Skip to main content

Advertisement

Log in

Ambulatory Blood Pressure Monitoring in Children and Adolescents: a Review of Recent Literature and New Guidelines

  • Pediatric Hypertension (B Falkner, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This is a review of ambulatory blood pressure monitoring (ABPM) use in pediatrics, focusing on research published in the last 3 to 4 years.

Recent Findings

Recent data has shown that ABPM is more strongly associated with end-organ damage than casual BP, and that obesity and secondary causes of hypertension are strongly associated with nocturnal hypertension. There is evidence that ABPM is useful in management of a larger variety of diagnoses than previously thought. New guidelines from the American Academy of Pediatrics recognize the importance of ABPM in the management of pediatric hypertension.

Summary

ABPM has an important and growing role in the diagnosis and management of hypertension in children and adolescents. Future efforts should include developing more generalizable normative data and investigating associations between pediatric ABPM results and adult outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rosner B, Cook NR, Daniels S, Falkner B. Childhood blood pressure trends and risk factors for high blood pressure. Hypertension. 2013;62:247–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen X, Wang Y. Tracking of blood pressure from childhood to adulthood. Circulation. 2008;117(25):3171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Flynn JT, Daniels SR, Hayman LL, Maahs DM, McCrindle BW, Mitsnefes M, et al. Update: ambulatory blood pressure monitoring in children and adolescents. Hypertension. 2014;65(3):1116–35.

    Article  Google Scholar 

  4. Flynn JT, Urbina EM. Pediatric ambulatory blood pressure monitoring: indications and interpretations. J Clin Hypertens. 2012;14(6):372–82.

    Article  Google Scholar 

  5. • Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and Management of High Blood Pressure in children and adolescents. Pediatrics. 2017;140(3) https://doi.org/10.1542/peds.2017-1904. New guidelines for pediatric hypertension from American Academy of Pediatrics. Significant changes made to casual BP normative data, BP classification in children > 13 years of age, BP screening recommendations, and when to perform echocardiogram. Increased importance placed on ABPM.

  6. Falkner B, Daniels SR, Flynn JT, Gidding S, Green LA, Ingelfinger JR, et al. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 III):555–76.

    Google Scholar 

  7. • Urbina E, Alpert B, Flynn J, Hayman L, Harshfield GA, Jacobson M, et al. Ambulatory blood pressure monitoring in children and adolescents: recommendations for standard assessment. Hypertension. 2008;52(3):433–51. Contains detailed instructions on performing ABPM in children and adolescents.

    Article  CAS  PubMed  Google Scholar 

  8. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension. 2002;39(4):903–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lande MB, Carson NL, Roy J, Meagher CC. Effects of childhood primary hypertension on carotid intima media thickness. Hypertension. 2006;48(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  10. Bjelakovic B, Jaddoe VW, Vukomanovic V, Lukic S, Prijic S, Krstic M, et al. The relationship between currently recommended ambulatory systolic blood pressure measures and left ventricular mass index in pediatric hypertension. Curr Hypertens Rep. 2015;17(4):25.

    Article  Google Scholar 

  11. Sharma AP, Mohammed J, Thomas B, Lansdell N, Norozi K, Filler G. Nighttime blood pressure, systolic blood pressure variability, and left ventricular mass index in children with hypertension. Pediatr Nephrol. 2013;28(8):1275–82.

    Article  PubMed  Google Scholar 

  12. Johnson PK, Ferguson MA, Zachariah JP. In-clinic blood pressure prediction of normal ambulatory blood pressure monitoring in pediatric hypertension referrals. Congenit Heart Dis. 2016;11(4):309–14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conkar S, Yılmaz E, Hacıkara Ş, Bozabalı S, Mir S. Is daytime systolic load an important risk factor for target organ damage in pediatric hypertension? J Clin Hypertens. 2015;17(10):760–6.

    Article  Google Scholar 

  14. Brady TM. The role of obesity in the development of left ventricular hypertrophy among children and adolescents. Curr Hypertens Rep. 2016;18(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. • Lande MB, Batisky DL, Kupferman JC, Samuels J, Hooper SR, Falkner B, et al. Neurocognitive function in children with primary hypertension. J Pediatr. 2017;180:148–55.e1. Prospective study of 75 children with newly diagnosed, untreated essential hypertension matched to 75 normotensive controls. Hypertensive subjects performed worse on tests of memory, attention, and executive functions.

