Skip to main content

Advertisement

Log in

A Meta-analysis to Determine the Validity of Taking Blood Pressure Using the Indirect Cuff Method

  • Guidelines, Clinical Trials, and Meta-Analysis (William J. Kostis, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this meta-analysis was to compare the magnitude of systematic bias (mean difference) and random error (standard deviation of mean difference) between the cuff method of indirect blood pressure and directly measured intra-arterial pressure.

Recent Findings

Blood pressure is almost exclusively assessed using the indirect cuff method; however, numerous individual studies have questioned the validity relative to directly measured intra-arterial blood pressure.

Summary

PubMed, SportsDiscus, and Scopus were searched through February 2018. Data were analyzed using a random effects model. A total of 62 studies met the inclusion criteria for quantitative analysis including 103 effect sizes for systolic and 114 effect sizes for diastolic blood pressure. Indirect measures of systolic blood pressure were underestimated (− 4.55 (95% CI = − 5.58 to − 3.53) mmHg), while diastolic blood pressure was overestimated (6.20 (95% CI = 5.09 to 7.31) mmHg). The random error (SD units) was 10.32 (95% CI = 9.29 to 11.36) for systolic and 7.92 (95% CI = 7.35 to 8.50) for diastolic blood pressure which corresponds to an estimation accuracy (95% confidence) of ± 20.2 mmHg for systolic blood pressure and ± 15.5 mmHg for diastolic blood pressure. These data indicate that it may be difficult to accurately estimate intra-arterial blood pressure using the cuff method. These results not only have implications for clinicians in diagnosing hypertension, but also may detail a potential underestimation of the association between blood pressure and numerous other health outcomes found in epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAMI:

American Association for the Advancement of Medical Instrumentation

BHS:

British Hypertension Society

CI:

Confidence interval

ES:

Effect size

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Booth J. A short history of blood pressure measurement. Proc R Soc Med. 1977;70:793–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. • Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: national health and nutrition examination survey, 2011-2012. NCHS Data Brief. 2013:1–8 This study details the prevalence of hypertension (using the cuff method) as well as the large proportion of hypertensive individuals taking medications to lower their blood pressure.

  3. • Kannel WB. Blood pressure as a cardiovascular risk factor: prevention and treatment. JAMA. 1996;275:1571–6 This prospective analysis of the Framingham Study details the increased risk of various cardiovascular events that accompany hypertension.

    Article  CAS  PubMed  Google Scholar 

  4. • O’Brien E, Waeber B, Parati G, Staessen J, Myers MG. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ. 2001;322:531–6 This paper provides a list of blood pressure devices that meet the AAMI and BHS recommendations. Notably, the blood pressure devices are compared to the auscultation method of taking indirect blood pressure.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nash CA. Ensuring the accuracy of digital sphygmomanometers for home use. Mayo Clin Proc. 1994;69:1006–10.

    Article  CAS  PubMed  Google Scholar 

  6. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–10.

    Article  CAS  Google Scholar 

  7. Araghi A, Bander JJ, Guzman JA. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care. 2006;10:R64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arnold JM, McDevitt DG. Indirect blood pressure measurement during intravenous isoprenaline infusions. Br J Clin Pharmacol. 1985;19:114–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belmin J, Visintin JM, Salvatore R, Sebban C, Moulias R. Osler’s maneuver: absence of usefulness for the detection of pseudohypertension in an elderly population. Am J Med. 1995;98:42–9.

    Article  CAS  PubMed  Google Scholar 

  10. Borow KM, Newburger JW. Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: comparative study of indirect systolic, diastolic, and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurements. Am Heart J. 1982;103:879–86.

    Article  CAS  PubMed  Google Scholar 

  11. Bos WJ, van Goudoever J, Wesseling KH, Rongen GA, Hoedemaker G, Lenders JW, et al. Pseudohypertension and the measurement of blood pressure. Hypertension. 1992;20:26–31.

