Skip to main content

Advertisement

Log in

Stress, Genes, and Hypertension. Contribution of the ISIAH Rat Strain Study

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Acute psychoemotional stress is one of the causes of a sharp increase in blood pressure. However, the question if the stress may promote the hypertensive disease development is still open. This review aims, firstly, to show that the genetically determined enhanced responsiveness to stress is linked to sustained hypertension development and, secondly, to characterize the main physiological mechanisms and genetic factors implicated in the pathogenesis of stress-sensitive hypertension.

Recent Findings

Recent findings helped to characterize the main neuroendocrine mechanisms and the specificity of the genetic background contributing to the stress-sensitive hypertension development in the ISIAH rats.

Summary

The ISIAH rat strain, which is an original model of the stress-sensitive arterial hypertension, can be considered as “living” proof that the genetic predisposition to increased stress-reactivity can lead to the development of persistent stress-dependent arterial hypertension. The ISIAH rat strain is characterized by the genetically determined enhanced response of the neuroendocrine and renal regulatory systems to stress and is a suitable model that allows one to explore the genetic and physiological mechanisms involved in stress-sensitive hypertension development. There are common genetic loci (QTLs) associated with both basal and stress-induced blood pressure (BP) levels as well as QTLs associated with BP and other traits, which may be related to hypertension development in ISIAH rats. Multiple genes differentially expressed in the target organs/tissues of hypertensive ISIAH and normotensive control rats are associated with many biological processes and metabolic pathways involved in stress response and arterial hypertension. The genotype of ISIAH rats is characterized by numerous specific and common SNPs as compared with other models of hypertensive rats. The results of the studies are valuable for the search for genetic markers specific for stress-induced arterial hypertension, as well as for the selection of new molecular targets that may be potentially useful for prevention and/or therapy of hypertensive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2017 update: a report from the American Heart Association. Circulation 2017;135(10):e146-e603. doi:https://doi.org/10.1161/CIR.0000000000000485.

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.

    Article  PubMed  Google Scholar 

  3. Kaplan NM. Stress, the sympathetic nervous system and hypertension. J Hum Stress. 1978;4(3):29–34. https://doi.org/10.1080/0097840X.1978.9934993.

    Article  CAS  Google Scholar 

  4. Kulkarni S, O'Farrell I, Erasi M, Kochar MS. Stress and hypertension. WMJ. 1998;97(11):34–8.

    PubMed  CAS  Google Scholar 

  5. Hudzinski LG, Frohlich ED, Holloway RD. Hypertension and stress. Clin Cardiol. 1988;11(9):622–6.

    Article  PubMed  CAS  Google Scholar 

  6. Freeman ZS. Stress and hypertension—a critical review. Med J Aust. 1990;153(10):621–5.

    PubMed  CAS  Google Scholar 

  7. Michal M, Wiltink J, Lackner K, Wild PS, Zwiener I, Blettner M, et al. Association of hypertension with depression in the community: results from the Gutenberg Health Study. J Hypertens. 2013;31(5):893–9. https://doi.org/10.1097/HJH.0b013e32835f5768.

    Article  PubMed  CAS  Google Scholar 

  8. •• Liu MY, Li N, Li WA, Khan H. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol Res 2017;39(6):573–580. doi:https://doi.org/10.1080/01616412.2017.1317904. An association between chronic psychosocial stress and hypertension was found, nevertheless more studies are needed to confirm this relationship.

  9. Hassoun L, Herrmann-Lingen C, Hapke U, Neuhauser H, Scheidt-Nave C, Meyer T. Association between chronic stress and blood pressure: findings from the German Health Interview and Examination Survey for Adults 2008-2011. Psychosom Med. 2015;77(5):575–82. https://doi.org/10.1097/PSY.0000000000000183.

    Article  PubMed  Google Scholar 

  10. Mancia G. White-coat hypertension: growing evidence in favour of its adverse prognostic significance. J Hypertens. 2017;35(4):710–2. https://doi.org/10.1097/HJH.0000000000001289.