    Article  PubMed  Google Scholar 

  16. Lande MB, Kaczorowski JM, Auinger P, Schwartz GJ, Weitzman M. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143(6):720–4.

    Article  PubMed  Google Scholar 

  17. Adams HR, Szilagyi PG, Gebhardt L, Lande MB. Learning and attention problems among children with pediatric primary hypertension. Pediatrics. 2010;126(6):e1425–e9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ostrovskaya MA, Rojas M, Kupferman JC, Lande MB, Paterno K, Brosgol Y, et al. Executive function and cerebrovascular reactivity in pediatric hypertension. J Child Neurol. 2015;30(5):543–6.

    Article  PubMed  Google Scholar 

  19. Stabouli S, Kotsis V, Toumanidis S, Papamichael C, Constantopoulos A, Zakopoulos N. White-coat and masked hypertension in children: association with target-organ damage. Pediatr Nephrol. 2005;20(8):1151–5.

    Article  PubMed  Google Scholar 

  20. Litwin M, Niemirska A, Ruzicka M, Feber J. White coat hypertension in children: not rare and not benign? J Am Soc Hypertens. 2009;3(6):416–23.

    Article  PubMed  Google Scholar 

  21. Briasoulis A, Androulakis E, Palla M, Papageorgiou N, Tousoulis D. White-coat hypertension and cardiovascular events: a meta-analysis. J Hypertens. 2016;34(4):593–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sivén SS, Niiranen TJ, Kantola IM, Jula AM. White-coat and masked hypertension as risk factors for progression to sustained hypertension: the Finn-Home study. J Hypertens. 2016;34(1):54–60.

    Article  PubMed  Google Scholar 

  23. Gupta-Malhotra M, Hamzeh RK, Poffenbarger T, McNiece-Redwine K, Hashmi SS. Myocardial performance index in childhood onset essential hypertension and white coat hypertension. Am J Hypertens. 2015;29(3):379–87.

    PubMed  PubMed Central  Google Scholar 

  24. Miyashita Y, Flynn JT, Hanevold CD. Diagnosis and management of white-coat hypertension in children and adolescents: a Midwest pediatric nephrology consortium study. J Clin Hypertens. 2017;19(9):884–9.

    Article  Google Scholar 

  25. Lurbe E, Torro I, Alvarez V, Nawrot T, Paya R, Redon J, et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45(4):493–8.

    Article  CAS  PubMed  Google Scholar 

  26. So HK, Yip GWK, Choi KC, Li AM, Leung LCK, Wong SN, et al. Association between waist circumference and childhood-masked hypertension: a community-based study. J Paediatr Child Health. 2016;52(4):385–90.

    Article  PubMed  Google Scholar 

  27. Cuspidi C, Meani S, Salerno M, Valerio C, Fusi V, Severgnini B, et al. Cardiovascular target organ damage in essential hypertensives with or without reproducible nocturnal fall in blood pressure. J Hypertens. 2004;22(2):273–80.

    Article  CAS  PubMed  Google Scholar 

  28. Hermida RC, Ayala DE, Mojón A, Fernández JR. Blunted sleep-time relative blood pressure decline increases cardiovascular risk independent of blood pressure level—the “normotensive non-dipper” paradox. Chronobiol Int. 2013;30(1–2):87–98.

    Article  PubMed  Google Scholar 

  29. Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  30. Macumber IR, Weiss NS, Halbach SM, Hanevold CD, Flynn JT. The association of pediatric obesity with nocturnal non-dipping on 24-hour ambulatory blood pressure monitoring. Am J Hypertens. 2015;29(5):647–52.

    Article  PubMed  Google Scholar 

  31. Seeman T, Hradský O, Gilík J. Nocturnal blood pressure non-dipping is not associated with increased left ventricular mass index in hypertensive children without end-stage renal failure. Eur J Pediatr. 2016;175(8):1091–7.

    Article  PubMed  Google Scholar 

  32. Giordano U, Della Corte C, Cafiero G, Liccardo D, Turchetta A, Hoshemand KM, et al. Association between nocturnal blood pressure dipping and insulin resistance in children affected by NAFLD. Eur J Pediatr. 2014;173(11):1511–8.

    Article  PubMed  Google Scholar 

  33. Flynn J, Zhang Y, Solar-Yohay S, Shi V. Clinical and demographic characteristics of children with hypertension novelty and significance. Hypertension. 2012;60(4):1047–54.