    Article  CAS  PubMed  Google Scholar 

  12. Breit SN, O’Rourke MF. Comparison of direct and indirect arterial pressure measurements in hospitalized patients. Aust NZ J Med. 1974;4:485–91.

    Article  CAS  Google Scholar 

  13. Brown MA, Reiter L, Smith B, Buddle ML, Morris R, Whitworth JA. Measuring blood pressure in pregnant women: a comparison of direct and indirect methods. Am J Obstet Gynecol. 1994;171:661–7.

    Article  CAS  PubMed  Google Scholar 

  14. Burch GE, Shewey L. Sphygmomanometric cuff size and blood pressure recordings. JAMA. 1973;225:1215–8.

    Article  CAS  PubMed  Google Scholar 

  15. Byra-Cook CJ, Dracup KA, Lazik AJ. Direct and indirect blood pressure in critical care patients. Nurs Res. 1990;39:285–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fagher B, Magnússon J, Thulin T. Direct and indirect blood pressure in normotensive and hypertensive subjects. J Intern Med. 1994;236:85–90.

    Article  CAS  PubMed  Google Scholar 

  17. Finnie KJ, Watts DG, Armstrong PW. Biases in the measurement of arterial pressure. Crit Care Med. 1984;12:965–8.

    Article  CAS  PubMed  Google Scholar 

  18. Forsberg SA, Guzman M, Berlind S. Validity of blood pressure measurement with cuff in the arm and forearm. J Intern Med. 1970;188:389–96.

    CAS  Google Scholar 

  19. Ganio MS, Brothers RM, Lucas RAI, Hastings JL, Crandall CG. Validity of auscultatory and Penaz blood pressure measurements during profound heat stress alone and with an orthostatic challenge. Am J Physiol Regul Integr Comp Physiol. 2011;301:R1510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goldstein S, Killip T. Comparison of direct and indirect arterial pressures in aortic regurgitation. N Engl J Med. 1962;267:1121–4.

    Article  CAS  PubMed  Google Scholar 

  21. Gould BA, Hornung RS, Kieso HA, Altman DG, Cashman PM, Raftery EB. Evaluation of the Remler M2000 blood pressure recorder. Comparison with intraarterial blood pressure recordings both at hospital and at home. Hypertension. 1984;6:209–15.

    Article  CAS  PubMed  Google Scholar 

  22. Gravlee GP, Brockschmidt JK. Accuracy of four indirect methods of blood pressure measurement, with hemodynamic correlations. J Clin Monit. 1990;6:284–98.

    Article  CAS  PubMed  Google Scholar 

  23. Henschel A, De La Vega F, Taylor HL. Simultaneous direct and indirect blood pressure measurements in man at rest and work. J Appl Physiol. 1954;6:506–8.

    Article  CAS  PubMed  Google Scholar 

  24. Holland WW, Humerfelt S. Measurement of blood-pressure: comparison of intra-arterial and cuff values. Br Med J. 1964;2:1241–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Horváth IG, Németh A, Lenkey Z, Alessandri N, Tufano F, Kis P, et al. Invasive validation of a new oscillometric device (arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–75.

    Article  CAS  PubMed  Google Scholar 

  26. Hunyor S, Nyberg G. Comparison of intra-arterial and indirect blood pressures at rest and during isometric exercise in hypertensive patients before and after metoprolol. Br J Clin Pharmacol. 1978;6:109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaijser L. The indirect method of recording blood pressure during exercise—can the diastolic pressure be measured? Clin Physiol. 2008;7:175–9.

    Article  Google Scholar 

  28. Karlefors T, Nilsén R, Westling H. On the accuracy of indirect auscultatory blood pressure measurements during exercise. Acta Medica Scand Suppl. 1966;449:81–7.

    CAS  Google Scholar 

  29. Karvonen MJ, Telivuo LJ, Järvinen EJ. Sphygmomanometer cuff size and the accuracy of indirect measurement of blood pressure. Am J Cardiol. 1964;13:688–93.