    Article  PubMed  CAS  Google Scholar 

  11. • Huang Y, Huang W, Mai W, Cai X, An D, Liu Z, et al. White-coat hypertension is a risk factor for cardiovascular diseases and total mortality, J Hypertension. 2017;35(4):677–88. https://doi.org/10.1097/HJH.0000000000001226. Authors concluded that white-coat hypertension is associated with long-term risk of cardiovascular diseases and total mortality in patients without antihypertensive treatment

  12. •• Matthews KA, Katholi CR, McCreath H, Whooley MA, Williams DR, Zhu S, et al. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation. 2004;110(1):74–8. https://doi.org/10.1161/01.CIR.0000133415.37578.E4. Young adults who show a large blood pressure response to psychological stress may be at risk for hypertension as they approach midlife

    Article  PubMed  Google Scholar 

  13. Sparrenberger F, Cichelero FT, Ascoli AM, Fonseca FP, Weiss G, Berwanger O, et al. Does psychosocial stress cause hypertension? A systematic review of observational studies. J Hum Hypertens. 2009;23(1):12–9. https://doi.org/10.1038/jhh.2008.74.

    Article  PubMed  CAS  Google Scholar 

  14. Cohen BE, Edmondson D, Kronish IM. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015;28(11):1295–302. https://doi.org/10.1093/ajh/hpv047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yan LL, Liu K, Matthews KA, Daviglus ML, Ferguson TF, Kiefe CI. Psychosocial factors and risk of hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) study. JAMA. 2003;290(16):2138–48. https://doi.org/10.1001/jama.290.16.2138.

    Article  PubMed  CAS  Google Scholar 

  16. Hildrum B, Mykletun A, Holmen J, Dahl AA. Effect of anxiety and depression on blood pressure: 11-year longitudinal population study. Br J Psychiatry. 2008;193(2):108–13. https://doi.org/10.1192/bjp.bp.107.045013.

    Article  PubMed  Google Scholar 

  17. Delaney JA, Oddson BE, Kramer H, Shea S, Psaty BM, McClelland RL. Baseline depressive symptoms are not associated with clinically important levels of incident hypertension during two years of follow-up: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55(2):408–14. https://doi.org/10.1161/HYPERTENSIONAHA.109.139824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Bokhour BG, Kressin NR. What is in a name? How biomedical language may derail patient understanding of hypertension. Circ Cardiovasc Qual Outcomes. 2015;8(4):452–4. https://doi.org/10.1161/CIRCOUTCOMES.114.001662.

    Article  PubMed  Google Scholar 

  19. Mayo Clinic. Stress and high blood pressure: what’s the connection? . https://www.mayoclinicorg/diseases-conditions/high-blood-pressure/in-depth/stress-and-high-blood-pressure/art-20044190.

  20. Henry JP, Stephens PM, Santisteban GA. A model of psychosocial hypertension showing reversibility and progression of cardiovascular complications. Circ Res. 1975;36(1):156–64.

    Article  PubMed  CAS  Google Scholar 

  21. Harrap SB, Louis WJ, Doyle AE. Failure of psychosocial stress to induce chronic hypertension in the rat. J Hypertens. 1984;2(6):653–62.

    Article  PubMed  CAS  Google Scholar 

  22. Nalivaiko E. Animal models of psychogenic cardiovascular disorders: what we can learn from them and what we cannot. Clin Exp Pharmacol Physiol. 2011;38(2):115–25. https://doi.org/10.1111/j.1440-1681.2010.05465.x.

    Article  PubMed  CAS  Google Scholar 

  23. Fredrikson M, Matthews KA. Cardiovascular responses to behavioral stress and hypertension: a meta-analytic review. Ann Behav Med. 1990;12(1):30–9. https://doi.org/10.1207/s15324796abm1201_3.

    Article  Google Scholar 

  24. Cozier Y, Palmer JR, Horton NJ, Fredman L, Wise LA, Rosenberg L. Racial discrimination and the incidence of hypertension in US black women. Ann Epidemiol. 2006;16(9):681–7.

    Article  PubMed  Google Scholar 

  25. Trudel X, Brisson C, Milot A. Job strain and masked hypertension. Psychosom Med. 2010;72(8):786–93. https://doi.org/10.1097/PSY.0b013e3181eaf327.

    Article  PubMed  Google Scholar 

  26. Abolbashari M. White coat hypertension and cardiovascular diseases: innocent or guilty. Curr Cardiol Rep. 2018;20(4):25. https://doi.org/10.1007/s11886-018-0964-0.

