Skip to main content

Advertisement

Log in

Possible Breathing Influences on the Control of Arterial Pressure After Sino-aortic Denervation in Rats

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Surgical removal of the baroreceptor afferents [sino-aortic denervation (SAD)] leads to a lack of inhibitory feedback to sympathetic outflow, which in turn is expected to result in a large increase in mean arterial pressure (MAP). However, few days after surgery, the sympathetic nerve activity (SNA) and MAP of SAD rats return to a range similar to that observed in control rats. In this review, we present experimental evidence suggesting that breathing contributes to control of SNA and MAP following SAD.The purpose of this review was to discuss studies exploring SNA and MAP regulation in SAD rats, highlighting the possible role of breathing in the neural mechanisms of this modulation of SNA.

Recent Findings

Recent studies show that baroreceptor afferent stimulation or removal (SAD) results in changes in the respiratory pattern.

Summary

Changes in the neural respiratory network and in the respiratory pattern must be considered among mechanisms involved in the modulation of the MAP after SAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev. 1994;74(2):323–64. https://doi.org/10.1152/physrev.1994.74.2.323.

    Article  CAS  PubMed  Google Scholar 

  2. Machado BH. Neurotransmission of the cardiovascular reflexes in the nucleus tractus solitarii of awake rats. Ann N Y Acad Sci. 2001;940:179–96.

    Article  CAS  PubMed  Google Scholar 

  3. Dampney RAL, Coleman MJ, Fontes MAP, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8. https://doi.org/10.1046/j.1440-1681.2002.03640.x.

    Article  CAS  PubMed  Google Scholar 

  4. Krieger EM. Neurogenic hypertension in the rat. Circ Res. 1964;15(6):511–21. https://doi.org/10.1161/01.RES.15.6.511.

    Article  CAS  PubMed  Google Scholar 

  5. Cowley AW, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res. 1973;32(5):564–76. https://doi.org/10.1161/01.RES.32.5.564.

    Article  PubMed  Google Scholar 

  6. Head GA, Adams MA. Time course of changes in baroreceptor reflex control of heart rate in conscious SHR and WKY: contribution of the cardiac vagus and sympathetic nerves. Clin Exp Pharmacol Physiol. 1988;15(4):289–92. https://doi.org/10.1111/j.1440-1681.1988.tb01075.x.

    Article  CAS  PubMed  Google Scholar 

  7. Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M, et al. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension. 2005;46(4):714–8. https://doi.org/10.1161/01.HYP.0000179581.68566.7d.

    Article  CAS  PubMed  Google Scholar 

  8. Salgado HC, Barale AR, Castania JA, Machado BH, Chapleau MW, Fazan R. Baroreflex responses to electrical stimulation of aortic depressor nerve in conscious SHR. Am J Physiol Heart Circ Physiol. 2007;292(1):H593–600. https://doi.org/10.1152/ajpheart.00181.2006.

    Article  CAS  PubMed  Google Scholar 

  9. Zoccal DB, Bonagamba LGH, Paton JFR, Machado BH. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol. 2009;94(9):972–83. https://doi.org/10.1113/expphysiol.2009.048306.

    Article  CAS  PubMed  Google Scholar 

  10. Moraes DJA, Bonagamba LGH, da Silva MP, Mecawi AS, Antunes-Rodrigues J, Machado BH. Respiratory network enhances the sympathoinhibitory component of baroreflex of rats submitted to chronic intermittent hypoxia. Hypertension. 2016;68(4):1021–30. https://doi.org/10.1161/HYPERTENSIONAHA.116.07731.

    Article  CAS  PubMed  Google Scholar 

  11. •• Machado BH, Zoccal DB, Moraes DJA. Neurogenic hypertension and the secret of respiration. Am J Phys Regul Integr Comp Phys. 2017;312:R864–72. The review discusses the involvement of respiratory neurons in the brainstem in the development of sympathetic overactivity and hypertension.