    Article  CAS  PubMed  Google Scholar 

  30. Kirshon B, Lee W, Cotton DB, Giebel R. Indirect blood pressure monitoring in the postpartum patient. Obstet Gynecol. 1987;70:799–801.

    CAS  PubMed  Google Scholar 

  31. Kotte JH, Iglauer A, McGuire J. Measurements of arterial blood pressure in the arm and leg: comparison of sphygmomanometric and direct intra-arterial pressures, with special attention to their relationship in aortic regurgitation. Am Heart J. 1944;28:476–90.

    Article  Google Scholar 

  32. Kuwajima I, Hoh E, Suzuki Y, Matsushita S, Kuramoto K. Pseudohypertension in the elderly. J Hypertens. 1990;8:429–32.

    Article  CAS  PubMed  Google Scholar 

  33. Lewis RR, Evans PJ, McNabb WR, Padayachee TS. Comparison of indirect and direct blood pressure measurements with Osler’s manoeuvre in elderly hypertensive patients. J Hum Hypertens. 1994;8:879–85.

    CAS  PubMed  Google Scholar 

  34. Manios E, Vemmos K, Tsivgoulis G, Barlas G, Eleni K, Spengos K, et al. Comparison of noninvasive oscillometric and intra-arterial blood pressure measurements in hyperacute stroke. Blood Press Monit. 2007;12:149–56.

    Article  PubMed  Google Scholar 

  35. Manolio TA, Fishel SC, Beattie C, Torres J, Christopherson R, Merritt WT, et al. Evaluation of the Dinamap continuous blood pressure monitor. Am J Hypertens. 1988;1:161S–7S.

    Article  CAS  PubMed  Google Scholar 

  36. Marks LA, Groch A. Optimizing cuff width for noninvasive measurement of blood pressure. Blood Press Monit. 2000;5:153–8.

    Article  CAS  PubMed  Google Scholar 

  37. McMahon N, Hogg LA, Corfield AR, Exton AD. Comparison of non-invasive and invasive blood pressure in aeromedical care. Anaesthesia. 2012;67:1343–7.

    Article  CAS  PubMed  Google Scholar 

  38. Melamed R, Johnson K, Pothen B, Sprenkle MD, Johnson PJ. Invasive blood pressure monitoring systems in the ICU: influence of the blood-conserving device on the dynamic response characteristics and agreement with noninvasive measurements. Blood Press Monit. 2012;17:179–83.

    Article  PubMed  Google Scholar 

  39. Messerli FH, Ventura HO, Amodeo C. Osler’s maneuver and pseudohypertension. N Engl J Med. 1985;312:1548–51.

    Article  CAS  Google Scholar 

  40. Nagle FJ, Naughton J, Balke B. Comparisons of direct and indirect blood pressure with pressure-flow dynamics during exercise. J Appl Physiol. 1966;21:317–20.

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen PE, Janniche H. The accuracy of auscultatory measurement of arm blood pressure in very obese subjects. Acta Med Scand. 1974;195:403–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen PE, Larsen B, Holstein P, Poulsen HL. Accuracy of auscultatory blood pressure measurements in hypertensive and obese subjects. Hypertension. 1983;5:122–7.

    Article  CAS  PubMed  Google Scholar 

  43. Norman E, Gadaleta D, Griffin CC. An evaluation of three blood pressure methods in a stabilized acute trauma population. Nurs Res. 1991;40:86–9.

    Article  CAS  PubMed  Google Scholar 

  44. Nystrom E, Reid KH, Bennett R, Couture L, Edmonds HL. A comparison of two automated indirect arterial blood pressure meters: with recordings from a radial arterial catheter in anesthetized surgical patients. Anesthesiology. 1985;62:526–30.

    Article  CAS  PubMed  Google Scholar 

  45. O’Callaghan WG, Fitzgerald DJ, O’Malley K, O’Brien E. Accuracy of indirect blood pressure measurement in the elderly. Br Med J (Clin Res Ed). 1983;286:1545–6.

