Advertisement

Eplerenone Versus Spironolactone in Resistant Hypertension: an Efficacy and/or Cost or Just a Men’s Issue?

  • Antonis A. Manolis
  • Theodora A. Manolis
  • Helen Melita
  • Antonis S. ManolisEmail author
Resistant Hypertension (L Drager, Section Editor)
  • 280 Downloads
Part of the following topical collections:
  1. Topical Collection on Resistant Hypertension

Abstract

Purpose of Review

To review comparative efficacy and tolerability data between the two main mineralocorticoid receptor antagonists (MRAs), spironolactone and eplerenone, in patients with resistant hypertension (HTN). The focus was whether spironolactone, being the classical non-selective agent that has been used for years, albeit with several anti-androgenic side effects, can be rivaled by eplerenone, an apparently weaker, but better tolerated, more selective MRA.

Recent Findings

Evidence has accumulated that resistant HTN is generally volume-dependent, attributable to varying degrees of aldosterone excess with its attendant renal effects of sodium and fluid retention. Such aldosteronism may be due to an underestimated occurrence of primary aldosteronism; however, it more commonly occurs separately from it and independent from angiotensin II. The aldosterone-induced volume excess placed at the root of the development of resistant HTN in a large number of patients, together with the extrarenal deleterious effects of aldosterone, such as endothelial dysfunction, vascular remodeling and increased arterial stiffness, cardiac hypertrophy, and fibrosis can all be counterbalanced by the administration of MRAs. In the absence of a direct comparison between spironolactone and eplerenone, and in light of compelling evidence provided by the recently reported results of the PATHWAY-2 and ReHOT studies, spironolactone has been established as the most effective add-on anti-aldosterone therapy in resistant HTN. The data on use of eplerenone continue to emerge and are quite encouraging.

Summary

Despite the lack of direct comparative data, the weight of evidence regarding efficacy is currently in favor of spironolactone. However, the data on the efficacy of eplerenone are promising but still being accumulated suggesting this agent as an alternative to spironolactone and certainly as the preferred choice for those not tolerating spironolactone, especially for patients developing anti-androgenic side effects like breast tenderness, gynecomastia/mastodynia, and/or sexual dysfunction. Both these agents appear to have several other pleiotropic effects that confer cardioprotection and renoprotection beyond their antihypertensive effect. Potassium levels and renal function need to be closely monitored during administration of these therapies. Future comparative studies may shed more light on these issues, while emerging newer agents may offer better and safer therapeutic options.

Keywords

Hypertension Resistant hypertension Aldosterone Aldosteronism Spironolactone Eplerenone Mineralocorticoid receptor antagonist Heart failure 

Abbreviations

ACE

Angiotensin-converting enzyme

AF

Atrial fibrillation

ARB

Angiotensin receptor blocker

BP

Blood pressure

CKD

Chronic kidney disease

CV

Cardiovascular

eGFR

Estimated glomerular filtration rate

HF

Heart failure

HTN

Hypertension

LV

Left ventricle(-ular)