    Article  PubMed  Google Scholar 

  27. Adarichev VA, Korokhov NP, Ostapchuk IV, Dymshits GM, Markel AL. Characterization of rat lines with normotensive and hypertensive status using genomic fingerprinting. [Article in Russian]. Genetika 1996;32(12):1669–1672.

  28. Markel AL. Development of a new strain of rats with inherited stress-induced arterial hypertension. In: Sassard J, editor. Genetic hypertension. Eurotext. London: Colloque INSERM; 1992. p. 405–7.

    Google Scholar 

  29. Markel AL, Maslova LN, Shishkina GT, Bulygina VV, Machanova NA, Jacobson GS. Developmental influences on blood pressure regulation in ISIAH rats. In:Handbook of hypertension. Birkenhager WH, Reid JL, series editors, V.19, McCarty R, Blizard DA, Chevalier RL, editors. Development of the hypertensive phenotype: basic and clinical studies. Handbook of hypertension. Amsterdam- Lausanne- NewYork- Oxford- Shannon- Singapore- Tokyo: Elsevier; 1999. p. 493–526.

  30. Waddington CH. Genetic assimilation. Adv Genet. 1961;10:257–93.

    PubMed  CAS  Google Scholar 

  31. • Markel AL, Redina OE, Gilinsky MA, Dymshits GM, Kalashnikova EV, Khvorostova YV, et al. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J Endocrinol. 2007;195(3):439–50. https://doi.org/10.1677/JOE-07-0254. The functions of the hypothalamic adrenal cortical and sympathetic adrenal medullary systems were studied in ISIAH rats. It was shown that the ISIAH rat strain is a model of stress-sensitive hypertension with the predominant involvement of the hypothalamic adrenal cortical and sympathetic adrenal medullary systems in its pathogenesis

    Article  PubMed  CAS  Google Scholar 

  32. Antonov EV, Markel’ AL, Yakobson GS. Aldosterone and stress-dependent arterial hypertension. [Article in English, Russian]. Bull Exp Biol Med 2011;152(2):188–191.

  33. Amstislavsky S, Welker P, Fruhauf JH, Maslova L, Ivanova L, Jensen B, et al. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH). Histochem Cell Biol. 2006;125(6):651–9.

    Article  PubMed  CAS  Google Scholar 

  34. Dubinina AD, Antonov EV, Fedoseeva LA, Pivovarova ЕN, Markel AL, Ivanova LN. Renin-angiotensin-aldosterone system in ISIAH rats with stress-induced arterial hypertension. Vavilovskii Zhurnal Genetiki i Selektsii. 2016;20(6):954–8. https://doi.org/10.18699/VJ16.216.

    Article  Google Scholar 

  35. Klimov LO, Fedoseeva LA, Ryazanova MA, Dymshits GM, Markel AL. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull Exp Biol Med. 2013;154(3):357–60.

    Article  PubMed  CAS  Google Scholar 

  36. • Klimov LO, Ryazanova MA, Fedoseeva LA, Markel AL. Effects of brain renin-angiotensin system inhibition in rats with inherited stress-induced arterial hypertension (ISIAH). Vavilovskii Zhurnal Genetiki i Selektsii. 2017;21(6):735–41. https://doi.org/10.18699/VJ17.29-o. The results demonstrated the participation of the brain RAS in the pathogenesis of hypertensive disease in ISIAH rats

    Article  Google Scholar 

  37. • Huang BS, White RA, Ahmad M, Leenen FH. Role of brain corticosterone and aldosterone in central angiotensin II-induced hypertension. Hypertension. 2013;62(3):564–71. https://doi.org/10.1161/HYPERTENSIONAHA.113.01557. The results of the paper indicate distinctly different patterns of blood pressure increase by circulating versus central Ang II and support the involvement of a brain aldosterone–mineralocorticoid receptor–activated neuromodulatory pathway in the chronic hypertension caused by both circulating and central Ang II

    Article  PubMed  CAS  Google Scholar 

  38. •• Leenen FH. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens. 2014;27(8):1024–32. https://doi.org/10.1093/ajh/hpu066. Paper shows that central blockade of the aldosterone/MR neuromodulatory pathway can prevent or reverse the hypertension in many models

    Article  PubMed  Google Scholar 

  39. Gomez-Sanchez EP, Ahmad N, Romero DG, Gomez-Sanchez CE. Is aldosterone synthesized within the rat brain? Am J Physiol Endocrinol Metab. 2005;288(2):E342–6.