    Article  CAS  PubMed  Google Scholar 

  34. Macumber I, Flynn JT. Ambulatory blood pressure monitoring in children and adolescents. Blood pressure monitoring in cardiovascular medicine and therapeutics. Spring, Heidelberg; 2016. p. 227–252.

  35. • Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Schaefer F. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;2009(361):1639–50. Researchers randomized children with CKD (GFR 15-80 ml/min/1.73m 2 BSA) to an intensified BP control group (24-hr MAP < 50 th percentile) or conventional BP control group (24-hr MAP 50 th –95 th percentile). Both groups treated with ACE inhibitors. Subjects in intensified treatment group had decreased progression of CKD.

    Google Scholar 

  36. • Dost A, Pozza BD, Bollow E, Kovacic R, Vogel P, Feldhahn L, et al. Blood pressure regulation determined by ambulatory blood pressure profiles in children and adolescents with type 1 diabetes mellitus: impact on diabetic complications. Pediatr Diabetes. 2017; https://doi.org/10.1111/pedi.12502. A large, retrospective study that shows a strong associa- tion between abnormal ABPM results and development of dia- betic complications such as microalbuminuria and diabetic retinopathy.

  37. Samuels J, Ng D, Flynn JT, Mitsnefes M, Poffenbarger T, Warady BA, et al. Ambulatory blood pressure patterns in children with chronic kidney disease novelty and significance. Hypertension. 2012;60(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wühl E, Hadtstein C, Mehls O, Schaefer F. Home, clinic, and ambulatory blood pressure monitoring in children with chronic renal failure. Pediatr Res. 2004;55(3):492–7.

    Article  PubMed  Google Scholar 

  39. Mitsnefes M, Flynn J, Cohn S, Samuels J, Blydt-Hansen T, Saland J, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol. 2010;21(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agarwal R, Pappas MK, Sinha AD. Masked uncontrolled hypertension in CKD. J Am Soc Nephrol. 2016;27(3):924–32.

    Article  CAS  PubMed  Google Scholar 

  41. Matteucci MC, Chinali M, Rinelli G, Wühl E, Zurowska A, Charbit M, et al. Change in cardiac geometry and function in CKD children during strict BP control: a randomized study. Clin J Am Soc Nephrol. 2013;8(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  42. • Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A, et al. Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol. 2017;12(1):19–28. Baseline data from 4C study. LVH prevalence increases with CKD stage, and 24-hr MAP is associated with LVMI, cIMT, and PWV. Less than 50% of subjects with ambulatory HTN were identified by casual BP.

    Article  PubMed  Google Scholar 

  43. Chesnaye NC, Schaefer F, Groothoff JW, Bonthuis M, Reusz G, Heaf JG, et al. Mortality risk in European children with end-stage renal disease on dialysis. Kidney Int. 2016;89(6):1355–62.

    Article  PubMed  Google Scholar 

  44. Chaudhuri A, Sutherland SM, Begin B, Salsbery K, McCabe L, Potter D, et al. Role of twenty-four-hour ambulatory blood pressure monitoring in children on dialysis. Clin J Am Soc Nephrol. 2011;6(4):870–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paglialonga F, Consolo S, Edefonti A, Montini G. Blood pressure management in children on dialysis. Pediatr Nephrol. 2017:1–12. https://doi.org/10.1007/s00467-017-3666-8.

  46. Haskin O, Wong CJ, McCabe L, Begin B, Sutherland SM, Chaudhuri A. 44-h ambulatory blood pressure monitoring: revealing the true burden of hypertension in pediatric hemodialysis patients. Pediatr Nephrol. 2015;30(4):653–60.

    Article  PubMed  Google Scholar 

  47. Flynn JT. Ambulatory blood pressure monitoring should be routinely performed after pediatric renal transplantation. Pediatr Transplant. 2012;16(6):533–6.

    Article  PubMed  Google Scholar 

  48. Hamdani G, Nehus EJ, Hanevold CD, Van Sickle JS, Woroniecki R, Wenderfer SE, et al. Ambulatory blood pressure, left ventricular hypertrophy, and allograft function in children and young adults after kidney transplantation. Transplantation. 2017a;101(1):150–6.

    Article  CAS  PubMed  Google Scholar 

  49. Cameron C, Vavilis G, Kowalski J, Tydén G, Berg UB, Krmar RT. An observational cohort study of the effect of hypertension on the loss of renal function in pediatric kidney recipients. Am J Hypertens. 2013;27(4):579–85.

