brain health: CARDIA brain MRI study. PLoS One. 2015;10(3):e0122138. https://doi.org/10.1371/journal.pone.0122138.

  37. •• Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017. https://doi.org/10.1016/j.jacc.2017.11.004These are the most recent ACC/AHA clinical pratice guidelines for the treatment of hypertension, which lowered the definition of hypertension to SBP/DBP ≥ 130/80.

  38. Wang Z, Martorell BC, Walchli T, Vogel O, Fischer J, Born W, et al. Calcitonin gene-related peptide (CGRP) receptors are important to maintain cerebrovascular reactivity in chronic hypertension. PLoS One. 2015;10(4):e0123697. https://doi.org/10.1371/journal.pone.0123697.

  39. Baumbach GL, Sigmund CD, Faraci FM. Cerebral arteriolar structure in mice overexpressing human renin and angiotensinogen. Hypertension (Dallas, Tex : 1979). 2003;41(1):50–5.

    Article  CAS  Google Scholar 

  40. Beyer AM, de Lange WJ, Halabi CM, Modrick ML, Keen HL, Faraci FM, et al. Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet. Circ Res. 2008;103(6):654–61. https://doi.org/10.1161/circresaha.108.176339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Umesalma S, Houwen FK, Baumbach GL, Chan SL. Roles of caveolin-1 in angiotensin II-induced hypertrophy and inward remodeling of cerebral pial arterioles. Hypertension (Dallas, Tex : 1979). 2016;67(3):623–9. https://doi.org/10.1161/hypertensionaha.115.06565.

    Article  CAS  Google Scholar 

  42. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(2):372. https://doi.org/10.1161/01.atv.0000151373.33830.41.

    Article  CAS  PubMed  Google Scholar 

  43. Jennings JR, Zanstra Y. Is the brain the essential in hypertension? NeuroImage. 2009;47(3):914–21. https://doi.org/10.1016/j.neuroimage.2009.04.072.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jennings JR, Heim AF. From brain to behavior: hypertension’s modulation of cognition and affect. Int J Hypertens. 2012;2012:701385–12. https://doi.org/10.1155/2012/701385.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gianaros PJ, Jennings JR, Sheu LK, Derbyshire SW, Matthews KA. Heightened functional neural activation to psychological stress covaries with exaggerated blood pressure reactivity. Hypertension (Dallas, Tex : 1979). 2007;49(1):134–40. https://doi.org/10.1161/01.hyp.0000250984.14992.64.

    Article  CAS  Google Scholar 

  46. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87. https://doi.org/10.1007/s11906-015-0600-y.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):2243–57. https://doi.org/10.1016/j.neubiorev.2013.04.005.

    Article  PubMed  Google Scholar 

  48. • Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N. The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. Am J Health Promot. 2018;32(3):691–704. https://doi.org/10.1177/0890117117737409This systematic review summarizes the current evidence for the favorable effects of exercise on memory function.

    Article  PubMed  Google Scholar 

  49. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70. https://doi.org/10.1093/gerona/61.11.1166.

  50. Gonzalez-Alonso J, Dalsgaard MK, Osada T, Volianitis S, Dawson EA, Yoshiga CC, et al. Brain and central haemodynamics and oxygenation during maximal exercise in humans. J Physiol. 2004;557(Pt 1):331–42. https://doi.org/10.1113/jphysiol.2004.060574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hiura M, Nariai T, Ishii K, Sakata M, Oda K, Toyohara J, et al. Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2014;34(3):389–96. https://doi.org/10.1038/jcbfm.2013.220.

  52. Ide K, Secher NH. Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 2000;61(4):397–414. https://doi.org/10.1016/s0301-0082(99)00057-x.

    Article  CAS  PubMed  Google Scholar 

  53. Matsukawa K, Ishii K, Liang N, Endo K, Ohtani R, Nakamoto T, et al. Increased oxygenation of the cerebral prefrontal cortex prior to the onset of voluntary exercise in humans. J Appl Physiol (Bethesda, Md : 1985). 2015;119(5):452–62. https://doi.org/10.1152/japplphysiol.00406.2015.