    Article  Google Scholar 

  46. Ochiai H, Miyazaki N, Miyata T, Mitake A, Tochikubo O, Ishii M. Assessment of the accuracy of indirect blood pressure measurements. Jpn Heart J. 1997;38:393–407.

    Article  CAS  PubMed  Google Scholar 

  47. Oliner CM, Elliott WJ, Gretler DD, Murphy MB. Low predictive value of positive Osler maneuver for diagnosing pseudohypertension. J Hum Hypertens. 1993;7:65–70.

    CAS  PubMed  Google Scholar 

  48. Penny JA, Shennan AH, Halligan AW, Taylor DJ, de Swiet M, Anthony J. The relative accuracy of sequential same-arm and simultaneous opposite-arm measurements for the intra-arterial validation of blood pressure monitors. Blood Press Monit. 1999;4:91–5.

    Article  CAS  PubMed  Google Scholar 

  49. Raftery EB, Gould BA. The effect of placebo on indirect and direct blood pressure measurements. J Hypertens Suppl. 1990;8:S93–100.

    CAS  PubMed  Google Scholar 

  50. Rasmussen PH, Staats BA, Driscoll DJ, Beck KC, Bonekat HW, Wilcox WD. Direct and indirect blood pressure during exercise. Chest. 1985;87:743–8.

    Article  CAS  PubMed  Google Scholar 

  51. Roberts LN, Smiley JR, Manning GW. A comparison of direct and indirect blood-pressure determinations. Circulation. 1953;8:232–42.

    Article  CAS  PubMed  Google Scholar 

  52. Rossen NB, Laugesen E, Peters CD, Ebbehøj E, Knudsen ST, Poulsen PL, et al. Invasive validation of arteriograph estimates of central blood pressure in patients with type 2 diabetes. Am J Hypertens. 2014;27:674–9.

    Article  PubMed  Google Scholar 

  53. Russell AE, Wing LM, Smith SA, Aylward PE, McRitchie RJ, Hassam RM, et al. Optimal size of cuff bladder for indirect measurement of arterial pressure in adults. J Hypertens. 1989;7:607–13.

    Article  CAS  PubMed  Google Scholar 

  54. Saghiv M, Goldhammer E, Sagiv M, Ben-Sira D, Hanson P, et al. J Clin Exp Pharmacol. 2016;6:1–5.

    Google Scholar 

  55. Sagiv M, Ben-Sira D, Goldhammer E. Direct vs. indirect blood pressure measurement at peak anaerobic exercise. Int J Sports Med. 1999;20:275–8.

    Article  CAS  PubMed  Google Scholar 

  56. Sagiv M, Hanson PG, Ben-Sira D, Nagle FJ. Direct vs indirect blood pressure at rest and during isometric exercise in normal subjects. Int J Sports Med. 1995;16:514–8.

    Article  CAS  PubMed  Google Scholar 

  57. Simpson JA, Jamieson G, Dickhaus DW, Grover RF. Effect of size of cuff bladder on accuracy of measurement of indirect blood pressure. Am Heart J. 1965;70:208–15.

    Article  CAS  PubMed  Google Scholar 

  58. Spence JD, Sibbald WJ, Cape RD. Pseudohypertension in the elderly. Clin Sci Mol Med Suppl. 1978;4:399s–402s.

    CAS  PubMed  Google Scholar 

  59. Stolt M, Sjönell G, Aström H, Hansson L. Factors affecting the validity of the standard blood pressure cuff. Clin Physiol. 1993;13:611–20.

    Article  CAS  PubMed  Google Scholar 

  60. Stolt M, Sjönell G, Aström H, Rössner S, Hansson L. Improved accuracy of indirect blood pressure measurement in patients with obese arms. Am J Hypertens. 1993;6:66–71.

    Article  CAS  PubMed  Google Scholar 

  61. Turjanmaa V. Determination of blood pressure level and changes in physiological situations: comparison of the standard cuff method with direct intra-arterial recording. Clin Physiol. 1989;9:373–87.

