Skip to main content

Obesity and Pulmonary Hypertension

Abstract

Purpose of Review

Whether the present obesity epidemic will increase the prevalence of pulmonary hypertension over the next decades is unclear. We review the obesity-related mechanisms that may further the development and progression of pulmonary hypertension.

Recent Findings

Systemic and local inflammation, insulin resistance and oxidative stress contribute to the pathobiology of obesity and pulmonary arterial hypertension. Preliminary data suggest that expansion of adipose tissue surrounding the pulmonary artery may hasten the progression of pulmonary arterial hypertension in obese persons. Further, obesity-associated cardiac and pulmonary conditions may increase the prevalence of groups 2 and 3 pulmonary hypertension.

Summary

The obesity epidemic is likely to increase the prevalence of pulmonary arterial hypertension by enabling vascular remodeling. Obesity-associated cardiac and pulmonary conditions will increase pulmonary hypertension prevalence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115(1):165–75. https://doi.org/10.1161/CIRCRESAHA.113.301141.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Price LC, Wort SJ, Perros F, Dorfmüller P, Huertas A, Montani D, et al. Inflammation in pulmonary arterial hypertension. Chest. 2012;141(1):210–21. https://doi.org/10.1378/chest.11-0793.

    CAS  Article  PubMed  Google Scholar 

  3. Lai YC, Potoka KC, Champion HC, Mora AL, Gladwin MT. Pulmonary arterial hypertension: the clinical syndrome. Circ Res. 2014;115(1):115–30. https://doi.org/10.1161/CIRCRESAHA.115.301146.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Reho JJ, Rahmouni K. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clin Sci (Lond). 2017;131(14):1689–700. https://doi.org/10.1042/CS20170219.

    CAS  Article  Google Scholar 

  5. Aroor AR, Jia G, Sowers JR. Cellular mechanisms underlying obesity-induced arterial stiffness. Am J Phys Regul Integr Comp Phys. 2018;314(3):R387–R98. https://doi.org/10.1152/ajpregu.00235.2016.

    CAS  Article  Google Scholar 

  6. Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85. https://doi.org/10.1038/nature21363.

    CAS  Article  PubMed  Google Scholar 

  7. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91. https://doi.org/10.1001/jama.2016.6458.

    CAS  Article  PubMed  Google Scholar 

  8. •• Friedman SE, Andrus BW. Obesity and pulmonary hypertension: a review of pathophysiologic mechanisms. J Obes. 2012;2012:505274. https://doi.org/10.1155/2012/505274 A recent comprehensive review of the prevalence, pathophysiology, mechanisms, and treatment of pulmonary hypertension in obese patients.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Weatherald J, Huertas A, Boucly A, Guignabert C, Taniguchi Y, Adir Y, et al. Association between BMI and obesity with survival in pulmonary arterial hypertension. Chest. 2018. https://doi.org/10.1016/j.chest.2018.05.006.

    Article  PubMed  Google Scholar 

  10. Taraseviciute A, Voelkel NF. Severe pulmonary hypertension in postmenopausal obese women. Eur J Med Res. 2006;11(5):198–202.

    PubMed  Google Scholar 

  11. Chin KM, Rubin LJ. Pulmonary arterial hypertension. J Am Coll Cardiol. 2008;51(16):1527–38. https://doi.org/10.1016/j.jacc.2008.01.024.

    Article  PubMed  Google Scholar 

  12. Humbert M, Monti G, Brenot F, Sitbon O, Portier A, Grangeot-Keros L, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151(5):1628–31. https://doi.org/10.1164/ajrccm.151.5.7735624.

    CAS  Article  PubMed  Google Scholar 

  13. •• Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7. https://doi.org/10.1161/CIRCULATIONAHA.109.933762 This is the first study to simultaneously profile a broad range of cytokines and their pathological role in idiopathic and heritable PAH.