    Article  CAS  Google Scholar 

  54. Asahara R, Matsukawa K, Ishii K, Liang N, Endo K. The prefrontal oxygenation and ventilatory responses at start of one-legged cycling exercise have relation to central command. J Appl Physiol (Bethesda, Md : 1985). 2016;121(5):1115–26. https://doi.org/10.1152/japplphysiol.00401.2016.

    Article  CAS  Google Scholar 

  55. Asahara R, Endo K, Liang N, Matsukawa K. An increase in prefrontal oxygenation at the start of voluntary cycling exercise was observed independently of exercise effort and muscle mass. Eur J Appl Physiol. 2018;118(8):1689–702. https://doi.org/10.1007/s00421-018-3901-4.

    Article  CAS  PubMed  Google Scholar 

  56. Thornton JM, Guz A, Murphy K, Griffith AR, Pedersen DL, Kardos A, et al. Identification of higher brain centres that may encode the cardiorespiratory response to exercise in humans. J Physiol. 2001;533(Pt 3):823–36. https://doi.org/10.1111/j.1469-7793.2001.00823.x.

  57. Pochon JB, Levy R, Poline JB, Crozier S, Lehéricy S, Pillon B, et al. The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb Cortex (New York, NY : 1991). 2001;11(3):260–6. https://doi.org/10.1093/cercor/11.3.260.

    Article  CAS  Google Scholar 

  58. Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead. Nature. 1994;371(6496):413–6. https://doi.org/10.1038/371413a0.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas SN, Schroeder T, Secher NH, Mitchell JH. Cerebral blood flow during submaximal and maximal dynamic exercise in humans. J Appl Physiol (Bethesda, Md : 1985). 1989;67(2):744–8.

    Article  CAS  Google Scholar 

  60. Larsen TS, Rasmussen P, Overgaard M, Secher NH, Nielsen HB. Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol. 2008;586(11):2807–15. https://doi.org/10.1113/jphysiol.2008.151449.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Subudhi AW, Olin JT, Dimmen AC, Polaner DM, Kayser B, Roach RC. Does cerebral oxygen delivery limit incremental exercise performance? J Appl Physiol (Bethesda, Md : 1985). 2011;111(6):1727–34. https://doi.org/10.1152/japplphysiol.00569.2011.

    Article  CAS  Google Scholar 

  62. Subudhi AW, Lorenz MC, Fulco CS, Roach RC. Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. Am J Physiol Heart Circ Physiol. 2008;294(1):H164–71. https://doi.org/10.1152/ajpheart.01104.2007.

    Article  CAS  PubMed  Google Scholar 

  63. Smith KJ, MacLeod D, Willie CK, Lewis NC, Hoiland RL, Ikeda K, et al. Influence of high altitude on cerebral blood flow and fuel utilization during exercise and recovery. J Physiol. 2014;592(24):5507–27. https://doi.org/10.1113/jphysiol.2014.281212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hellström G, Wahlgren NG. Physical exercise increases middle cerebral artery blood flow velocity. Neurosurg Rev. 1993;16(2):151–6. https://doi.org/10.1007/bf00258249.

    Article  PubMed  Google Scholar 

  65. Moraine JJ, Lamotte M, Berré J, Niset G, Leduc A, Naeije R. Relationship of middle cerebral artery blood flow velocity to intensity during dynamic exercise in normal subjects. Eur J Appl Physiol Occup Physiol. 1993;67(1):35–8. https://doi.org/10.1007/bf00377701.

    Article  CAS  PubMed  Google Scholar 

  66. Imray CH, Myers SD, Pattinson KT, Bradwell AR, Chan CW, Harris S, et al. Effect of exercise on cerebral perfusion in humans at high altitude. J Appl Physiol (Bethesda, Md : 1985). 2005;99(2):699–706. https://doi.org/10.1152/japplphysiol.00973.2004.