LVEF

Left ventricular ejection fraction

LVH

Left ventricular hypertrophy

MI

Myocardial infarction

MRA

Mineralocorticoid receptor antagonist

NYHA

New York Heart Association

PA

Primary aldosteronism

RAAS

Renin–angiotensin–aldosterone system

RAS

Renin–angiotensin system

RCT

Randomized controlled trial

SCD

Sudden cardiac death

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Kolkhof P, Barfacker L. 30 years of the mineralocorticoid receptor: mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol. 2017;234(1):T125–t40. An important review of the history of the various generations of MRAs. PubMedPubMedCentralGoogle Scholar
  2. 2.
    Calhoun DA. Aldosteronism and hypertension. Clin J Am Soc Nephrol. 2006;1(5):1039–45.PubMedGoogle Scholar
  3. 3.
    Garthwaite SM, McMahon EG. The evolution of aldosterone antagonists. Mol Cell Endocrinol. 2004;217(1–2):27–31.PubMedGoogle Scholar
  4. 4.
    Yugar-Toledo JC, Modolo R, de Faria AP, Moreno H. Managing resistant hypertension: focus on mineralocorticoid-receptor antagonists. Vasc Health Risk Manag. 2017;13:403–11.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Epstein M, Duprez DA. Resistant hypertension and the pivotal role for mineralocorticoid receptor antagonists: a clinical update 2016. Am J Med. 2016;129(7):661–6.PubMedGoogle Scholar
  6. 6.
    •• Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015;386(10008):2059–68. A pivotal trial establishing the role of spironolactone in the treatment of resistant hypertension. PubMedPubMedCentralGoogle Scholar
  7. 7.
    • Krieger EM, Drager LF, Giorgi DMA, Pereira AC, Barreto-Filho JAS, Nogueira AR, et al. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (resistant hypertension optimal treatment). Hypertension. 2018;71(4):681–90. An important trial suggesting spironolactone as the preferable fourth agent for resistant hypertension. PubMedGoogle Scholar
  8. 8.
    • Pimenta E, Gaddam KK, Pratt-Ubunama MN, Nishizaka MK, Cofield SS, Oparil S, et al. Aldosterone excess and resistance to 24-h blood pressure control. J Hypertens. 2007;25(10):2131–7. Important prospective study suggesting a role of aldosterone excess in resistant hypertension. PubMedGoogle Scholar
  9. 9.
    • Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, et al. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med. 2008;168(11):1159–64. An important prospective study suggesting a role of intravascular volume expansion in resistane hypertension. PubMedPubMedCentralGoogle Scholar
  10. 10.
    Martins LC, Figueiredo VN, Quinaglia T, Boer-Martins L, Yugar-Toledo JC, Martin JF, et al. Characteristics of resistant hypertension: ageing, body mass index, hyperaldosteronism, cardiac hypertrophy and vascular stiffness. J Hum Hypertens. 2011;25(9):532–8.PubMedGoogle Scholar
  11. 11.
    Krum H, Nolly H, Workman D, He W, Roniker B, Krause S, et al. Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients. Hypertension. 2002;40(2):117–23.PubMedGoogle Scholar
  12. 12.
    Calhoun DA, White WB. Effectiveness of the selective aldosterone blocker, eplerenone, in patients with resistant hypertension. J Am Soc Hypertens. 2008;2(6):462–8.PubMedGoogle Scholar
  13. 13.
    • Dahal K, Kunwar S, Rijal J, Alqatahni F, Panta R, Ishak N, et al. The effects of aldosterone antagonists in patients with resistant hypertension: a meta-analysis of randomized and nonrandomized studies. Am J Hypertens. 2015;28(11):1376–85. A meta-analysis showing that MRAs are safe and effective therapy in patients with resistant hypertension. PubMedGoogle Scholar
  14. 14.
    • Guo H, Xiao Q. Clinical efficacy of spironolactone for resistant hypertension: a meta analysis from randomized controlled clinical trials. Int J Clin Exp Med. 2015;8(5):7270–8. A meta-analysis on the efficacy of spironolactone in resistant hypertension. PubMedPubMedCentralGoogle Scholar
  15. 15.
    • Liu L, Xu B, Ju Y. Addition of spironolactone in patients with resistant hypertension: a meta-analysis of randomized controlled trials. Clin Exp Hypertens. 2017;39(3):257–63. A meta-analysis on the benefit of spironolactone in patients with resistant hypertension. PubMedGoogle Scholar