    Article  PubMed  CAS  Google Scholar 

  40. •• Wang HW, Huang BS, Chen A, Ahmad M, White RA, Leenen FH. Role of brain aldosterone and mineralocorticoid receptors in aldosterone-salt hypertension in rats. Neuroscience. 2016;314:90–105. https://doi.org/10.1016/j.neuroscience.2015.11.055. The important role of the central aldosterone-MR-AT1R neuromodulatory pathway in the progressive hypertension was described

    Article  PubMed  CAS  Google Scholar 

  41. Gomez-Sanchez EP, Gomez-Sanchez CM, Plonczynski M, Gomez-Sanchez C. Aldosterone synthesis in the brain contributes to Dahl salt-sensitive rat hypertension. Exp Physiol. 2010;95(1):120–30.

    Article  PubMed  CAS  Google Scholar 

  42. Oki K, Gomez-Sanchez EP, Gomez-Sanchez CE. Role of mineralocorticoid action in the brain in salt-sensitive hypertension. Clin Exp Pharmacol Physiol. 2012;39(1):90–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. • Klimov LO, Ershov NI, Efimov VM, Markel AL, Redina OE. Genome-wide transcriptome analysis of hypothalamus in rats with inherited stress-induced arterial hypertension. BMC Genet. 2016;17(Suppl 1):13. https://doi.org/10.1186/s12863-015-0307-8. The results of this study revealed multiple DEGs and possible mechanisms specifying the hypothalamic function in the hypertensive ISIAH rats

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. •• Antonov YV, Alexandrovich YV, Redina OE, Gilinsky MA, Markel AL. Stress and hypertensive disease: adrenals as a link. Experimental study on hypertensive ISIAH rat strain. Clin Exp Hypertens. 2016;38(5):415–23. https://doi.org/10.3109/10641963.2015.1116546. The results showed that ISIAH rats may serve as a living proof that stress may produce sustained hypertension, and genetically determined enhanced stress responsiveness of corticosterone and, especially, aldosterone may play a crucial role in the mechanism of hypertension development

    Article  PubMed  CAS  Google Scholar 

  45. Martins JM, do Vale S, Martins AF. Mild adrenal steroidogenic defects and ACTH-dependent aldosterone secretion in high blood pressure: preliminary evidence. Int J Endocrinol. 2014;2014:295724–8. https://doi.org/10.1155/2014/295724.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Folkow B. Psychosocial and central nervous influences in primary hypertension. Circulation. 1987;76(1 Pt 2):I10–9.

    PubMed  CAS  Google Scholar 

  47. Guyton AC. Textbook of medical physiology. 8th ed. Philadelphia: Saunders, W.B.; 1991.

  48. Moraitis A, Stratakis C. Adrenocortical causes of hypertension. Int J Hypertens. 2011;2011:624691. https://doi.org/10.4061/2011/624691.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Redina OE, Machanova NA, Efimov VM, Markel AL. Rats with inherited stress-induced arterial hypertension (ISIAH strain) display specific quantitative trait loci for blood pressure and for body and kidney weight on chromosome 1. Clin Exp Pharmacol Physiol. 2006;33(5–6):456–64. https://doi.org/10.1111/j.1440-1681.2006.04387.x.

    Article  PubMed  CAS  Google Scholar 

  50. •• Redina OE, Smolenskaya SE, Maslova LN, Markel AL. The genetic control of blood pressure and body composition in rats with stress-sensitive hypertension. Clin Exp Hypertens. 2013;35(7):484–95. https://doi.org/10.3109/10641963.2012.758274. The paper demonstrates the genetic loci (QTLs) for the blood pressure traits in ISIAH rats

    Article  PubMed  Google Scholar 

  51. • Redina OE, Smolenskaya SE, Maslova LN, Markel AL. Genetic control of the corticosterone level at rest and under emotional stress in ISIAH rats with inherited stress-induced arterial hypertension. Clin Exp Hypertens. 2010;32(6):364–71. https://doi.org/10.3109/10641961003628502. The paper demonstrates the QTLs for plasma basal and stress-induced corticosterone levels and for absolute and relative adrenal gland weights in ISIAH rats