    Article  CAS  Google Scholar 

  67. Fisher JP, Hartwich D, Seifert T, Olesen ND, McNulty CL, Nielsen HB, et al. Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J Physiol. 2013;591(7):1859–70. https://doi.org/10.1113/jphysiol.2012.244905.

    Article  CAS  PubMed  Google Scholar 

  68. Smith KJ, Wong LE, Eves ND, Koelwyn GJ, Smirl JD, Willie CK, et al. Regional cerebral blood flow distribution during exercise: influence of oxygen. Respir Physiol Neurobiol. 2012;184(1):97–105. https://doi.org/10.1016/j.resp.2012.07.014.

  69. Pires FO, Dos Anjos CA, Covolan RJ, Pinheiro FA, St Clair Gibson A, Noakes TD, et al. Cerebral regulation in different maximal aerobic exercise modes. Front Physiol. 2016;7:253. https://doi.org/10.3389/fphys.2016.00253.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Smith KJ. Fuelling cortical excitability during exercise: what’s the matter with delivery? J Physiol. 2016;594(18):5047–8. https://doi.org/10.1113/jp272756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kojima S, Morishita S, Qin W, Tsubaki A. Cerebral oxygenation dynamics of the prefrontal cortex and motor-related area during cardiopulmonary exercise test: a near-infrared spectroscopy study. Adv Exp Med Biol. 2020;1232:231–7. https://doi.org/10.1007/978-3-030-34461-0_29.

    Article  CAS  PubMed  Google Scholar 

  72. Bhambhani Y, Malik R, Mookerjee S. Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respir Physiol Neurobiol. 2007;156(2):196–202. https://doi.org/10.1016/j.resp.2006.08.009.

    Article  PubMed  Google Scholar 

  73. Tsubaki A, Takai H, Oyanagi K, Kojima S, Tokunaga Y, Miyaguchi S, et al. Correlation between the cerebral oxyhaemoglobin signal and physiological signals during cycling exercise: a near-infrared spectroscopy study. Adv Exp Med Biol. 2016;923:159–66. https://doi.org/10.1007/978-3-319-38810-6_21.

    Article  CAS  PubMed  Google Scholar 

  74. Robertson CV, Marino FE. Prefrontal and motor cortex EEG responses and their relationship to ventilatory thresholds during exhaustive incremental exercise. Eur J Appl Physiol. 2015;115(9):1939–48. https://doi.org/10.1007/s00421-015-3177-x.

    Article  CAS  PubMed  Google Scholar 

  75. Billinger SA, Craig JC, Kwapiszeski SJ, Sisante JV, Vidoni ED, Maletsky R, et al. Dynamics of middle cerebral artery blood flow velocity during moderate-intensity exercise. J Appl Physiol (Bethesda, Md : 1985). 2017;122(5):1125–33. https://doi.org/10.1152/japplphysiol.00995.2016.

    Article  Google Scholar 

  76. Ishii K, Liang N, Asahara R, Takahashi M, Matsukawa K. Feedforward- and motor effort-dependent increase in prefrontal oxygenation during voluntary one-armed cranking. J Physiol. 2018;596(21):5099–118. https://doi.org/10.1113/jp276956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsubaki A, Takai H, Kojima S, Miyaguchi S, Sugawara K, Sato D, et al. Changes in cortical oxyhaemoglobin signal during low-intensity cycle ergometer activity: a near-infrared spectroscopy study. Adv Exp Med Biol. 2016;876:79–85. https://doi.org/10.1007/978-1-4939-3023-4_10.

    Article  CAS  PubMed  Google Scholar 

  78. Takehara N, Tsubaki A, Yamazaki Y, Kanaya C, Sato D, Morishita S, et al. Changes in oxyhemoglobin concentration in the prefrontal cortex and primary motor cortex during low- and moderate-intensity exercise on a cycle ergometer. Adv Exp Med Biol. 2017;977:241–7. https://doi.org/10.1007/978-3-319-55231-6_33.