    CAS  Article  PubMed  Google Scholar 

  14. Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res. 2014;15:47. https://doi.org/10.1186/1465-9921-15-47.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Schlosser K, Taha M, Deng Y, Jiang B, Mclntyre LA, Mei SH, et al. Lack of elevation in plasma levels of pro-inflammatory cytokines in common rodent models of pulmonary arterial hypertension: questions of construct validity for human patients. Pulm Circ. 2017;7(2):476–85. https://doi.org/10.1177/2045893217705878.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res. 2009;104(2):236–44. https://doi.org/10.1161/CIRCRESAHA.108.182014 28p following 44.

    CAS  Article  PubMed  Google Scholar 

  17. Bonnet S, Rochefort G, Sutendra G, Archer SL, Haromy A, Webster L, et al. The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proc Natl Acad Sci U S A. 2007;104(27):11418–23. https://doi.org/10.1073/pnas.0610467104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Costa RM, Neves KB, Tostes RC, Lobato NS. Perivascular adipose tissue as a relevant fat depot for cardiovascular risk in obesity. Front Physiol. 2018;9:253. https://doi.org/10.3389/fphys.2018.00253.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schinzari F, Tesauro M, Cardillo C. Endothelial and perivascular adipose tissue abnormalities in obesity-related vascular dysfunction: novel targets for treatment. J Cardiovasc Pharmacol. 2017;69(6):360–8. https://doi.org/10.1097/FJC.0000000000000469.

    CAS  Article  PubMed  Google Scholar 

  20. Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, et al. Modulation of vascular reactivity by perivascular adipose tissue (PVAT). Curr Hypertens Rep. 2018;20(5):44. https://doi.org/10.1007/s11906-018-0835-5.

    CAS  Article  PubMed  Google Scholar 

  21. •• Siegel-Axel DI, Haring HU. Perivascular adipose tissue: An unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17(1):51–60. https://doi.org/10.1007/s11154-016-9346-3 This review outlines the origin of perivascular adipose tissue, its maladaptive responses, and its impact on diabetes, cardiovascular, and renal diseases.

    CAS  Article  PubMed  Google Scholar 

  22. Huang Cao ZF, Stoffel E, Cohen P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension. 2017;69(5):770–7. https://doi.org/10.1161/HYPERTENSIONAHA.116.08451.

    CAS  Article  PubMed  Google Scholar 

  23. Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernandez-Alfonso MS. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab. 2015;26(7):367–75. https://doi.org/10.1016/j.tem.2015.04.003.

    CAS  Article  PubMed  Google Scholar 

  24. Omar A, Chatterjee TK, Tang Y, Hui DY, Weintraub NL. Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol. 2014;34(8):1631–6. https://doi.org/10.1161/ATVBAHA.114.303030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25. https://doi.org/10.1007/s00125-012-2481-9.

    CAS  Article  PubMed  Google Scholar 

  26. Ozen G, Daci A, Norel X, Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: focus on vascular tone and wall remodeling. Eur J Pharmacol. 2015;766:16–24. https://doi.org/10.1016/j.ejphar.2015.09.012.

    CAS  Article  PubMed  Google Scholar 

  27. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70. https://doi.org/10.1161/CIRCULATIONAHA.108.821181.

    CAS  Article  PubMed  Google Scholar 

  28. Virdis A, Duranti E, Rossi C, Dell’Agnello U, Santini E, Anselmino M, et al. Tumour necrosis factor-alpha participates on the endothelin-1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J. 2015;36(13):784–94. https://doi.org/10.1093/eurheartj/ehu072.

    CAS  Article  PubMed  Google Scholar 

  29. Aghamohammadzadeh R, Greenstein AS, Yadav R, Jeziorska M, Hama S, Soltani F, et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol. 2013;62(2):128–35. https://doi.org/10.1016/j.jacc.2013.04.027.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54(6):1384–92. https://doi.org/10.1161/HYPERTENSIONAHA.109.138305.

    CAS  Article  PubMed  Google Scholar 

  31. Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.