    Google Scholar 

  12. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46. https://doi.org/10.1038/nrn1902.

    Article  CAS  PubMed  Google Scholar 

  13. •• Cernes R, Zimlichman R. Role of paced breathing for treatment of hypertension. Curr Hypertens Rep. 2017;19:45. The review examines studies on the effect of slow and deep respiration on the reduction of arterial pressure in hypertensive patients.

    Article  PubMed  Google Scholar 

  14. Irigoyen MC, Moreira ED, Ida F, Pires M, Cestari IA, Krieger EM. Changes of renal sympathetic activity in acute and chronic conscious sinoaortic denervated rats. Hypertension. 1995;26(6):1111–6. https://doi.org/10.1161/01.HYP.26.6.1111.

    Article  CAS  PubMed  Google Scholar 

  15. Barres C, Lewis SJ, Jacob HJ, Brody MJ. Arterial pressure lability and renal sympathetic nerve activity are dissociated in SAD rats. Am J Phys. 1992;263:R639–46.

    CAS  Google Scholar 

  16. •• Amorim MR, Bonagamba LGH, Souza GMPR, Moraes DJA, Machado BH. Role of respiratory changes in the modulation of arterial pressure in rats submitted to sino-aortic denervation. Exp Physiol. 2016;101:1359–70. The study shows that after sino-aortic denervation, conscious rats present changes in breathing pattern.

    Article  PubMed  Google Scholar 

  17. Norman RA, Coleman TG, Dent AC. Continuous monitoring of arterial pressure indicates sinoaortic denervated rats are not hypertensive. Hypertension. 1981;3(1):119–25. https://doi.org/10.1161/01.HYP.3.1.119.

    Article  PubMed  Google Scholar 

  18. Franchini KG, Krieger EM. Carotid chemoreceptors influence arterial pressure in intact and aortic-denervated rats. Am J Phys. 1992;262:R677–83.

    CAS  Google Scholar 

  19. Osborn JW, England SK. Normalization of arterial pressure after barodenervation: role of pressure natriuresis. Am J Phys. 1990;259:R1172–80.

    CAS  Google Scholar 

  20. •• Wenker IC, Abe C, Viar KE, Stornetta DS, Stornetta RL, Guyenet PG. Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. J Neurosci. 2017;37:4565–83. The study documented the role of RVLM C1 neurons in the regulation of arterial pressure after sino-aortic denervation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schreihofer AM, Sved AF. Nucleus tractus solitarius and control of blood pressure in chronic sinoaortic denervated rats. Am J Phys. 1992;263:R258–66.

    CAS  Google Scholar 

  22. Kirchheim HR. Systemic arterial baroreceptor reflexes. Physiol Rev. 1976;56(1):100–77. https://doi.org/10.1152/physrev.1976.56.1.100.

    Article  CAS  PubMed  Google Scholar 

  23. Krauhs JM. Structure of rat aortic baroreceptors and their relationship to connective tissue. J Neurocytol. 1979;8(4):401–14. https://doi.org/10.1007/BF01214800.

    Article  CAS  PubMed  Google Scholar 

  24. Chapleau MW, Li Z, Meyrelles SS, Ma X, Abboud FM. Mechanisms determining sensitivity of baroreceptor afferents in health and disease. Ann N Y Acad Sci. 2001;940:1–19.

    Article  CAS  PubMed  Google Scholar 

  25. Chapleau MW, Abboud FM. The baroreceptor reflex: novel methods and mechanisms. In: Dun NJ, Machado BH, Pilowsky PM, editors. Neural mechanisms of cardiovascular regulation. US: Springer; 2004.

    Google Scholar 

  26. McCubbin JW, Masson GM, Page IH. Aortic depressor nerves of the rat. Arch Int Pharmacodyn Ther. 1958;114(3-4):303–6.

    CAS  PubMed  Google Scholar 

  27. Huber DA, Schreihofer AM. Attenuated baroreflex control of sympathetic nerve activity in obese Zucker rats by central mechanisms. J Physiol. 2010;588(9):1515–25. https://doi.org/10.1113/jphysiol.2009.186387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Talman WT, Perrone MH, Reis DJ. Evidence for L-glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science. 1980;209(4458):813–5. https://doi.org/10.1126/science.6105709.