  16. 16.
    Clark D 3rd, Ahmed MI, Calhoun DA. Resistant hypertension and aldosterone: an update. Can J Cardiol. 2012;28(3):318–25.PubMedGoogle Scholar
  17. 17.
    Zhang WD, Zhang JW, Wu KF, Chen X, Wang YP, Zhou LH, et al. Effect of aldosterone antagonists on obstructive sleep apnea in patients with resistant hypertension: a systematic review and meta-analysis. J Hum Hypertens. 2017;31(12):855–6.PubMedGoogle Scholar
  18. 18.
    Briet M, Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6(5):261–73.PubMedGoogle Scholar
  19. 19.
    Nguyen Dinh Cat A, Jaisser F. Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens. 2012;21(2):147–56.PubMedGoogle Scholar
  20. 20.
    Mackenzie SM, Connell J. Hypertension and the expanding role of aldosterone. Curr Hypertens Rep. 2006;8(3):255–61.PubMedGoogle Scholar
  21. 21.
    Duprez DA, Bauwens FR, De Buyzere ML, De Backer TL, Kaufman JM, Van Hoecke J, et al. Influence of arterial blood pressure and aldosterone on left ventricular hypertrophy in moderate essential hypertension. Am J Cardiol. 1993;71(3):17a–20a.PubMedGoogle Scholar
  22. 22.
    Rocha R, Funder JW. The pathophysiology of aldosterone in the cardiovascular system. Ann N Y Acad Sci. 2002;970:89–100.PubMedGoogle Scholar
  23. 23.
    Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63(5):1791–800.PubMedGoogle Scholar
  24. 24.
    Matsumura K, Fujii K, Oniki H, Oka M, Iida M. Role of aldosterone in left ventricular hypertrophy in hypertension. Am J Hypertens. 2006;19(1):13–8.PubMedGoogle Scholar
  25. 25.
    Dartsch T, Fischer R, Gapelyuk A, Weiergraeber M, Ladage D, Schneider T, et al. Aldosterone induces electrical remodeling independent of hypertension. Int J Cardiol. 2013;164(2):170–8.PubMedGoogle Scholar
  26. 26.
    Martinez-Aguayo A, Carvajal CA, Campino C, Aglony M, Bolte L, Garcia H, et al. Primary aldosteronism and its impact on the generation of arterial hypertension, endothelial injury and oxidative stress. J Pediatr Endocrinol Metab. 2010;23(4):323–30.PubMedGoogle Scholar
  27. 27.
    Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47(3):312–8.PubMedGoogle Scholar
  28. 28.
    Schmidt BM, Oehmer S, Delles C, Bratke R, Schneider MP, Klingbeil A, et al. Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension. 2003;42(2):156–60.PubMedGoogle Scholar
  29. 29.
    Nishizaka MK, Zaman MA, Green SA, Renfroe KY, Calhoun DA. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation. 2004;109(23):2857–61.PubMedGoogle Scholar
  30. 30.
    Schrijver G, Weinberger MH. Hydrochlorothiazide and spironolactone in hypertension. Clin Pharmacol Ther. 1979;25(1):33–42.PubMedGoogle Scholar
  31. 31.
    Ludbrook A, Dynon M, Mendelsohn FA, Louis WJ. Comparison of a single-dose and twice-a-day spironolactone therapy in mild hypertension. Med J Aust. 1980;1(3):124–5.PubMedGoogle Scholar
  32. 32.
    de Souza F, Muxfeldt E, Fiszman R, Salles G. Efficacy of spironolactone therapy in patients with true resistant hypertension. Hypertension. 2010;55(1):147–52.PubMedGoogle Scholar
  33. 33.
    Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens. 2003;16(11 Pt 1):925–30.PubMedGoogle Scholar
  34. 34.
    Chapman N, Dobson J, Wilson S, Dahlof B, Sever PS, Wedel H, et al. Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension. 2007;49(4):839–45.PubMedGoogle Scholar
  35. 35.
    • Batterink J, Stabler SN, Tejani AM, Fowkes CT. Spironolactone for hypertension. Cochrane Database Syst Rev. 2010;8:Cd008169. A meta-analysis on the role of spironolactone in the treatment of hypertension pointing to reasonable dosing of 25–100 mg/day. Google Scholar
  36. 36.
    Weinberger MH, Roniker B, Krause SL, Weiss RJ. Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am J Hypertens. 2002;15(8):709–16.PubMedGoogle Scholar
  37. 37.
    White WB, Duprez D, St Hillaire R, Krause S, Roniker B, Kuse-Hamilton J, et al. Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension. 2003;41(5):1021–6.PubMedGoogle Scholar