    CAS  Article  PubMed  Google Scholar 

  32. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9. https://doi.org/10.1161/CIRCRESAHA.108.182998.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016;36(1):78–85. https://doi.org/10.1161/ATVBAHA.115.306263.

    CAS  Article  PubMed  Google Scholar 

  34. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation. 2013;128(1):9–18. https://doi.org/10.1161/CIRCULATIONAHA.112.001238.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels. Arterioscler Thromb Vasc Biol. 2015;35(6):1393–400. https://doi.org/10.1161/ATVBAHA.115.305500.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Bussey CE, Withers SB, Aldous RG, Edwards G, Heagerty AM. Obesity-related perivascular adipose tissue damage is reversed by sustained weight loss in the rat. Arterioscler Thromb Vasc Biol. 2016;36(7):1377–85. https://doi.org/10.1161/ATVBAHA.116.307210.

    CAS  Article  PubMed  Google Scholar 

  37. Florentin J, Dutta P. Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine. 2017;100:11–5. https://doi.org/10.1016/j.cyto.2017.08.015.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. •• Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, et al. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(9):897–908. https://doi.org/10.1164/rccm.201202-0335OC This is the first comprehensive review characterizing the quantitative and qualitative distribution of inflammatory cells throughout pulmonary vasculature.

    CAS  Article  PubMed  Google Scholar 

  39. Ricard N, Tu L, Le Hiress M, Huertas A, Phan C, Thuillet R, et al. Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension. Circulation. 2014;129(15):1586–97. https://doi.org/10.1161/CIRCULATIONAHA.113.007469.

    CAS  Article  PubMed  Google Scholar 

  40. Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168(2):659–69. https://doi.org/10.2353/ajpath.2006.050599.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Pugh ME, Newman JH, Williams DB, Brittain E, Robbins IM, Hemnes AR. Hemodynamic improvement of pulmonary arterial hypertension after bariatric surgery: potential role for metabolic regulation. Diabetes Care. 2013;36(3):e32–3. https://doi.org/10.2337/dc12-1650.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mathier MA. Dramatic functional improvement following bariatric surgery in a patient with pulmonary arterial hypertension and morbid obesity. Chest. 2008;134(3):670–1. https://doi.org/10.1378/chest.08-1518.

    Article  PubMed  Google Scholar 

  43. Shields KJ, Verdelis K, Passineau MJ, Faight EM, Zourelias L, Wu C, et al. Three-dimensional micro computed tomography analysis of the lung vasculature and differential adipose proteomics in the Sugen/hypoxia rat model of pulmonary arterial hypertension. Pulm Circ. 2016;6(4):586–96. https://doi.org/10.1086/688931.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity. European group for the study of insulin resistance (EGIR). J Clin Invest. 1997;100(5):1166–73. https://doi.org/10.1172/JCI119628.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerspach AC, et al. Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 2018;128(4):1538–50. https://doi.org/10.1172/JCI96139.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jia G, Aroor AR, DeMarco VG, Martinez-Lemus LA, Meininger GA, Sowers JR. Vascular stiffness in insulin resistance and obesity. Front Physiol. 2015;6:231. https://doi.org/10.3389/fphys.2015.00231.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015;13(10):423–44. https://doi.org/10.1089/met.2015.0095.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Hansmann G, Wagner RA, Schellong S, Perez VA, Urashima T, Wang L, et al. Pulmonary arterial hypertension is linked to insulin resistance and reversed by peroxisome proliferator-activated receptor-gamma activation. Circulation. 2007;115(10):1275–84. https://doi.org/10.1161/CIRCULATIONAHA.106.663120.

    CAS  Article  PubMed  Google Scholar 

  49. Zamanian RT, Hansmann G, Snook S, Lilienfeld D, Rappaport KM, Reaven GM, et al. Insulin resistance in pulmonary arterial hypertension. Eur Respir J. 2009;33(2):318–24. https://doi.org/10.1183/09031936.00000508.