    Article  PubMed  Google Scholar 

  50. Hamdani G, Nehus EJ, Hooper DK, Mitsnefes MM. Masked hypertension and allograft function in pediatric and young adults kidney transplant recipients. Pediatr Transplant. 2016;20(8):1026–31.

    Article  CAS  PubMed  Google Scholar 

  51. Tainio J, Qvist E, Miettinen J, Hölttä T, Pakarinen M, Jahnukainen T, et al. Blood pressure profiles 5 to 10 years after transplant in pediatric solid organ recipients. J Clin Hypertens. 2015;17(2):154–61.

    Article  Google Scholar 

  52. Gülhan B, Topaloğlu R, Karabulut E, Özaltın F, Aki FT, Bilginer Y, et al. Post-transplant hypertension in pediatric kidney transplant recipients. Pediatr Nephrol. 2014;29(6):1075–80.

    Article  PubMed  Google Scholar 

  53. Hamdani G, Nehus EJ, Hanevold CD, VanSickle JS, Hooper DK, Blowey D, et al. Ambulatory blood pressure control in children and young adults after kidney transplantation. Am J Hypertens. 2017;30(10):1039–46.

    Article  PubMed  Google Scholar 

  54. Schreuder MF, Langemeijer ME, Bökenkamp A, Van Wijk JA. Hypertension and microalbuminuria in children with congenital solitary kidneys. J Paediatr Child Health. 2008;44(6):363–8.

    Article  PubMed  Google Scholar 

  55. Sanna-Cherchi S, Ravani P, Corbani V, Parodi S, Haupt R, Piaggio G, et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 2009;76(5):528–33.

    Article  PubMed  Google Scholar 

  56. Westland R, Schreuder MF, van der Lof DF, Vermeulen A, Dekker-van der Meer IM, Bökenkamp A, et al. Ambulatory blood pressure monitoring is recommended in the clinical management of children with a solitary functioning kidney. Pediatr Nephrol. 2014;29(11):2205–11.

    Article  PubMed  Google Scholar 

  57. Peterson CG, Miyashita Y. The use of ambulatory blood pressure monitoring as standard of Care in Pediatrics. Front Pediatr. 2017;5:153.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Brown ML, Burkhart HM, Connolly HM, Dearani JA, Cetta F, Li Z, et al. Coarctation of the aorta. J Am Coll Cardiol. 2013;62(11):1020–5.

    Article  PubMed  Google Scholar 

  59. Lee MG, Allen SL, Kawasaki R, Kotevski A, Koleff J, Kowalski R, et al. High prevalence of hypertension and end-organ damage late after coarctation repair in normal arches. Annals Thorac Surg. 2015;100(2):647–53.

    Article  Google Scholar 

  60. Šuláková T, Janda J, Černá J, Janštová V, Šuláková A, Slaný J, et al. Arterial HTN in children with T1DM—frequent and not easy to diagnose. Pediatr Diabetes. 2009;10(7):441–8.

    Article  PubMed  Google Scholar 

  61. Nambam B, DuBose SN, Nathan BM, Beck RW, Maahs DM, Wadwa RP, et al. Therapeutic inertia: underdiagnosed and undertreated hypertension in children participating in the T1D Exchange Clinic Registry. Pediatr Diabetes. 2016;17(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  62. Lee SH, Kim JH, Kang MJ, Lee YA, Yang SW, Shin CH. Implications of nocturnal hypertension in children and adolescents with type 1 diabetes. Diabetes Care. 2011;34(10):2180–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Donaghue KC, Wadwa RP, Dimeglio LA, Wong TY, Chiarelli F, Marcovecchio ML, et al. Microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):257–69.

    Article  CAS  PubMed  Google Scholar 

  64. Kır M, Cetin B, Demir K, Yılmaz N, Kızılca O, Demircan T, et al. Can ambulatory blood pressure monitoring detect early diastolic dysfunction in children with type 1 diabetes mellitus: correlations with B-type natriuretic peptide and tissue Doppler findings. Pediatr Diabetes. 2016;17(1):21–7.