  38. 38.
    • Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108(15):1831–8. An important study demonstrating the efficacy of eplerenone in LVH regression and blood pressure control. PubMedGoogle Scholar
  39. 39.
    White WB, Carr AA, Krause S, Jordan R, Roniker B, Oigman W. Assessment of the novel selective aldosterone blocker eplerenone using ambulatory and clinical blood pressure in patients with systemic hypertension. Am J Cardiol. 2003;92(1):38–42.PubMedGoogle Scholar
  40. 40.
    Flack JM, Oparil S, Pratt JH, Roniker B, Garthwaite S, Kleiman JH, et al. Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients. J Am Coll Cardiol. 2003;41(7):1148–55.PubMedGoogle Scholar
  41. 41.
    • Pelliccia F, Patti G, Rosano G, Greco C, Gaudio C. Efficacy and safety of eplerenone in the management of mild to moderate arterial hypertension: systematic review and meta-analysis. Int J Cardiol. 2014;177(1):219–28. A meta-analysis demonstrating the efficacy and safety of eplerenone in treating hypertension. PubMedGoogle Scholar
  42. 42.
    • Tam TS, Wu MH, Masson SC, Tsang MP, Stabler SN, Kinkade A, et al. Eplerenone for hypertension. Cochrane Database Syst Rev. 2017;2:Cd008996. A meta-analysis on the role of eplerenone in the treatment of hypertension pointing to effective dosing of 50 mg/day. PubMedGoogle Scholar
  43. 43.
    Ando K, Ohtsu H, Uchida S, Kaname S, Arakawa Y, Fujita T. Anti-albuminuric effect of the aldosterone blocker eplerenone in non-diabetic hypertensive patients with albuminuria: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2(12):944–53.PubMedGoogle Scholar
  44. 44.
    •• Noubiap JJ, Nansseu JR, Nyaga UF, Sime PS, Francis I, Bigna JJ. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart. 2019;105(2):98–105. A meta-analysis of a large pooled sample of hypertensive patients indicating high global prevalence of resistant hypertension. PubMedGoogle Scholar
  45. 45.
    de Faria AP, Demacq C, Figueiredo VN, Moraes CH, Santos RC, Sabbatini AR, et al. Hypoadiponectinemia and aldosterone excess are associated with lack of blood pressure control in subjects with resistant hypertension. Hypertens Res. 2013;36(12):1067–72.PubMedGoogle Scholar
  46. 46.
    Ubaid-Girioli S, Adriana de Souza L, Yugar-Toledo JC, Martins LC, Ferreira-Melo S, Coelho OR, et al. Aldosterone excess or escape: treating resistant hypertension. J Clin Hypertens (Greenwich). 2009;11(5):245–52.Google Scholar
  47. 47.
    Vaclavik J, Sedlak R, Plachy M, Navratil K, Plasek J, Jarkovsky J, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57(6):1069–75.PubMedGoogle Scholar
  48. 48.
    Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens. 2013;31(10):2094–102.PubMedGoogle Scholar
  49. 49.
    Engbaek M, Hjerrild M, Hallas J, Jacobsen IA. The effect of low-dose spironolactone on resistant hypertension. J Am Soc Hypertens. 2010;4(6):290–4.PubMedGoogle Scholar
  50. 50.
    • Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, et al. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 2018;6(6):464–75. An analysis of the PATHWAY-2 substudies indicating that resistant hypertension is a salt-retaining state due to inappropriate aldosterone secretion. PubMedPubMedCentralGoogle Scholar
  51. 51.
    • Wang C, Xiong B, Huang J. Efficacy and safety of spironolactone in patients with resistant hypertension: a meta-analysis of randomised controlled trials. Heart Lung Circ. 2016;25(10):1021–30. A meta-analysis on the efficacy and safety of spironolactone in resistant hypertension. PubMedGoogle Scholar
  52. 52.
    • Sinnott SJ, Tomlinson LA, Root AA, Mathur R, Mansfield KE, Smeeth L, et al. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(3):228–38. A meta-analysis on the comparative effectiveness of MRAs in resistant hypertension. PubMedGoogle Scholar
  53. 53.
    Zhao D, Liu H, Dong P, Zhao J. A meta-analysis of add-on use of spironolactone in patients with resistant hypertension. Int J Cardiol. 2017;233:113–7.PubMedGoogle Scholar
  54. 54.