    Article  CAS  PubMed  Google Scholar 

  79. Asahara R, Matsukawa K. Decreased prefrontal oxygenation elicited by stimulation of limb mechanosensitive afferents during cycling exercise. Am J Physiol Regul Integr Comp Physiol. 2018;315(2):R230–r40. https://doi.org/10.1152/ajpregu.00454.2017.

    Article  CAS  PubMed  Google Scholar 

  80. Kintiraki E, Dipla K, Triantafyllou A, Koletsos N, Grigoriadou I, Poulakos P, et al. Blunted cerebral oxygenation during exercise in women with gestational diabetes mellitus: associations with macrovascular function and cardiovascular risk factors. Metab Clin Exp. 2018;83:25–30. https://doi.org/10.1016/j.metabol.2018.01.009.

  81. Anyfanti P, Triantafyllidou E, Papadopoulos S, Triantafyllou A, Nikolaidis MG, Kyparos A, et al. Smoking before isometric exercise amplifies myocardial stress and dysregulates baroreceptor sensitivity and cerebral oxygenation. J Am Soc Hypertens. 2017;11(6):376–84. https://doi.org/10.1016/j.jash.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  82. Tempest GD, Davranche K, Brisswalter J, Perrey S, Radel R. The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain Cogn. 2017;113:133–41. https://doi.org/10.1016/j.bandc.2017.02.001.

    Article  PubMed  Google Scholar 

  83. Monroe DC, Gist NH, Freese EC, O’Connor PJ, McCully KK, Dishman RK. Effects of sprint interval cycling on fatigue, energy, and cerebral oxygenation. Med Sci Sports Exerc. 2016;48(4):615–24. https://doi.org/10.1249/mss.0000000000000809.

    Article  CAS  PubMed  Google Scholar 

  84. Faulkner J, Lambrick D, Kaufmann S, Stoner L. Effects of upright and recumbent cycling on executive function and prefrontal cortex oxygenation in young healthy men. J Phys Act Health. 2016;13(8):882–7. https://doi.org/10.1123/jpah.2015-0454.

    Article  PubMed  Google Scholar 

  85. Ohyanagi H, Tsubaki A, Morishita S, Obata H, Qin W, Onishi H. Changes in the prefrontal cortex oxygenation levels during cycling in the supine and upright positions. Adv Exp Med Biol. 2018;1072:133–7. https://doi.org/10.1007/978-3-319-91287-5_21.

    Article  CAS  PubMed  Google Scholar 

  86. Brugniaux JV, Marley CJ, Hodson DA, New KJ, Bailey DM. Acute exercise stress reveals cerebrovascular benefits associated with moderate gains in cardiorespiratory fitness. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2014;34(12):1873–6. https://doi.org/10.1038/jcbfm.2014.142.

    Article  CAS  Google Scholar 

  87. Mekari S, Dupuy O, Martins R, Evans K, Kimmerly DS, Fraser S, et al. The effects of cardiorespiratory fitness on executive function and prefrontal oxygenation in older adults. GeroScience. 2019;41(5):681–90. https://doi.org/10.1007/s11357-019-00128-5.

  88. Kleinloog JPD, Mensink RP, Ivanov D, Adam JJ, Uludağ K, Joris PJ. Aerobic exercise training improves cerebral blood flow and executive function: a randomized, controlled cross-over trial in sedentary older men. Front Aging Neurosci. 2019;11:333. https://doi.org/10.3389/fnagi.2019.00333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen FT, Hopman RJ, Huang CJ, Chu CH, Hillman CH, Hung TM et al. The effect of exercise training on brain structure and function in older adults: a systematic review based on evidence from randomized control trials. J Clin Med. 2020;9(4). https://doi.org/10.3390/jcm9040914.

  90. Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for brain health: an investigation into the underlying mechanisms guided by dose. Neurotherapeutics J Am Soc Exp NeuroTherapeutics. 2019;16(3):580–99. https://doi.org/10.1007/s13311-019-00749-w.

    Article  Google Scholar 

  91. Wittfeld K, Jochem C, Dörr M, Schminke U, Gläser S, Bahls M, et al. Cardiorespiratory fitness and gray matter volume in the temporal, frontal, and cerebellar regions in the general population. Mayo Clin Proc. 2020;95(1):44–56. https://doi.org/10.1016/j.mayocp.2019.05.030.