    Article  PubMed  Google Scholar 

  65. Shalaby NM, Shalaby NM. Study of ambulatory blood pressure in diabetic children: prediction of early renal insult. Ther Clin Risk Manag. 2015;11:1531.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    Article  CAS  Google Scholar 

  67. Copeland KC, Zeitler P, Geffner M, Guandalini C, Higgins J, Hirst K, et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab. 2011;96(1):159–67.

    Article  CAS  PubMed  Google Scholar 

  68. Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes. Diabetes Care. 2013;36(6):1735–41.

    Article  Google Scholar 

  69. Shikha D, Singla M, Walia R, Potter N, Umpaichitra V, Mercado A, et al. Ambulatory blood pressure monitoring in lean, obese and diabetic children and adolescents. Cardiorenal Med. 2015;5(3):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dart AB, Wicklow BA, Sellers EA, Dean HJ, Malik S, Walker J, et al. The improving renal complications in adolescents with type 2 diabetes through the research (iCARE) Cohort Study: rationale and protocol. Can J Diabetes. 2014;38(5):349–55.

    Article  PubMed  Google Scholar 

  71. Kirk R, Edwards LB, Aurora P, Taylor DO, Christie J, Dobbels F, et al. Registry of the International Society for Heart and Lung Transplantation: eleventh official pediatric heart transplantation report—2008. J Heart Lung Transplant. 2008;27(9):970–7.

    Article  PubMed  Google Scholar 

  72. Mclin VA, Anand R, Daniels S, Yin W, Alonso E. Blood pressure elevation in long-term survivors of pediatric liver transplantation. Am J Transplant. 2012;12(1):183–90.

    Article  CAS  PubMed  Google Scholar 

  73. Dipchand AI, Kirk R, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: sixteenth official pediatric heart transplantation report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):979–88.

    Article  PubMed  Google Scholar 

  74. O’Sullivan JJ, Derrick G, Gray J. Blood pressure after cardiac transplantation in childhood. J Heart Lung Transplant. 2005;24(7):891–5.

    Article  PubMed  Google Scholar 

  75. Bayrakci US, Baskin E, Ozcay F, Gulleroglu K, Ozbay F, Sevmis S, et al. Abnormal circadian blood pressure regulation in liver transplanted children. Pediatr Transplant. 2012;16(2):160–4.

    Article  PubMed  Google Scholar 

  76. Filler G, Melk A, Marks SD. Practice recommendations for the monitoring of renal function in pediatric non-renal organ transplant recipients. Pediatr Transplant. 2016;20(3):352–63.

    Article  CAS  PubMed  Google Scholar 

  77. Shatat IF, Jakson SM, Blue AE, Johnson MA, Orak JK, Kalpatthi R. Masked hypertension is prevalent in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2013;28(1):115–20.

    Article  PubMed  Google Scholar 

  78. Lebensburger JD, Cutter GR, Howard TH, Muntner P, Feig DI. Evaluating risk factors for chronic kidney disease in pediatric patients with sickle cell anemia. Pediatr Nephrol. 2017;32(9):1565–73.

    Article  Google Scholar 

  79. Becker AM, Goldberg JH, Henson M, Ahn C, Tong L, Baum M, et al. Blood pressure abnormalities in children with sickle cell anemia. Pediatr Blood Cancer. 2014;61(3):518–22.

    Article  PubMed  Google Scholar 

  80. Lebensburger JD, Feig D, Hilliard L, Askenazi D, Howard TH, Cutter G. Chronobiology of hypertension in sickle cell disease. Blood. 2014;124:4094.

    Google Scholar 

  81. Soergel M, Kirschstein M, Busch C, Danne T, Gellermann J, Holl R, et al. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr. 1997;130(2):178–84.

    Article  CAS  PubMed  Google Scholar 

  82. Wühl E, Witte K, Soergel M, Mehls O, Schaefer F, Hypertension GWGoP. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens. 2002;20(10):1995–2007.

    Article  PubMed  Google Scholar 

  83. Yip GW, Li AM, So H-K, Choi KC, Leung LC, Fong N-C, et al. Oscillometric 24-h ambulatory blood pressure reference values in Hong Kong Chinese children and adolescents. J Hypertens. 2014;32(3):606–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Macumber.

Ethics declarations

Conflict of Interest

The author declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macumber, I. Ambulatory Blood Pressure Monitoring in Children and Adolescents: a Review of Recent Literature and New Guidelines. Curr Hypertens Rep 19, 96 (2017). https://doi.org/10.1007/s11906-017-0791-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0791-5

Keywords

Navigation