    Article  CAS  PubMed  Google Scholar 

  29. Andresen MC, Kunze DL. Nucleus tractus solitarius—ateway to neural circulatory control. Annu Rev Physiol. 1994;56(1):93–116. https://doi.org/10.1146/annurev.ph.56.030194.000521.

    Article  CAS  PubMed  Google Scholar 

  30. Andresen MC. Cardiovascular integration in the nucleus of the solitary tract. In: Dun NJ, Machado BH, Pilowsky PM, editors. Neural mechanisms of cardiovascular regulation. US: Springer; 2004.

    Google Scholar 

  31. Accorsi-Mendonça D, Machado BH. Synaptic transmission of baro- and chemoreceptors afferents in the NTS second order neurons. Auton Neurosci Basic Clin. 2013;175(1-2):3–8. https://doi.org/10.1016/j.autneu.2012.12.002.

    Article  Google Scholar 

  32. Dampney RAL, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol. 2003;71(5):359–84. https://doi.org/10.1016/j.pneurobio.2003.11.001.

    Article  CAS  PubMed  Google Scholar 

  33. Machado BH, Brody MJ. Role of the nucleus ambiguus in the regulation of heart rate and arterial pressure. Hypertension. 1988;11(6_Pt_2):602–7. https://doi.org/10.1161/01.HYP.11.6.602.

    Article  CAS  PubMed  Google Scholar 

  34. Machado BH, Brody MJ. Effect of nucleus ambiguus lesion on the development of neurogenic hypertension. Hypertension. 1988;11(2_Pt_2):I135–8. https://doi.org/10.1161/01.HYP.11.2_Pt_2.I135.

    Article  CAS  PubMed  Google Scholar 

  35. Canesin RO, Bonagamba LGH, Machado BH. Bradycardic and hypotensive responses to microinjection of L-glutamate into the lateral aspect of the commissural NTS are blocked by an NMDA receptor antagonist. Brain Res. 2000;852(1):68–75. https://doi.org/10.1016/S0006-8993(99)02196-4.

    Article  CAS  PubMed  Google Scholar 

  36. Sapru HN. Neurotransmitters in the nucleus tractus solitarius mediating cardiovascular function. In: Dun NJ, Machado BH, Pilowsky PM, editors. Neural mechanisms of cardiovascular regulation. US: Springer; 2004.

    Google Scholar 

  37. Cravo SL, Morrison SF. The caudal ventrolateral medulla is a source of tonic sympathoinhibition. Brain Res. 1993;621(1):133–6. https://doi.org/10.1016/0006-8993(93)90308-A.

    Article  CAS  PubMed  Google Scholar 

  38. Mandel DA, Schreihofer AM. Central respiratory modulation of barosensitive neurones in rat caudal ventrolateral medulla. J Physiol. 2006;572(3):881–96. https://doi.org/10.1113/jphysiol.2005.103622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Accorsi-Mendonça D, da Silva MP, Souza GMPR, Lima-Silveira L, Karlen-Amarante M, Amorim MR, et al. Pacemaking property of RVLM presympathetic neurons. Front Physiol. 2016;7:424. The review discusses the intrinsic electrophysiological property of RVLM presympathetic neurons and the participation of these neurons in the sympathetic overactivity observed in animal models of neurogenic hypertension.

    PubMed  PubMed Central  Google Scholar 

  40. Sun MK, Hackett JT, Guyenet PG. Sympathoexcitatory neurons of rostral ventrolateral medulla exhibit pacemaker properties in the presence of a glutamate-receptor antagonist. Brain Res. 1988;438(1-2):23–40. https://doi.org/10.1016/0006-8993(88)91320-0.