    Article  PubMed  Google Scholar 

  52. Wang Z, Moult J. SNPs, protein structure, and disease. Hum Mutat. 2001;17(4):263–70.

    Article  PubMed  Google Scholar 

  53. Fattakhov NS, Vasilenko MA, Skuratovskaia DA, Kulikov DI, Kirienkova EV, Zatolokin PA, et al. The pathogenetic importance of C774T single nucleotide polymorphism of the endothelial nitric oxide synthase gene in the development of metabolic syndrome. Biochem (Moscow) Supplement Series B: Biomed Chem. 2016;10(1):81–6.

    Article  Google Scholar 

  54. Okuda T, Fujioka Y, Kamide K, Kawano Y, Goto Y, Yoshimasa Y, et al. Verification of 525 coding SNPs in 179 hypertension candidate genes in the Japanese population: identification of 159 SNPs in 93 genes. J Hum Genet. 2002;47(8):387–94.

    Article  PubMed  CAS  Google Scholar 

  55. •• Hermsen R, de Ligt J, Spee W, Blokzijl F, Schafer S, Adami E, et al. Genomic landscape of rat strain and substrain variation. BMC Genomics. 2015;16(357) The paper presents a valuable resource highly useful for rat functional genomic research

  56. •• Ershov NI, Markel AL, Redina OE. Strain-specific single-nucleotide polymorphisms in hypertensive ISIAH rats. Biochemistry (Mosc). 2017;82(2):224–35. https://doi.org/10.1134/S0006297917020146. The study revealed novel SNPs specific for ISIAH rats as compared with genome sequencing data available for another 42 rat strains and substrains and SNPs, which are found only in the genotypes of hypertensive rat strains and substrains

    Article  CAS  Google Scholar 

  57. • Fedoseeva LA, Klimov LO, Ershov NI, Alexandrovich YV, Efimov VM, Markel AL, et al. Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genomics. 2016;17(Suppl 14):989. https://doi.org/10.1186/s12864-016-3354-2. The results of this study revealed multiple DEGs and possible mechanisms specifying the adrenal glands function in the hypertensive ISIAH rats

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. • Fedoseeva LA, Ryazanova MA, Ershov NI, Markel AL, Redina OE. Comparative transcriptional profiling of renal cortex in rats with inherited stress-induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 2016;17(Suppl 1):12. https://doi.org/10.1186/s12863-015-0306-9. The results of this study revealed multiple DEGs and possible mechanisms specifying the renal cortex function in the hypertensive ISIAH rats

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. • Ryazanova MA, Fedoseeva LA, Ershov NI, Efimov VM, Markel AL, Redina OE. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet. 2016;17(Suppl 3):151. https://doi.org/10.1186/s12863-016-0462-6. The results of this study revealed multiple DEGs and possible mechanisms specifying the renal medulla function in the hypertensive ISIAH rats

    Article  PubMed  PubMed Central  Google Scholar 

  60. Perez-Enciso M, Tenenhaus M. Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum Genet. 2003;112(5–6):581–92.

    PubMed  Google Scholar 

  61. Szymanska E, Saccenti E, Smilde AK, Westerhuis JA. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012;8(Suppl 1):3–16.

    Article  PubMed  CAS  Google Scholar 

  62. Abramova TO, Redina OE, Smolenskaia SE, Markel AL. Enhanced expression of EPHX2 gene in the kidney of the hypertensive ISIAH rats. Mol Biol (Mosk). 2013;47(6):942–8.

    Article  CAS  Google Scholar 

  63. Yu Z, Davis BB, Morisseau C, Hammock BD, Olson JL, Kroetz DL, et al. Vascular localization of soluble epoxide hydrolase in the human kidney. Am J Physiol Renal Physiol. 2004;286(4):F720–6.

    Article  PubMed  CAS  Google Scholar 

  64. Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch. 2010;459(6):881–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Imig JD. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol. 2005;289(3):F496–503.