    • Parthasarathy HK, Menard J, White WB, Young WF Jr, Williams GH, Williams B, et al. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J Hypertens. 2011;29(5):980–90. An important comparative RCT of spironolactone vs eplerenone. PubMedGoogle Scholar
  55. 55.
    Weinberger MH, White WB, Ruilope LM, MacDonald TM, Davidson RC, Roniker B, et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am Heart J. 2005;150(3):426–33.PubMedGoogle Scholar
  56. 56.
    Jansen PM, Danser AH, Imholz BP, van den Meiracker AH. Aldosterone-receptor antagonism in hypertension. J Hypertens. 2009;27(4):680–91.PubMedGoogle Scholar
  57. 57.
    •• Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21. A pivotal trial of eplerenone in patients with left ventricular dysfunction after myocardial infarction. PubMedGoogle Scholar
  58. 58.
    Jansen PM, Frenkel WJ, van den Born BJ, de Bruijne EL, Deinum J, Kerstens MN, et al. Determinants of blood pressure reduction by eplerenone in uncontrolled hypertension. J Hypertens. 2013;31(2):404–13.PubMedGoogle Scholar
  59. 59.
    Spence JD, Bogiatzi C, Kuk M, Dresser GK, Hackam DG. Effects of eplerenone on resistance to antihypertensive medication in patients with primary or secondary hyperaldosteronism. J Transl Int Med. 2017;5(2):93–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Eguchi K, Kabutoya T, Hoshide S, Ishikawa S, Kario K. Add-on use of eplerenone is effective for lowering home and ambulatory blood pressure in drug-resistant hypertension. J Clin Hypertens (Greenwich). 2016;18(12):1250–7.Google Scholar
  61. 61.
    Schneider A, Schwab J, Karg MV, Kalizki T, Reinold A, Schneider MP, et al. Low-dose eplerenone decreases left ventricular mass in treatment-resistant hypertension. J Hypertens. 2017;35(5):1086–92.PubMedGoogle Scholar
  62. 62.
    Gaddam K, Corros C, Pimenta E, Ahmed M, Denney T, Aban I, et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a prospective clinical study. Hypertension. 2010;55(5):1137–42.PubMedPubMedCentralGoogle Scholar
  63. 63.
    • Yamamoto M, Seo Y, Ishizu T, Nishi I, Hamada-Harimura Y, Machino-Ohtsuka T, et al. Comparison of effects of aldosterone receptor antagonists spironolactone and eplerenone on cardiovascular outcomes and safety in patients with acute decompensated heart failure. Heart Vessels. 2018.  https://doi.org/10.1007/s00380-018-1250-1. A comparative trial of spironolactone and eplerenone in patients with heart failure. PubMedGoogle Scholar
  64. 64.
    Chatterjee S, Moeller C, Shah N, Bolorunduro O, Lichstein E, Moskovits N, et al. Eplerenone is not superior to older and less expensive aldosterone antagonists. Am J Med. 2012;125(8):817–25.PubMedGoogle Scholar
  65. 65.
    Sica DA. Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium homeostasis. Heart Fail Rev. 2005;10(1):23–9.PubMedGoogle Scholar
  66. 66.
    Lainscak M, Pelliccia F, Rosano G, Vitale C, Schiariti M, Greco C, et al. Safety profile of mineralocorticoid receptor antagonists: spironolactone and eplerenone. Int J Cardiol. 2015;200:25–9.PubMedGoogle Scholar
  67. 67.
    Davies JI, Band M, Morris A, Struthers AD. Spironolactone impairs endothelial function and heart rate variability in patients with type 2 diabetes. Diabetologia. 2004;47(10):1687–94.PubMedGoogle Scholar
  68. 68.
    •• Vukadinovic D, Lavall D, Vukadinovic AN, Pitt B, Wagenpfeil S, Bohm M. True rate of mineralocorticoid receptor antagonists-related hyperkalemia in placebo-controlled trials: a meta-analysis. Am Heart J. 2017;188:99–108. A meta-analysis on MRA-related hyperkalemia but also raising the issue of non-MRA-related hyperkalemia. PubMedGoogle Scholar
  69. 69.
    Tang WH, Parameswaran AC, Maroo AP, Francis GS. Aldosterone receptor antagonists in the medical management of chronic heart failure. Mayo Clin Proc. 2005;80(12):1623–30.PubMedGoogle Scholar
  70. 70.
    • Korol S, Mottet F, Perreault S, Baker WL, White M, de Denus S. A systematic review and meta-analysis of the impact of mineralocorticoid receptor antagonists on glucose homeostasis. Medicine (Baltimore). 2017;96(48):e8719. A meta-analysis on the impact of MRAs on glycemia. Google Scholar