  92. Kleemeyer MM, Kühn S, Prindle J, Bodammer NC, Brechtel L, Garthe A, et al. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. NeuroImage. 2016;131:155–61. https://doi.org/10.1016/j.neuroimage.2015.11.026.

  93. Kim YS, Seifert T, Brassard P, Rasmussen P, Vaag A, Nielsen HB et al. Impaired cerebral blood flow and oxygenation during exercise in type 2 diabetic patients. Physiol Rep. 2015;3(6). https://doi.org/10.14814/phy2.12430.

  94. Huang SC, Chen CP, Fu TC, Chen YJ. Integration of brain tissue saturation monitoring in cardiopulmonary exercise testing in patients with heart failure. J Vis Exp. 2019;152. https://doi.org/10.3791/60289.

  95. Dipla K, Triantafyllou A, Koletsos N, Papadopoulos S, Sachpekidis V, Vrabas IS, et al. Impaired muscle oxygenation and elevated exercise blood pressure in hypertensive patients: links with vascular stiffness. Hypertension (Dallas, Tex : 1979). 2017;70(2):444–51. https://doi.org/10.1161/hypertensionaha.117.09558.

    Article  CAS  Google Scholar 

  96. •• Magyar MT, Valikovics A, Bereczki D, Ficzere A, Czuriga I, Csiba L. Transcranial Doppler monitoring in hypertensive patients during physical exercise. Cerebrovasc Dis (Basel, Switzerland). 2001;12(3):186–91 This is the first study revealing altered cerebral vasoreactivity during exercise in hypertensive patients. It introduces exercise as a potential means for detecting early impairment of cerebral circulation in hypertension.

  97. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2013;33(11):1732–42. https://doi.org/10.1038/jcbfm.2013.143.

  98. Zimmermann C, Haberl RL. L-arginine improves diminished cerebral CO2 reactivity in patients. Stroke. 2003;34(3):643–7. https://doi.org/10.1161/01.str.0000056526.35630.47.

    Article  CAS  PubMed  Google Scholar 

  99. Node K, Kitakaze M, Yoshikawa H, Kosaka H, Hori M. Reduced plasma concentrations of nitrogen oxide in individuals with essential hypertension. Hypertension (Dallas, Tex : 1979). 1997;30(3 Pt 1):405–8. https://doi.org/10.1161/01.hyp.30.3.405.

    Article  CAS  Google Scholar 

  100. • Tchalla AE, Wellenius GA, Travison TG, Gagnon M, Iloputaife I, Dantoine T, et al. Circulating vascular cell adhesion molecule-1 is associated with cerebral blood flow dysregulation, mobility impairment, and falls in older adults. Hypertension (Dallas, Tex : 1979). 2015;66(2):340–6. https://doi.org/10.1161/hypertensionaha.115.05180This study identifies sVCAM-1 as a potential biomarker of cerebral blood flow dysregulation in hypertension.

    Article  CAS  Google Scholar 

  101. Krieglstein CF, Granger DN. Adhesion molecules and their role in vascular disease. Am J Hypertens. 2001;14(6 Pt 2):44s–54s.

    Article  CAS  Google Scholar 

  102. Nam KW, Kwon HM, Jeong HY, Park JH, Kwon H, Jeong SM. Intracranial atherosclerosis and stage 1 hypertension defined by the 2017 ACC/AHA guideline. Am J Hypertens. 2020;33(1):92–8. https://doi.org/10.1093/ajh/hpz138.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areti Triantafyllou.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triantafyllou, G.A., Dipla, K., Triantafyllou, A. et al. Measurement and Changes in Cerebral Oxygenation and Blood Flow at Rest and During Exercise in Normotensive and Hypertensive Individuals. Curr Hypertens Rep 22, 71 (2020). https://doi.org/10.1007/s11906-020-01075-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-020-01075-9

Keywords

Navigation