    Article  PubMed  CAS  Google Scholar 

  66. Iliff JJ, Close LN, Selden NR, Alkayed NJ. A novel role for P450 eicosanoids in the neurogenic control of cerebral blood flow in the rat. Exp Physiol. 2007;92(4):653–8.

    PubMed  CAS  Google Scholar 

  67. • Sellers KW, Sun C, Diez-Freire C, Waki H, Morisseau C, Falck JR, Hammock BD, Paton JF, Raizada MK Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. FASEB J 2005;19(6):626–628. The results of the study showed that the role of central EETs might be distinct from that of its peripheral expression.

  68. Yu Z, Xu F, Huse LM, Morisseau C, Draper AJ, Newman JW, et al. Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. Circ Res. 2000;87(11):992–8.

    Article  PubMed  CAS  Google Scholar 

  69. Hercule HC, Schunck WH, Gross V, Seringer J, Leung FP, Weldon SM, et al. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2009;29(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  70. Bobko AA, Sergeeva SV, Bagryanskaya EG, Markel AL, Khramtsov VV, Reznikov VA, et al. 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem Biophys Res Commun. 2005;330(2):367–70.

    Article  PubMed  CAS  Google Scholar 

  71. • Seryapina AA, Shevelev OB, Moshkin MP, Markel AL. Parameters of blood flow in great arteries in hypertensive ISIAH rats with stress-dependent arterial hypertension. Bull Exp Biol Med. 2016;161(4):468–71. https://doi.org/10.1007/s10517-016-3440-0. The increased resistance in the abdominal aorta and renal arteries vascular bed as well as reduced fraction of total renal blood flow in ISIAH rats were described

    Article  PubMed  CAS  Google Scholar 

  72. • Cowley AWJ, Abe M, Mori T, O’Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol. 2015;308(3):F179–97. The review highlights the findings that reduction of medullary blood flow, enhances Na(+) reabsorption, and hypertension

    Article  PubMed  CAS  Google Scholar 

  73. • Abramova TO, Ryazanova MA, Antonov EV, Redina OE, Markel AL. Increase in the concentration of sEH protein in renal medulla of ISIAH rats with inherited stress-induced arterial hypertension. Mol Biol (Mosk). 2017;51(3):442–6. https://doi.org/10.7868/S0026898417020021. The results allow one to assume that the oxidative stress is increased in the renal medulla of ISIAH rats, and the blood flow is decreased

    Article  CAS  Google Scholar 

  74. •• Redina OE, Abramova TO, Klimov LO, Ryazanova MA, Fedoseeva LA, Smolenskaya SE, et al. Soluble epoxide hydrolase (sEH) as a potential target for arterial hypertension therapy. Russ J Genet. 2017;53(9):972–81. https://doi.org/10.1134/S1022795417080063. The study justifies the possible use of Ephx2 gene encoding sEH protein as a potential target for pharmacological treatment of stress-sensitive arterial hypertension

    Article  CAS  Google Scholar 

  75. Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD. Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension. 2002;39(2):690–4.

    Article  PubMed  CAS  Google Scholar 

  76. • Tain YL, Huang LT, Chan JY, Lee CT. Transcriptome analysis in rat kidneys: importance of genes involved in programmed hypertension. Int J Mol Sci. 2015;16(3):4744–58. The results of this study revealed the gatekeeper genes in programmed hypertension

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Jung O, Brandes RP, Kim IH, Schweda F, Schmidt R, Hammock BD, et al. Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension. 2005;45(4):759–65.

    Article  PubMed  CAS  Google Scholar 

  78. Loch D, Hoey A, Morisseau C, Hammock BO, Brown L. Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem Biophys. 2007;47(1):87–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Huang H, Morisseau C, Wang J, Yang T, Falck JR, Hammock BD, et al. Increasing or stabilizing renal epoxyeicosatrienoic acid production attenuates abnormal renal function and hypertension in obese rats. Am J Physiol Renal Physiol. 2007;293(1):F342–9.

    Article  PubMed  CAS  Google Scholar 

  80. Li J, Carroll MA, Chander PN, Falck JR, Sangras B, Stier CT. Soluble epoxide hydrolase inhibitor, AUDA, prevents early salt-sensitive hypertension. Front Biosci. 2008;13:3480–7.