  71. 71.
    • Ademi Z, Pasupathi K, Krum H, Liew D. Cost effectiveness of eplerenone in patients with chronic heart failure. Am J Cardiovasc Drugs. 2014;14(3):209–16. A cost-effectiveness analysis of eplerenone in heart failure. PubMedGoogle Scholar
  72. 72.
    • Lee D, Wilson K, Akehurst R, Cowie MR, Zannad F, Krum H, et al. Cost-effectiveness of eplerenone in patients with systolic heart failure and mild symptoms. Heart. 2014;100(21):1681–7. A cost-effectiveness analysis of eplerenone in the EMPHASIS-HF trial. PubMedPubMedCentralGoogle Scholar
  73. 73.
    •• Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, et al. The management of primary aldosteronism: case detection, diagnosis, and treatment: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916. Endocrine Society Guidelines on the management of primary aldosteronism. PubMedGoogle Scholar
  74. 74.
    Kline GA, Prebtani APH, Leung AA, Schiffrin EL. Primary aldosteronism: a common cause of resistant hypertension. CMAJ. 2017;189(22):E773–e8.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Karashima S, Yoneda T, Kometani M, Ohe M, Mori S, Sawamura T, et al. Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism. Hypertens Res. 2016;39(3):133–7.PubMedGoogle Scholar
  76. 76.
    Bell GM, Fananapazir L, Anderton JL. Comparison of single and divided daily dose spironolactone in the control of hypertension. Br J Clin Pharmacol. 1981;12(4):585–8.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sungaila I, Bartle WR, Walker SE, DeAngelis C, Uetrecht J, Pappas C, et al. Spironolactone pharmacokinetics and pharmacodynamics in patients with cirrhotic ascites. Gastroenterology. 1992;102(5):1680–5.PubMedGoogle Scholar
  78. 78.
    Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351(6):543–51.PubMedGoogle Scholar
  79. 79.
    Craft J. Eplerenone (Inspra), a new aldosterone antagonist for the treatment of systemic hypertension and heart failure. Proc (Bayl Univ Med Cent). 2004;17(2):217–20.Google Scholar
  80. 80.
    Ravis WR, Reid S, Sica DA, Tolbert DS. Pharmacokinetics of eplerenone after single and multiple dosing in subjects with and without renal impairment. J Clin Pharmacol. 2005;45(7):810–21.PubMedGoogle Scholar
  81. 81.
    •• Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341(10):709–17. A landmark trial on the effect of spironolactone on morbidity and mortality in patients with heart failure. PubMedGoogle Scholar
  82. 82.
    • Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21. A pivotal trial of eplerenone in heart failure patients. PubMedGoogle Scholar
  83. 83.
    •• Pitt B, White H, Nicolau J, Martinez F, Gheorghiade M, Aschermann M, et al. Eplerenone reduces mortality 30 days after randomization following acute myocardial infarction in patients with left ventricular systolic dysfunction and heart failure. J Am Coll Cardiol. 2005;46(3):425–31. A pivotal trial of eplerenone in heart failure patients after myocardial infarction. PubMedGoogle Scholar
  84. 84.
    Ferreira JP, Duarte K, McMurray JJV, Pitt B, van Veldhuisen DJ, Vincent J, et al. Data-driven approach to identify subgroups of heart failure with reduced ejection fraction patients with different prognoses and aldosterone antagonist response patterns. Circ Heart Fail. 2018;11(7):e004926.PubMedGoogle Scholar
  85. 85.
    Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investig Circ. 2000;102(22):2700–6.Google Scholar
  86. 86.
    Nishikawa N, Yamamoto K, Sakata Y, Mano T, Yoshida J, Umekawa S, et al. Long-term effect of spironolactone on cardiac structure as assessed by analysis of ultrasonic radio-frequency signals in patients with ventricular hypertrophy. Circ J. 2005;69(11):1394–400.PubMedGoogle Scholar
  87. 87.
    Kawasaki M, Yamada T, Okuyama Y, Morita T, Furukawa Y, Tamaki S, et al. Eplerenone might affect atrial fibrosis in patients with hypertension. Pacing Clin Electrophysiol. 2017;40(10):1096–102.PubMedGoogle Scholar
  88. 88.
    Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51(2):432–9.PubMedGoogle Scholar
  89. 89.
    Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation. 2000;101(6):594–7.PubMedGoogle Scholar
  90. 90.
    Kalizki T, Schmidt BMW, Raff U, Reinold A, Schwarz TK, Schneider MP, et al. Low dose-eplerenone treatment decreases aortic stiffness in patients with resistant hypertension. J Clin Hypertens. 2017;19(7):669–76.Google Scholar
  91. 91.
    Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–78.PubMedGoogle Scholar
  92. 92.
    Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(5):940–51.PubMedGoogle Scholar
  93. 93.
    Bomback AS, Kshirsagar AV, Amamoo MA, Klemmer PJ. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am J Kidney Dis. 2008;51(2):199–211.PubMedGoogle Scholar
  94. 94.
    • Neefs J, van den Berg NW, Limpens J, Berger WR, Boekholdt SM, Sanders P, et al. Aldosterone pathway blockade to prevent atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2017;231:155–61. A meta-analysis on the effects of MRAs on atrial fibrillation. PubMedGoogle Scholar
  95. 95.
    • Wei J, Ni J, Huang D, Chen M, Yan S, Peng Y. The effect of aldosterone antagonists for ventricular arrhythmia: a meta-analysis. Clin Cardiol. 2010;33(9):572–7. A meta-analysis on the effects of MRAs on ventricular arrhythmias. PubMedGoogle Scholar
  96. 96.
    • Beygui F, Van Belle E, Ecollan P, Machecourt J, Hamm CW, Lopez De Sa E, et al. Individual participant data analysis of two trials on aldosterone blockade in myocardial infarction. Heart. 2018;104(22):1843–9. An important analysis of data on the effect of MRAs on total and sudden death mortality after a myocardial infarction. PubMedGoogle Scholar
  97. 97.
    • Eschalier R, McMurray JJ, Swedberg K, van Veldhuisen DJ, Krum H, Pocock SJ, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol. 2013;62(17):1585–93. A subgroup analysis of the EMPHASIS-HF trial on the effect of eplerenone in patients prone to hyperkalemia. PubMedGoogle Scholar
  98. 98.
    Khosla N, Kalaitzidis R, Bakris GL. Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am J Nephrol. 2009;30(5):418–24.PubMedGoogle Scholar
  99. 99.
    Gwoo S, Kim YN, Shin HS, Jung YS, Rim H. Predictors of hyperkalemia risk after hypertension control with aldosterone blockade according to the presence or absence of chronic kidney disease. Nephron Clin Pract. 2014;128(3–4):381–6.PubMedGoogle Scholar
  100. 100.
    Matsumoto Y, Mori Y, Kageyama S, Arihara K, Sugiyama T, Ohmura H, et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J Am Coll Cardiol. 2014;63(6):528–36.PubMedGoogle Scholar
  101. 101.
    Pitt B, Anker SD, Bushinsky DA, Kitzman DW, Zannad F, Huang IZ. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J. 2011;32(7):820–8.PubMedPubMedCentralGoogle Scholar
  102. 102.
    • Pei H, Wang W, Zhao D, Wang L, Su GH, Zhao Z. The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(16):e0254. Data on the new MRA, finerenone. Google Scholar
  103. 103.
    •• NICE. Hypertension in adults: diagnosis and management. 2016. https://www.nice.org.uk/guidance/cg127. British guidelines on hypertension. Accessed 29 Oct 2018
  104. 104.
    •• Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71(19):e127–248. New (2018) American guidelines on hypertension. PubMedGoogle Scholar
  105. 105.
    •• Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. New (2018) European guidelines on hypertension. PubMedGoogle Scholar
  106. 106.
    •• Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53–90. New (2018) scientific statement from the American Heart Association on resistant hypertension. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Antonis A. Manolis
    • 1
  • Theodora A. Manolis
    • 2
  • Helen Melita
    • 3
  • Antonis S. Manolis
    • 4
    Email author
  1. 1.Patras University School of MedicinePatrasGreece
  2. 2.Red Cross HospitalAthensGreece
  3. 3.Onassis Cardiac Surgery CenterAthensGreece
  4. 4.Third Department of CardiologyAthens University School of MedicineAthensGreece

Personalised recommendations