Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75. https://doi.org/10.1161/CIRCRESAHA.113.301141.
CAS
Article
PubMed
PubMed Central
Google Scholar
Price LC, Wort SJ, Perros F, Dorfmüller P, Huertas A, Montani D, et al. Inflammation in pulmonary arterial hypertension. Chest. 2012;141(1):210–21. https://doi.org/10.1378/chest.11-0793.
CAS
Article
PubMed
Google Scholar
Lai YC, Potoka KC, Champion HC, Mora AL, Gladwin MT. Pulmonary arterial hypertension: the clinical syndrome. Circ Res. 2014;115(1):115–30. https://doi.org/10.1161/CIRCRESAHA.115.301146.
CAS
Article
PubMed
PubMed Central
Google Scholar
Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond). 2017;131(14):1689–700. https://doi.org/10.1042/CS20170219.
CAS
Article
Google Scholar
Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Phys Regul Integr Comp Phys. 2018;314(3):R387–R98. https://doi.org/10.1152/ajpregu.00235.2016.
CAS
Article
Google Scholar
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85. https://doi.org/10.1038/nature21363.
CAS
Article
PubMed
Google Scholar
Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458.
CAS
Article
PubMed
Google Scholar
•• Friedman SE, Andrus BW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obes. 2012;2012:505274. https://doi.org/10.1155/2012/505274 A recent comprehensive review of the prevalence, pathophysiology, mechanisms, and treatment of pulmonary hypertension in obese patients.
Article
PubMed
PubMed Central
Google Scholar
Weatherald J, Huertas A, Boucly A, Guignabert C, Taniguchi Y, Adir Y, et al. Association between BMI and obesity with survival in pulmonary arterial hypertension. Chest. 2018. https://doi.org/10.1016/j.chest.2018.05.006.
Article
PubMed
Google Scholar
Taraseviciute A, Voelkel NF. Severe pulmonary hypertension in postmenopausal obese women. Eur J Med Res. 2006;11(5):198–202.
PubMed
Google Scholar
Chin KM, Rubin LJ. Pulmonary arterial hypertension. J Am Coll Cardiol. 2008;51(16):1527–38. https://doi.org/10.1016/j.jacc.2008.01.024.
Article
PubMed
Google Scholar
Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31. https://doi.org/10.1164/ajrccm.151.5.7735624.
CAS
Article
PubMed
Google Scholar
•• Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7. https://doi.org/10.1161/CIRCULATIONAHA.109.933762 This is the first study to simultaneously profile a broad range of cytokines and their pathological role in idiopathic and heritable PAH.
CAS
Article
PubMed
Google Scholar
Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res. 2014;15:47. https://doi.org/10.1186/1465-9921-15-47.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schlosser K, Taha M, Deng Y, Jiang B, Mclntyre LA, Mei SH, et al. Lack of elevation in plasma levels of pro-inflammatory cytokines in common rodent models of pulmonary arterial hypertension: questions of construct validity for human patients. Pulm Circ. 2017;7(2):476–85. https://doi.org/10.1177/2045893217705878.
CAS
Article
PubMed
PubMed Central
Google Scholar
Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res. 2009;104(2):236–44. https://doi.org/10.1161/CIRCRESAHA.108.182014 28p following 44.
CAS
Article
PubMed
Google Scholar
Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007;104(27):11418–23. https://doi.org/10.1073/pnas.0610467104.
CAS
Article
PubMed
PubMed Central
Google Scholar
Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. https://doi.org/10.3389/fphys.2018.00253.
Article
PubMed
PubMed Central
Google Scholar
Schinzari F, Tesauro M, Cardillo C. Endothelial and perivascular adipose tissue abnormalities in obesity-related vascular dysfunction: novel targets for treatment. J Cardiovasc Pharmacol. 2017;69(6):360–8. https://doi.org/10.1097/FJC.0000000000000469.