    Article  CAS  PubMed  Google Scholar 

  41. Moraes DJA, da Silva MP, Bonagamba LGH, Mecawi AS, Zoccal DB, Antunes-Rodrigues J, et al. Electrophysiological properties of rostral ventrolateral medulla presympathetic neurons modulated by the respiratory network in rats. J Neurosci. 2013;33(49):19223–37. https://doi.org/10.1523/JNEUROSCI.3041-13.2013.

    Article  CAS  PubMed  Google Scholar 

  42. Almado CEL, Leão RM, Machado BH. Intrinsic properties of rostral ventrolateral medulla presympathetic and bulbospinal respiratory neurons of juvenile rats are not affected by chronic intermittent hypoxia. Exp Physiol. 2014;99(7):937–50. https://doi.org/10.1113/expphysiol.2013.077800.

    Article  PubMed  Google Scholar 

  43. Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PGR, Abbott SBG. C1 neurons: the body’s EMTs. Am J Phys Regul Integr Comp Phys. 2013;305(3):R187–204. https://doi.org/10.1152/ajpregu.00054.2013.

    CAS  Google Scholar 

  44. Kangrga IM, Loewy AD. Whole-cell recordings from visualized C1 adrenergic bulbospinal neurons: ionic mechanisms underlying vasomotor tone. Brain Res. 1995;670(2):215–32. https://doi.org/10.1016/0006-8993(94)01282-M.

    Article  CAS  PubMed  Google Scholar 

  45. Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 1989;491(1):156–62. https://doi.org/10.1016/0006-8993(89)90098-X.

    Article  CAS  PubMed  Google Scholar 

  46. Haselton JR, Guyenet PG. Central respiratory modulation of medullary sympathoexcitatory neurons in rat. Am J Phys. 1989;256:R739–50.

    CAS  Google Scholar 

  47. Schreihofer AM, Guyenet PG. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol. 1997;387(4):524–36. https://doi.org/10.1002/(SICI)1096-9861(19971103)387:4<524::AID-CNE4>3.0.CO;2-4.

    Article  CAS  PubMed  Google Scholar 

  48. Pedrino GR, Calderon AS, Andrade MA, Cravo SL, Toney GM. Discharge of RVLM vasomotor neurons is not increased in anesthetized angiotensin II-salt hypertensive rats. Am J Physiol Heart Circ Physiol. 2013;305(12):H1781–9. https://doi.org/10.1152/ajpheart.00657.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koganezawa T, Paton JFR. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats. Exp Physiol. 2014;99(11):1453–66. https://doi.org/10.1113/expphysiol.2014.080069.

    Article  PubMed  Google Scholar 

  50. Sun MK, Guyenet PG. GABA-mediated baroreceptor inhibition of reticulospinal neurons. Am J Phys. 1985;249:R672–80.

    CAS  Google Scholar 

  51. Fazan R, de Oliveira M, da Silva VJD, Joaquim LF, Montano N, Porta A, et al. Frequency-dependent baroreflex modulation of blood pressure and heart rate variability in conscious mice. Am J Physiol Heart Circ Physiol. 2005;289(5):H1968–75. https://doi.org/10.1152/ajpheart.01224.2004.

    Article  CAS  PubMed  Google Scholar 

  52. Cornish KG, Gilmore JP. Sino-aortic denervation in the monkey. J Physiol. 1985;360(1):423–32. https://doi.org/10.1113/jphysiol.1985.sp015625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramchandra R, Barrett CJ, Malpas SC. Chronic blockade of nitric oxide does not produce hypertension in baroreceptor denervated rabbits. Hypertension. 2003;42(5):974–7. https://doi.org/10.1161/01.HYP.0000094556.83257.8C.

    Article  CAS  PubMed  Google Scholar 

  54. Wustmann K, Kucera JP, Scheffers I, Mohaupt M, Kroon AA, de Leeuw PW, et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54(3):530–6. https://doi.org/10.1161/HYPERTENSIONAHA.109.134023.