    CAS  Article  PubMed  Google Scholar 

  50. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6. https://doi.org/10.1161/01.CIR.0000099542.57313.C5.

    Article  PubMed  Google Scholar 

  51. Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365(9473):1817–20. https://doi.org/10.1016/S0140-6736(05)66585-3.

    Article  PubMed  Google Scholar 

  52. Rajsheker S, Manka D, Blomkalns AL, Chatterjee TK, Stoll LL, Weintraub NL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191–6. https://doi.org/10.1016/j.coph.2009.11.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. •• Aggarwal S, Gross CM, Sharma S, Fineman JR, Black SM. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol. 2013;3(3):1011–34. https://doi.org/10.1002/cphy.c120024 This review clearly explains the role of reactive oxygen species and oxidative stress associated alterations in pulmonary vascular remodeling.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jernigan NL, Naik JS, Weise-Cross L, Detweiler ND, Herbert LM, Yellowhair TR, et al. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS One. 2017;12(6):e0180455. https://doi.org/10.1371/journal.pone.0180455.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Broughton BR, Jernigan NL, Norton CE, Walker BR, Resta TC. Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. Am J Physiol Lung Cell Mol Physiol. 2010;298(2):L232–42. https://doi.org/10.1152/ajplung.00276.2009.

    CAS  Article  PubMed  Google Scholar 

  56. Jernigan NL, Walker BR, Resta TC. Reactive oxygen species mediate RhoA/Rho kinase-induced Ca2+ sensitization in pulmonary vascular smooth muscle following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2008;295(3):L515–29. https://doi.org/10.1152/ajplung.00355.2007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174(20):3425–42. https://doi.org/10.1111/bph.13650.

    CAS  Article  PubMed  Google Scholar 

  58. Gao YJ, Takemori K, Su LY, An WS, Lu C, Sharma AM, et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovasc Res. 2006;71(2):363–73. https://doi.org/10.1016/j.cardiores.2006.03.013.

    CAS  Article  PubMed  Google Scholar 

  59. Loirand G, GuÈrin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res. 2006;98(3):322–34. https://doi.org/10.1161/01.RES.0000201960.04223.3c.

    CAS  Article  PubMed  Google Scholar 

  60. Murdolo G, Angeli F, Reboldi G, Di Giacomo L, Aita A, Bartolini C, et al. Left ventricular hypertrophy and obesity: only a matter of fat? High Blood Press Cardiovasc Prev. 2015;22(1):29–41. https://doi.org/10.1007/s40292-014-0068-x.

    CAS  Article  PubMed  Google Scholar 

  61. Turkbey EB, RL MC, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3(3):266–74. https://doi.org/10.1016/j.jcmg.2009.10.012.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6(5):800–7. https://doi.org/10.1161/CIRCIMAGING.113.000532.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bastien M, Poirier P, Lemieux I, DesprÈs JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56(4):369–81. https://doi.org/10.1016/j.pcad.2013.10.016.

    Article  PubMed  Google Scholar 

  64. Woodiwiss AJ, Norton GR. Obesity and left ventricular hypertrophy: the hypertension connection. Curr Hypertens Rep. 2015;17(4):539. https://doi.org/10.1007/s11906-015-0539-z.

    CAS  Article  PubMed  Google Scholar 

  65. Block AJ, Wynne JW, Boysen PG. Sleep-disordered breathing and nocturnal oxygen desaturation in postmenopausal women. Am J Med. 1980;69(1):75–9.

    CAS  Article  PubMed  Google Scholar 

  66. •• Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26. https://doi.org/10.1016/j.jacc.2008.11.051 This review summarizes the strong association, prevalence, and significance of pulmonary hypertension in heart failure with preserved ejection fraction patients.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York Heart Failure Registry. J Am Coll Cardiol. 2004;43(8):1432–8. https://doi.org/10.1016/j.jacc.2003.11.040.