    Article  PubMed  CAS  Google Scholar 

  81. Honetschlagerova Z, Huskova Z, Vanourkova Z, Sporkova A, Kramer HJ, Hwang SH, et al. Renal mechanisms contributing to the antihypertensive action of soluble epoxide hydrolase inhibition in Ren-2 transgenic rats with inducible hypertension. J Physiol. 2011;589(Pt 1):207–19.

    Article  PubMed  CAS  Google Scholar 

  82. Qiu H, Li N, Liu JY, Harris TR, Hammock BD, Chiamvimonvat N. Soluble epoxide hydrolase inhibitors and heart failure. Cardiovasc Ther. 2011;29(2):99–111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Monti J, Fischer J, Paskas S, Heinig M, Schulz H, Gosele C, et al. Soluble epoxide hydrolase is a susceptibility factor for heart failure in a rat model of human disease. Nat Genet. 2008;40(5):529–37.

    Article  PubMed  CAS  Google Scholar 

  84. Manhiani M, Quigley JE, Knight SF, Tasoobshirazi S, Moore T, Brands MW, et al. Soluble epoxide hydrolase gene deletion attenuates renal injury and inflammation with DOCA-salt hypertension. Am J Physiol Renal Physiol. 2009;297(3):F740–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Luria A, Bettaieb A, Xi Y, Shieh GJ, Liu HC, Inoue H, et al. Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. Proc Natl Acad Sci U S A. 2011;108(22):9038–43.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang Q, Huo L, He J, Ding W, Su H, Tian D, et al. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration. Am J Physiol Heart Circ Physiol. 2015;309(11):H1894–903.

    Article  PubMed  CAS  Google Scholar 

  87. Shen L, Peng H, Peng R, Fan Q, Zhao S, Xu D, et al. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis. Atherosclerosis. 2015;239(2):557–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu HF, Yen HJ, Huang CC, Lee YC, Wu SZ, Lee TS, et al. Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex. J Biomed Sci. 2015;22:94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Shaik JS, Ahmad M, Li W, Rose ME, Foley LM, Hitchens TK, et al. Soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is neuroprotective in rat model of ischemic stroke. Am J Physiol Heart Circ Physiol. 2013;305(11):H1605–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Fang X. Soluble epoxide hydrolase: a novel target for the treatment of hypertension. Recent Pat Cardiovasc Drug Discov. 2006;1(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  91. Chiamvimonvat N, Ho CM, Tsai HJ, Hammock BD. The soluble epoxide hydrolase as a pharmaceutical target for hypertension. J Cardiovasc Pharmacol. 2007;50(3):225–37.

    Article  PubMed  CAS  Google Scholar 

  92. Ni GH, Chen JF, Chen XP, Yang TL. Soluble epoxide hydrolase: a promising therapeutic target for cardiovascular diseases. Pharmazie. 2011;66(3):153–7.

    PubMed  CAS  Google Scholar 

  93. Zhang W, Koerner IP, Noppens R, Grafe M, Tsai HJ, Morisseau C, et al. Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab. 2007;27(12):1931–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, et al. Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke. 2008;39(7):2073–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Anandan SK, Webb HK, Chen D, Wang YX, Aavula BR, Cases S, et al. 1-(1-acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea (AR9281) as a potent, selective, and orally available soluble epoxide hydrolase inhibitor with efficacy in rodent models of hypertension and dysglycemia. Bioorg Med Chem Lett. 2011;21(3):983–8. https://doi.org/10.1016/j.bmcl.2010.12.042.

    Article  PubMed  CAS  Google Scholar 

  96. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116(6):1074–95. https://doi.org/10.1161/CIRCRESAHA.116.303603.

    Article  PubMed  CAS  Google Scholar 

  97. Imig JD, Hammock BD. Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov. 2009;8(10):794–805. https://doi.org/10.1038/nrd2875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Caillon A, Schiffrin EL. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep. 2016;18(3):21. https://doi.org/10.1007/s11906-016-0628-7.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The work was supported partly by the budget project 0324-2018-0016 and RSF № 16-15-10073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga E. Redina.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redina, O.E., Markel, A.L. Stress, Genes, and Hypertension. Contribution of the ISIAH Rat Strain Study. Curr Hypertens Rep 20, 66 (2018). https://doi.org/10.1007/s11906-018-0870-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0870-2

Keywords

Navigation