CAS
Article
PubMed
Google Scholar
Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, et al. Modulation of vascular reactivity by perivascular adipose tissue (PVAT). Curr Hypertens Rep. 2018;20(5):44. https://doi.org/10.1007/s11906-018-0835-5.
CAS
Article
PubMed
Google Scholar
•• Siegel-Axel DI, Haring HU. Perivascular adipose tissue: An unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17(1):51–60. https://doi.org/10.1007/s11154-016-9346-3 This review outlines the origin of perivascular adipose tissue, its maladaptive responses, and its impact on diabetes, cardiovascular, and renal diseases.
CAS
Article
PubMed
Google Scholar
Huang Cao ZF, Stoffel E, Cohen P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension. 2017;69(5):770–7. https://doi.org/10.1161/HYPERTENSIONAHA.116.08451.
CAS
Article
PubMed
Google Scholar
Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernandez-Alfonso MS. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab. 2015;26(7):367–75. https://doi.org/10.1016/j.tem.2015.04.003.
CAS
Article
PubMed
Google Scholar
Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL. Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol. 2014;34(8):1631–6. https://doi.org/10.1161/ATVBAHA.114.303030.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25. https://doi.org/10.1007/s00125-012-2481-9.
CAS
Article
PubMed
Google Scholar
Ozen G, Daci A, Norel X, Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: focus on vascular tone and wall remodeling. Eur J Pharmacol. 2015;766:16–24. https://doi.org/10.1016/j.ejphar.2015.09.012.
CAS
Article
PubMed
Google Scholar
Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70. https://doi.org/10.1161/CIRCULATIONAHA.108.821181.
CAS
Article
PubMed
Google Scholar
Virdis A, Duranti E, Rossi C, Dell’Agnello U, Santini E, Anselmino M, et al. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J. 2015;36(13):784–94. https://doi.org/10.1093/eurheartj/ehu072.
CAS
Article
PubMed
Google Scholar
Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62(2):128–35. https://doi.org/10.1016/j.jacc.2013.04.027.
Article
PubMed
PubMed Central
Google Scholar
Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54(6):1384–92. https://doi.org/10.1161/HYPERTENSIONAHA.109.138305.
CAS
Article
PubMed
Google Scholar
Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.
CAS
Article
PubMed
Google Scholar
Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9. https://doi.org/10.1161/CIRCRESAHA.108.182998.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016;36(1):78–85. https://doi.org/10.1161/ATVBAHA.115.306263.
CAS
Article
PubMed
Google Scholar
Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation. 2013;128(1):9–18. https://doi.org/10.1161/CIRCULATIONAHA.112.001238.
CAS
Article
PubMed
PubMed Central
Google Scholar
Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels. Arterioscler Thromb Vasc Biol. 2015;35(6):1393–400. https://doi.org/10.1161/ATVBAHA.115.305500.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler Thromb Vasc Biol. 2016;36(7):1377–85. https://doi.org/10.1161/ATVBAHA.116.307210.
CAS
Article
PubMed
Google Scholar
Florentin J, Dutta P. Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine. 2017;100:11–5. https://doi.org/10.1016/j.cyto.2017.08.015.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):897–908. https://doi.org/10.1164/rccm.201202-0335OC This is the first comprehensive review characterizing the quantitative and qualitative distribution of inflammatory cells throughout pulmonary vasculature.
CAS
Article
PubMed
Google Scholar
Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, et al. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation. 2014;129(15):1586–97. https://doi.org/10.1161/CIRCULATIONAHA.113.007469.
CAS
Article
PubMed
Google Scholar
Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168(2):659–69. https://doi.org/10.2353/ajpath.2006.050599.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pugh ME, Newman JH, Williams DB, Brittain E, Robbins IM, Hemnes AR. Hemodynamic improvement of pulmonary arterial hypertension after bariatric surgery: potential role for metabolic regulation. Diabetes Care. 2013;36(3):e32–3. https://doi.org/10.2337/dc12-1650.