    Article  PubMed  Google Scholar 

  68. Melenovsky V, Borlaug BA, Rosen B, Hay I, Ferruci L, Morell CH, et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J Am Coll Cardiol. 2007;49(2):198–207. https://doi.org/10.1016/j.jacc.2006.08.050.

    Article  PubMed  Google Scholar 

  69. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324–31. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.

    Article  PubMed  Google Scholar 

  72. Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for†the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018;71(3):339–51. https://doi.org/10.1016/j.jacc.2017.11.019.

    Article  PubMed  Google Scholar 

  73. Litwin SE. Cardiac remodeling in obesity: time for a new paradigm. JACC Cardiovasc Imaging. 2010;3(3):275–7. https://doi.org/10.1016/j.jcmg.2009.12.004.

    Article  PubMed  Google Scholar 

  74. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717. https://doi.org/10.1016/j.jacc.2008.05.002.

    Article  PubMed  Google Scholar 

  75. Vgontzas AN, Tan TL, Bixler EO, Martin LF, Shubert D, Kales A. Sleep apnea and sleep disruption in obese patients. Arch Intern Med. 1994;154(15):1705–11.

    CAS  Article  PubMed  Google Scholar 

  76. Palla A, Digiorgio M, Carpenë N, Rossi G, D’Amico I, Santini F, et al. Sleep apnea in morbidly obese patients: prevalence and clinical predictivity. Respiration. 2009;78(2):134–40. https://doi.org/10.1159/000165371.

    Article  PubMed  Google Scholar 

  77. Alam I, Lewis K, Stephens JW, Baxter JN. Obesity, metabolic syndrome and sleep apnoea: all pro-inflammatory states. Obes Rev. 2007;8(2):119–27. https://doi.org/10.1111/j.1467-789X.2006.00269.x.

    CAS  Article  PubMed  Google Scholar 

  78. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19–25. https://doi.org/10.1164/ajrccm.163.1.2001008.

    CAS  Article  PubMed  Google Scholar 

  79. Hoyos CM, Drager LF, Patel SR. OSA and cardiometabolic risk: what's the bottom line? Respirology. 2017;22(3):420–9. https://doi.org/10.1111/resp.12984.

    Article  PubMed  Google Scholar 

  80. Tilkian AG, Guilleminault C, Schroeder JS, Lehrman KL, Simmons FB, Dement WC. Hemodynamics in sleep-induced apnea. Studies during wakefulness and sleep. Ann Intern Med. 1976;85(6):714–9.

    CAS  Article  PubMed  Google Scholar 

  81. Ayas NT, Taylor CM, Laher I. Cardiovascular consequences of obstructive sleep apnea. Curr Opin Cardiol. 2016;31(6):599–605. https://doi.org/10.1097/HCO.0000000000000329.

    Article  PubMed  Google Scholar 

  82. Chaouat A, Weitzenblum E, Krieger J, Oswald M, Kessler R. Pulmonary hemodynamics in the obstructive sleep apnea syndrome. Results in 220 consecutive patients. Chest. 1996;109(2):380–6.

    CAS  Article  PubMed  Google Scholar 

  83. Kessler R, Chaouat A, Weitzenblum E, Oswald M, Ehrhart M, Apprill M, et al. Pulmonary hypertension in the obstructive sleep apnoea syndrome: prevalence, causes and therapeutic consequences. Eur Respir J. 1996;9(4):787–94.

    CAS  Article  PubMed  Google Scholar 

  84. Laks L, Lehrhaft B, Grunstein RR, Sullivan CE. Pulmonary hypertension in obstructive sleep apnoea. Eur Respir J. 1995;8(4):537–41.

    CAS  PubMed  Google Scholar 

  85. Wong CY, O'Moore-Sullivan T, Leano R, Hukins C, Jenkins C, Marwick TH. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol. 2006;47(3):611–6. https://doi.org/10.1016/j.jacc.2005.11.015.