    Article  CAS  PubMed  Google Scholar 

  55. Machado BH, Mauad H, Glass ML. Transient changes in blood pressure during spontaneous deep breaths in rats with sinoaortic deafferentation. J Appl Physiol. 1992;72(3):920–4. https://doi.org/10.1152/jappl.1992.72.3.920.

    Article  CAS  PubMed  Google Scholar 

  56. Chianca Júnior DA, Machado BH. The sensitivity of the Bezold-Jarisch reflex is increased in rats with sinoaortic deafferentation. Braz J Med Biol Res. 1994;27(3):775–81.

    PubMed  Google Scholar 

  57. Ceroni A, Chaar LJ, Bombein RL, Michelini LC. Chronic absence of baroreceptor inputs prevents training-induced cardiovascular adjustments in normotensive and spontaneously hypertensive rats. Exp Physiol. 2009;94(6):630–40. https://doi.org/10.1113/expphysiol.2008.046128.

    Article  PubMed  Google Scholar 

  58. Bezerra VM, Xavier CH, de Menezes RCA, Fontes MAP, Cardoso LM, Fernandes LG, et al. Bezold-Jarisch reflex in sino-aortic denervated malnourished rats. Auton Neurosci Basic Clin. 2011;162(1-2):48–53. https://doi.org/10.1016/j.autneu.2011.03.006.

    Article  Google Scholar 

  59. •• Amorim MR, Bonagamba LGH, Souza GMPR, Moraes DJA, Machado BH. Changes in the inspiratory pattern contribute to modulate the sympathetic activity in sino-aortic denervated rats. Exp Physiol. 2017;102:1100–17. The study shows that in spite of longer inspiratory neural activity, the sympathetic activity is maintained at a normal level after SAD.

    Article  PubMed  Google Scholar 

  60. Thrasher TN. Baroreceptors, baroreceptor unloading, and the long-term control of blood pressure. Am J Phys Regul Integr Comp Phys. 2005;288(4):R819–27. https://doi.org/10.1152/ajpregu.00813.2004.

    CAS  Google Scholar 

  61. Norman RA, Coleman TG, Dent AC. Pseudohypertension in sinoaortic-denervated rats. Clin Sci Lond Engl. 1980;59:303–6.

    Article  Google Scholar 

  62. Osborn JW, Jacob F, Guzman P. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am J Phys Regul Integr Comp Phys. 2005;288(4):R846–55. https://doi.org/10.1152/ajpregu.00474.2004.

    CAS  Google Scholar 

  63. Jacob HJ, Barres CP, Machado BH, Brody MJ. Studies on neural and humoral contributions to arterial pressure lability. Am J Med Sci. 1988;295(4):341–5. https://doi.org/10.1097/00000441-198804000-00021.

    Article  CAS  PubMed  Google Scholar 

  64. Machado BH. Arterial pressure responses to adrenoceptor antagonism in rats with sino-aortic deafferentation. Braz J Med Biol Res. 1990;23(3-4):343–53.

    CAS  PubMed  Google Scholar 

  65. Trapani AJ, Barron KW, Brody MJ. Analysis of hemodynamic variability after sinoaortic denervation in the conscious rat. Am J Phys. 1986;251:R1163–9.

    CAS  Google Scholar 

  66. Mauad H, Glass ML, Machado BH. Effect of selective denervation of baroreceptors on pulmonary ventilation and arterial pressure lability in rat. Hypertension. 1992;19(2 Suppl):II182–6.

    CAS  PubMed  Google Scholar 

  67. Schreihofer AM, Ito S, Sved AF. Brain stem control of arterial pressure in chronic arterial baroreceptor-denervated rats. Am J Phys Regul Integr Comp Phys. 2005;289(6):R1746–55. https://doi.org/10.1152/ajpregu.00307.2005.