Article
PubMed
PubMed Central
Google Scholar
Mathier MA. Dramatic functional improvement following bariatric surgery in a patient with pulmonary arterial hypertension and morbid obesity. Chest. 2008;134(3):670–1. https://doi.org/10.1378/chest.08-1518.
Article
PubMed
Google Scholar
Shields KJ, Verdelis K, Passineau MJ, Faight EM, Zourelias L, Wu C, et al. Three-dimensional micro computed tomography analysis of the lung vasculature and differential adipose proteomics in the Sugen/hypoxia rat model of pulmonary arterial hypertension. Pulm Circ. 2016;6(4):586–96. https://doi.org/10.1086/688931.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity. European group for the study of insulin resistance (EGIR). J Clin Invest. 1997;100(5):1166–73. https://doi.org/10.1172/JCI119628.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128(4):1538–50. https://doi.org/10.1172/JCI96139.
Article
PubMed
PubMed Central
Google Scholar
Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol. 2015;6:231. https://doi.org/10.3389/fphys.2015.00231.
Article
PubMed
PubMed Central
Google Scholar
Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423–44. https://doi.org/10.1089/met.2015.0095.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007;115(10):1275–84. https://doi.org/10.1161/CIRCULATIONAHA.106.663120.
CAS
Article
PubMed
Google Scholar
Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, et al. Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 2009;33(2):318–24. https://doi.org/10.1183/09031936.00000508.
CAS
Article
PubMed
Google Scholar
Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6. https://doi.org/10.1161/01.CIR.0000099542.57313.C5.
Article
PubMed
Google Scholar
Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817–20. https://doi.org/10.1016/S0140-6736(05)66585-3.
Article
PubMed
Google Scholar
Rajsheker S, Manka D, Blomkalns AL, Chatterjee TK, Stoll LL, Weintraub NL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6. https://doi.org/10.1016/j.coph.2009.11.005.
CAS
Article
PubMed
PubMed Central
Google Scholar
•• Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol. 2013;3(3):1011–34. https://doi.org/10.1002/cphy.c120024 This review clearly explains the role of reactive oxygen species and oxidative stress associated alterations in pulmonary vascular remodeling.
Article
PubMed
PubMed Central
Google Scholar
Jernigan NL, Naik JS, Weise-Cross L, Detweiler ND, Herbert LM, Yellowhair TR, et al. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS One. 2017;12(6):e0180455. https://doi.org/10.1371/journal.pone.0180455.
CAS
Article
PubMed
PubMed Central
Google Scholar
Broughton BR, Jernigan NL, Norton CE, Walker BR, Resta TC. Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. Am J Physiol Lung Cell Mol Physiol. 2010;298(2):L232–42. https://doi.org/10.1152/ajplung.00276.2009.
CAS
Article
PubMed
Google Scholar
Jernigan NL, Walker BR, Resta TC. Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L515–29. https://doi.org/10.1152/ajplung.00355.2007.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174(20):3425–42. https://doi.org/10.1111/bph.13650.
CAS
Article
PubMed
Google Scholar
Gao YJ, Takemori K, Su LY, An WS, Lu C, Sharma AM, et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovasc Res. 2006;71(2):363–73. https://doi.org/10.1016/j.cardiores.2006.03.013.
CAS
Article
PubMed
Google Scholar
Loirand G, GuÈrin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98(3):322–34. https://doi.org/10.1161/01.RES.0000201960.04223.3c.
CAS
Article
PubMed
Google Scholar
Murdolo G, Angeli F, Reboldi G, Di Giacomo L, Aita A, Bartolini C, et al. Left ventricular hypertrophy and obesity: only a matter of fat? High Blood Press Cardiovasc Prev. 2015;22(1):29–41. https://doi.org/10.1007/s40292-014-0068-x.
CAS
Article
PubMed
Google Scholar
Turkbey EB, RL MC, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74. https://doi.org/10.1016/j.jcmg.2009.10.012.
Article
PubMed
PubMed Central
Google Scholar
Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6(5):800–7. https://doi.org/10.1161/CIRCIMAGING.113.000532.