    Article  CAS  PubMed  Google Scholar 

  62. Ulrych M, Burianová B, Hornych A, Mydlík M, Dousa T, Hejl Z. Comparison of direct and indirect methods of measurement of arterial blood pressure in man. Cor Vasa. 1966;8:77–88.

    CAS  PubMed  Google Scholar 

  63. Vardan S, Mookherjee S, Warner R, Smulyan H. Systolic hypertension. Direct and indirect BP measurements. Arch Intern Med. 1983;143:935–8.

    Article  CAS  PubMed  Google Scholar 

  64. Weber F, Lindemann M, Erbel R, Philipp T. Indirect and direct simultaneous, comparative blood pressure measurements with the Bosotron 2 device. Kidney Blood Press Res. 1999;22:166–71.

    Article  CAS  PubMed  Google Scholar 

  65. Weisser B, Velling P, Geller C, Kraft K, Göbel B, Vetter H, et al. Pseudohypertension in hypertensive patients on multiple drug therapy. J Hypertens Suppl. 1990;8:S79–81.

    CAS  PubMed  Google Scholar 

  66. Whalen P, Ream AK. A quantitative evaluation of the Hewlett-Packard 78354A noninvasive blood pressure meter. J Clin Monit. 1988;4:21–30.

    Article  CAS  PubMed  Google Scholar 

  67. • Wheatley CM, Snyder EM, Joyner MJ, Johnson BD, Olson TP. Comparison of intra-arterial and manual auscultation of blood pressure during submaximal exercise in humans. Appl Physiol Nutr Metab. 2013;38:537–44 This is the most recent paper that was included in the quantitative analysis that allows for a direct comparison of invasive and non-invasive blood pressure measurements.

    Article  PubMed  Google Scholar 

  68. White WB, Lund-Johansen P, Omvik P. Assessment of four ambulatory blood pressure monitors and measurements by clinicians versus intraarterial blood pressure at rest and during exercise. Am J Cardiol. 1990;65:60–6.

    Article  CAS  PubMed  Google Scholar 

  69. Marín-Martínez F, Sánchez-Meca J. Weighting by inverse variance or by sample size in random-effects meta-analysis. Educ Psychol Meas. 2010;70:56–73.

    Article  Google Scholar 

  70. White WB, Berson AS, Robbins C, Jamieson MJ, Prisant LM, Roccella E, et al. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension. 1993;21:504–9.

    Article  CAS  PubMed  Google Scholar 

  71. O’Brien E, Petrie J, Littler W, de Swiet M, Padfield PL, O’Malley K, et al. The British hypertension society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens. 1990;8:607–19.

    Article  Google Scholar 

  72. Frese EM, Fick A, Sadowsky HS. Blood pressure measurement guidelines for physical therapists. Cardiopulm Phys Ther J. 2011;22:5–12.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sacks AH. Indirect blood pressure measurements: a matter of interpretation. Angiology. 1979;30:683–95.

    Article  CAS  PubMed  Google Scholar 

  74. Clancy F. Factors affecting correlation between direct and indirect arterial blood pressure measurements. J Clin Eng. 1978;3:49–51.

    Article  Google Scholar 

  75. Romagnoli S, Ricci Z, Quattrone D, Tofani L, Tujjar O, Villa G, et al. Accuracy of invasive arterial pressure monitoring in cardiovascular patients: an observational study. Crit Care. 2014;18:644.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JPL and TA designed the study. SJD extracted the data for analysis. SJD analyzed the data. SJD drafted the initial manuscript. SJD, JPL, TA, and MK revised the manuscript and contributed to the intellectual content.

Corresponding author

Correspondence to Jeremy P. Loenneke.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Guidelines, Clinical Trials, and Meta-Analysis

These author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dankel, S.J., Kang, M., Abe, T. et al. A Meta-analysis to Determine the Validity of Taking Blood Pressure Using the Indirect Cuff Method. Curr Hypertens Rep 21, 11 (2019). https://doi.org/10.1007/s11906-019-0929-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-019-0929-8

Keywords

Navigation