    CAS  Google Scholar 

  68. Sved AF, Schreihofer AM, Kost CK. Blood pressure regulation in baroreceptor-denervated rats. Clin Exp Pharmacol Physiol. 1997;24(1):77–82. https://doi.org/10.1111/j.1440-1681.1997.tb01787.x.

    Article  CAS  PubMed  Google Scholar 

  69. Thrasher TN. Baroreceptors and the long-term control of blood pressure. Exp Physiol. 2004;89(4):331–5. https://doi.org/10.1113/expphysiol.2004.027441.

    Article  PubMed  Google Scholar 

  70. •• Lohmeier TE, Iliescu R. The baroreflex as a long-term controller of arterial pressure. Physiology. 2015;30:148–58. The review discusses the role of baroreflex in the long-term regulation of arterial pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barman SM, Gebber GL. Basis for synchronization of sympathetic and phrenic nerve discharges. Am J Phys. 1976;231:1601–7.

    CAS  Google Scholar 

  72. Baekey DM, Molkov YI, Paton JFR, Rybak IA, Dick TE. Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol. 2010;174(1-2):135–45. https://doi.org/10.1016/j.resp.2010.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254(5032):726–9. https://doi.org/10.1126/science.1683005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Richter DW, Spyer KM. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 2001;24(8):464–72. https://doi.org/10.1016/S0166-2236(00)01867-1.

    Article  CAS  PubMed  Google Scholar 

  75. Smith JC, Abdala APL, Koizumi H, Rybak IA, Paton JFR. Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol. 2007;98(6):3370–87. https://doi.org/10.1152/jn.00985.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dutschmann M, Mörschel M, Rybak IA, Dick TE. Learning to breathe: control of the inspiratory-expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats. J Physiol. 2009;587(20):4931–48. https://doi.org/10.1113/jphysiol.2009.174599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Abdala APL, Rybak IA, Smith JC, Zoccal DB, Machado BH, St-John WM, et al. Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol. 2009;168(1-2):19–25. https://doi.org/10.1016/j.resp.2009.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adrian ED, Bronk DW, Phillips G. Discharges in mammalian sympathetic nerves. J Physiol. 1932;74(2):115–33. https://doi.org/10.1113/jphysiol.1932.sp002832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moraes DJA, Zoccal DB, Machado BH. Medullary respiratory network drives sympathetic overactivity and hypertension in rats submitted to chronic intermittent hypoxia. Hypertension. 2012;60(6):1374–80. https://doi.org/10.1161/HYPERTENSIONAHA.111.189332.

    Article  CAS  PubMed  Google Scholar 

  80. Fatouleh R, Macefield VG. Respiratory modulation of muscle sympathetic nerve activity is not increased in essential hypertension or chronic obstructive pulmonary disease. J Physiol. 2011;589(20):4997–5006. https://doi.org/10.1113/jphysiol.2011.210534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Briant LJB, O’Callaghan EL, Champneys AR, Paton JFR. Respiratory modulated sympathetic activity: a putative mechanism for developing vascular resistance? J Physiol. 2015;593(24):5341–60. https://doi.org/10.1113/JP271253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zoccal DB, Simms AE, Bonagamba LGH, Braga VA, Pickering AE, Paton JFR, et al. Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol. 2008;586(13):3253–65. https://doi.org/10.1113/jphysiol.2008.154187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Costa-Silva JH, Zoccal DB, Machado BH. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation. J Neurophysiol. 2010;103(4):2095–106. https://doi.org/10.1152/jn.00802.2009.

    Article  CAS  PubMed  Google Scholar 

  84. Zoccal DB, Furuya WI, Bassi M, Colombari DSA, Colombari E. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front Physiol. 2014;5:238.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zoccal DB, Paton JFR, Machado BH. Do changes in the coupling between respiratory and sympathetic activities contribute to neurogenic hypertension? Clin Exp Pharmacol Physiol. 2009;36(12):1188–96. https://doi.org/10.1111/j.1440-1681.2009.05202.x.