Article
PubMed
PubMed Central
Google Scholar
Bastien M, Poirier P, Lemieux I, DesprÈs JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369–81. https://doi.org/10.1016/j.pcad.2013.10.016.
Article
PubMed
Google Scholar
Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: the hypertension connection. Curr Hypertens Rep. 2015;17(4):539. https://doi.org/10.1007/s11906-015-0539-z.
CAS
Article
PubMed
Google Scholar
Block AJ, Wynne JW, Boysen PG. Sleep-disordered breathing and nocturnal oxygen desaturation in postmenopausal women. Am J Med. 1980;69(1):75–9.
CAS
Article
PubMed
Google Scholar
•• Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26. https://doi.org/10.1016/j.jacc.2008.11.051 This review summarizes the strong association, prevalence, and significance of pulmonary hypertension in heart failure with preserved ejection fraction patients.
Article
PubMed
PubMed Central
Google Scholar
Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43(8):1432–8. https://doi.org/10.1016/j.jacc.2003.11.040.
Article
PubMed
Google Scholar
Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49(2):198–207. https://doi.org/10.1016/j.jacc.2006.08.050.
Article
PubMed
Google Scholar
Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324–31. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890.
Article
PubMed
PubMed Central
Google Scholar
Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.
Article
PubMed
Google Scholar
Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for†the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018;71(3):339–51. https://doi.org/10.1016/j.jacc.2017.11.019.
Article
PubMed
Google Scholar
Litwin SE. Cardiac remodeling in obesity: time for a new paradigm. JACC Cardiovasc Imaging. 2010;3(3):275–7. https://doi.org/10.1016/j.jcmg.2009.12.004.
Article
PubMed
Google Scholar
Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717. https://doi.org/10.1016/j.jacc.2008.05.002.
Article
PubMed
Google Scholar
Vgontzas AN, Tan TL, Bixler EO, Martin LF, Shubert D, Kales A. Sleep apnea and sleep disruption in obese patients. Arch Intern Med. 1994;154(15):1705–11.
CAS
Article
PubMed
Google Scholar
Palla A, Digiorgio M, Carpenë N, Rossi G, D’Amico I, Santini F, et al. Sleep apnea in morbidly obese patients: prevalence and clinical predictivity. Respiration. 2009;78(2):134–40. https://doi.org/10.1159/000165371.
Article
PubMed
Google Scholar
Alam I, Lewis K, Stephens JW, Baxter JN. Obesity, metabolic syndrome and sleep apnoea: all pro-inflammatory states. Obes Rev. 2007;8(2):119–27. https://doi.org/10.1111/j.1467-789X.2006.00269.x.
CAS
Article
PubMed
Google Scholar
Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19–25. https://doi.org/10.1164/ajrccm.163.1.2001008.
CAS
Article
PubMed
Google Scholar
Hoyos CM, Drager LF, Patel SR. OSA and cardiometabolic risk: what's the bottom line? Respirology. 2017;22(3):420–9. https://doi.org/10.1111/resp.12984.
Article
PubMed
Google Scholar
Tilkian AG, Guilleminault C, Schroeder JS, Lehrman KL, Simmons FB, Dement WC. Hemodynamics in sleep-induced apnea. Studies during wakefulness and sleep. Ann Intern Med. 1976;85(6):714–9.
CAS
Article
PubMed
Google Scholar
Ayas NT, Taylor CM, Laher I. Cardiovascular consequences of obstructive sleep apnea. Curr Opin Cardiol. 2016;31(6):599–605. https://doi.org/10.1097/HCO.0000000000000329.
Article
PubMed
Google Scholar
Chaouat A, Weitzenblum E, Krieger J, Oswald M, Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome. Results in 220 consecutive patients. Chest. 1996;109(2):380–6.
CAS
Article
PubMed
Google Scholar
Kessler R, Chaouat A, Weitzenblum E, Oswald M, Ehrhart M, Apprill M, et al. Pulmonary hypertension in the obstructive sleep apnoea syndrome: prevalence, causes and therapeutic consequences. Eur Respir J. 1996;9(4):787–94.