    Article  PubMed  Google Scholar 

  86. Sharma N, Lee J, Youssef I, Salifu MO, McFarlane SI. Obesity, cardiovascular disease and sleep disorders: insights into the rising epidemic. J Sleep Disord Ther. 2017;6(1). https://doi.org/10.4172/2167-0277.1000260.

  87. Fletcher EC, Schaaf JW, Miller J, Fletcher JG. Long-term cardiopulmonary sequelae in patients with sleep apnea and chronic lung disease. Am Rev Respir Dis. 1987;135(3):525–33. https://doi.org/10.1164/arrd.1987.135.3.525.

    CAS  Article  PubMed  Google Scholar 

  88. Rapoport DM, Garay SM, Epstein H, Goldring RM. Hypercapnia in the obstructive sleep apnea syndrome. A reevaluation of the “Pickwickian syndrome”. Chest. 1986;89(5):627–35.

    CAS  Article  PubMed  Google Scholar 

  89. Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, et al. Chronic interactions between carotid baroreceptors and chemoreceptors in obesity hypertension. Hypertension. 2016;68(1):227–35. https://doi.org/10.1161/HYPERTENSIONAHA.116.07232.

    CAS  Article  PubMed  Google Scholar 

  90. Suratt BT, Ubags NDJ, Rastogi D, Tantisira KG, Marsland BJ, Petrache I, et al. An official American Thoracic Society workshop report: obesity and metabolism. An emerging frontier in lung health and disease. Ann Am Thorac Soc. 2017;14(6):1050–9. https://doi.org/10.1513/AnnalsATS.201703-263WS.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Piper AJ. Obesity hypoventilation syndrome--the big and the breathless. Sleep Med Rev. 2011;15(2):79–89. https://doi.org/10.1016/j.smrv.2010.04.002.

    Article  PubMed  Google Scholar 

  92. Kessler R, Chaouat A, Schinkewitch P, Faller M, Casel S, Krieger J, et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120(2):369–76.

    CAS  Article  PubMed  Google Scholar 

  93. Kauppert CA, Dvorak I, Kollert F, Heinemann F, Jˆrres RA, Pfeifer M, et al. Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med. 2013;107(12):2061–70. https://doi.org/10.1016/j.rmed.2013.09.017.

    Article  PubMed  Google Scholar 

  94. Teichtahl H. The obesity-hypoventilation syndrome revisited. Chest. 2001;120(2):336–9.

    CAS  Article  PubMed  Google Scholar 

  95. •• Almeneessier AS, Nashwan SZ, Al-Shamiri MQ, Pandi-Perumal SR, BaHammam AS. The prevalence of pulmonary hypertension in patients with obesity hypoventilation syndrome: a prospective observational study. J Thorac Dis. 2017;9(3):779–88. https://doi.org/10.21037/jtd.2017.03.21 Large prospective study demonstrates the increased prevalence of pulmonary hypertension in obesity hypoventilation syndrome and also summarizes the previous studies.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Eichinger S, Hron G, Bialonczyk C, Hirshl M, Minar E, Wagner O, et al. Overweight, obesity and the risk of recurrent venous thromboembolism. Arch Intern Med. 2008;168:1678–83. https://doi.org/10.1001/j.ccm.2009.05.006.

    Article  PubMed  Google Scholar 

  97. Heit JA, Ashrani A, Crusan DJ, McBane RD, Petterson TM, Bailey KR. Reasons for the persistent incidence of venous thromboembolism. Thromb Haemost. 2016;117:390–400. https://doi.org/10.1160/TH16-07-0509.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry H. Le Jemtel.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ayinapudi, K., Singh, T., Motwani, A. et al. Obesity and Pulmonary Hypertension. Curr Hypertens Rep 20, 99 (2018). https://doi.org/10.1007/s11906-018-0899-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0899-2

Keywords

  • Obesity
  • Pulmonary hypertension
  • Perivascular adipose tissue