    Article  CAS  PubMed  Google Scholar 

  86. Czyzyk-Krzeska MF, Trzebski A. Respiratory-related discharge pattern of sympathetic nerve activity in the spontaneously hypertensive rat. J Physiol. 1990;426(1):355–68. https://doi.org/10.1113/jphysiol.1990.sp018142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simms AE, Paton JFR, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587(3):597–610. https://doi.org/10.1113/jphysiol.2008.165902.

    Article  CAS  PubMed  Google Scholar 

  88. Toney GM, Pedrino GR, Fink GD, Osborn JW. Does enhanced respiratory-sympathetic coupling contribute to peripheral neural mechanisms of angiotensin II-salt hypertension? Exp Physiol. 2010;95(5):587–94. https://doi.org/10.1113/expphysiol.2009.047399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Souza GMPR, Bonagamba LGH, Amorim MR, Moraes DJA, Machado BH. Inspiratory modulation of sympathetic activity is increased in female rats exposed to chronic intermittent hypoxia. Exp Physiol. 2016;101(11):1345–58. https://doi.org/10.1113/EP085850.

    Article  PubMed  Google Scholar 

  90. Paton JF. A working heart-brainstem preparation of the mouse. J Neurosci Methods. 1996;65(1):63–8. https://doi.org/10.1016/0165-0270(95)00147-6.

    Article  CAS  PubMed  Google Scholar 

  91. Franchini KG, Cestari IA, Krieger EM. Restoration of arterial blood oxygen tension increases arterial pressure in sinoaortic-denervated rats. Am J Phys. 1994;266:H1055–61.

    CAS  Google Scholar 

  92. Moreira TS, Takakura AC, Colombari E, Guyenet PG. Central chemoreceptors and sympathetic vasomotor outflow. J Physiol. 2006;577(1):369–86. https://doi.org/10.1113/jphysiol.2006.115600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bernardi L, Sleight P, Bandinelli G, Cencetti S, Fattorini L, Wdowczyc-Szulc J, et al. Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study. BMJ. 2001;323(7327):1446–9. https://doi.org/10.1136/bmj.323.7327.1446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Radaelli A, Raco R, Perfetti P, Viola A, Azzellino A, Signorini MG, et al. Effects of slow, controlled breathing on baroreceptor control of heart rate and blood pressure in healthy men. J Hypertens. 2004;22(7):1361–70. https://doi.org/10.1097/01.hjh.0000125446.28861.51.

    Article  CAS  PubMed  Google Scholar 

  95. Raupach T, Bahr F, Herrmann P, Luethje L, Heusser K, Hasenfuss G, et al. Slow breathing reduces sympathoexcitation in COPD. Eur Respir. 2008;32(2):387–92. https://doi.org/10.1183/09031936.00109607.

    Article  CAS  Google Scholar 

  96. Bernardi L, Porta C, Spicuzza L, Bellwon J, Spadacini G, Frey AW, et al. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation. 2002;105(2):143–5. https://doi.org/10.1161/hc0202.103311.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the excellent technical contribution of Leni G.H. Bonagamba (in memoriam) with the experiments performed in the Laboratory of Autonomic and Respiratory Control.

Funding

Studies conducted in the Laboratory of Autonomic and Respiratory Control coordinated by Benedito H. Machado were supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2013/06077-5 and #2013/15195-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #303512/2015-6).

Author information

Authors and Affiliations

Authors

Contributions

MRA: revised the literature, wrote the manuscript, organized the figures and revised the final version. GMPRS and BHM: wrote several sections of the manuscript, revised, and approved the final version.

Corresponding author

Correspondence to Benedito H. Machado.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, M.R., Souza, G.M.P.R. & Machado, B.H. Possible Breathing Influences on the Control of Arterial Pressure After Sino-aortic Denervation in Rats. Curr Hypertens Rep 20, 2 (2018). https://doi.org/10.1007/s11906-018-0800-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-018-0800-3

Keywords

Navigation