CAS
Article
PubMed
Google Scholar
Laks L, Lehrhaft B, Grunstein RR, Sullivan CE. Pulmonary hypertension in obstructive sleep apnoea. Eur Respir J. 1995;8(4):537–41.
CAS
PubMed
Google Scholar
Wong CY, O'Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol. 2006;47(3):611–6. https://doi.org/10.1016/j.jacc.2005.11.015.
Article
PubMed
Google Scholar
Sharma N, Lee J, Youssef I, Salifu MO, McFarlane SI. Obesity, cardiovascular disease and sleep disorders: insights into the rising epidemic. J Sleep Disord Ther. 2017;6(1). https://doi.org/10.4172/2167-0277.1000260.
Fletcher EC, Schaaf JW, Miller J, Fletcher JG. Long-term cardiopulmonary sequelae in patients with sleep apnea and chronic lung disease. Am Rev Respir Dis. 1987;135(3):525–33. https://doi.org/10.1164/arrd.1987.135.3.525.
CAS
Article
PubMed
Google Scholar
Rapoport DM, Garay SM, Epstein H, Goldring RM. Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian syndrome”. Chest. 1986;89(5):627–35.
CAS
Article
PubMed
Google Scholar
Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, et al. Chronic interactions between carotid baroreceptors and chemoreceptors in obesity hypertension. Hypertension. 2016;68(1):227–35. https://doi.org/10.1161/HYPERTENSIONAHA.116.07232.
CAS
Article
PubMed
Google Scholar
Suratt BT, Ubags NDJ, Rastogi D, Tantisira KG, Marsland BJ, Petrache I, et al. An official American Thoracic Society workshop report: obesity and metabolism. An emerging frontier in lung health and disease. Ann Am Thorac Soc. 2017;14(6):1050–9. https://doi.org/10.1513/AnnalsATS.201703-263WS.
Article
PubMed
PubMed Central
Google Scholar
Piper AJ. Obesity hypoventilation syndrome--the big and the breathless. Sleep Med Rev. 2011;15(2):79–89. https://doi.org/10.1016/j.smrv.2010.04.002.
Article
PubMed
Google Scholar
Kessler R, Chaouat A, Schinkewitch P, Faller M, Casel S, Krieger J, et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120(2):369–76.
CAS
Article
PubMed
Google Scholar
Kauppert CA, Dvorak I, Kollert F, Heinemann F, Jˆrres RA, Pfeifer M, et al. Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med. 2013;107(12):2061–70. https://doi.org/10.1016/j.rmed.2013.09.017.
Article
PubMed
Google Scholar
Teichtahl H. The obesity-hypoventilation syndrome revisited. Chest. 2001;120(2):336–9.
CAS
Article
PubMed
Google Scholar
•• Almeneessier AS, Nashwan SZ, Al-Shamiri MQ, Pandi-Perumal SR, BaHammam AS. The prevalence of pulmonary hypertension in patients with obesity hypoventilation syndrome: a prospective observational study. J Thorac Dis. 2017;9(3):779–88. https://doi.org/10.21037/jtd.2017.03.21 Large prospective study demonstrates the increased prevalence of pulmonary hypertension in obesity hypoventilation syndrome and also summarizes the previous studies.
Article
PubMed
PubMed Central
Google Scholar
Eichinger S, Hron G, Bialonczyk C, Hirshl M, Minar E, Wagner O, et al. Overweight, obesity and the risk of recurrent venous thromboembolism. Arch Intern Med. 2008;168:1678–83. https://doi.org/10.1001/j.ccm.2009.05.006.
Article
PubMed
Google Scholar
Heit JA, Ashrani A, Crusan DJ, McBane RD, Petterson TM, Bailey KR. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost. 2016;117:390–400. https://doi.org/10.1160/TH16-07-0509.
Article
PubMed
PubMed Central
Google Scholar