Skip to main content

Advertisement

Log in

Hypothalamic Signaling in Body Fluid Homeostasis and Hypertension

  • Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The central nervous system plays a pivotal role in the regulation of extracellular fluid volume and consequently arterial blood pressure. Key hypothalamic regions sense and integrate neurohumoral signals to subsequently alter intake (thirst and salt appetite) and output (renal excretion via neuroendocrine and autonomic function). Here, we review recent findings that provide new insight into such mechanisms that may represent new therapeutic targets.

Recent Findings

Implementation of cutting edge neuroscience approaches such as opto- and chemogenetics highlight pivotal roles of circumventricular organs to impact body fluid homeostasis. Key signaling mechanisms within these areas include the N-terminal variant of transient receptor potential vannilloid type-1, NaX, epithelial sodium channel, brain electroneutral transporters, and non-classical actions of vasopressin.

Summary

Despite the identification of several new mechanisms, future studies need to better define the neurochemical phenotype and molecular profiles of neurons within circumventricular organs for future therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. JAMA. 2010;303(20):2043–50. doi:10.1001/jama.2010.650.

    Article  CAS  PubMed  Google Scholar 

  2. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8. doi:10.1001/archinte.165.8.923.

    Article  PubMed  Google Scholar 

  3. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson PW. Established risk factors and coronary artery disease: the Framingham study. Am J Hypertens. 1994;7(7 Pt 2):7S–12S.

    Article  CAS  PubMed  Google Scholar 

  5. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial investigators. Lancet. 1997;350(9080):757–64.

    Article  CAS  PubMed  Google Scholar 

  6. Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52(5):584–94.

    Article  CAS  PubMed  Google Scholar 

  7. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139(9):761–76.

    Article  CAS  PubMed  Google Scholar 

  8. Broadwell RD, Brightman MW. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol. 1976;166(3):257–83. doi:10.1002/cne.901660302.

    Article  CAS  PubMed  Google Scholar 

  9. McKinley MJ, Denton DA, Leventer M, Penschow J, Weisinger RS, Wright RD. Morphology of the organum vasculosum of the lamina terminalis (OVLT) of the sheep. Brain Res Bull. 1983;11(6):649–57.

    Article  CAS  PubMed  Google Scholar 

  10. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363(2):497–511. doi:10.1007/s00441-015-2207-7.

    Article  PubMed  Google Scholar 

  11. Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol. 2013;521(15):3389–405. doi:10.1002/cne.23355.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prager-Khoutorsky M, Bourque CW. Anatomical organization of the rat organum vasculosum laminae terminalis. Am J Physiol Regul Integr Comp Physiol. 2015;309(4):R324–37. doi:10.1152/ajpregu.00134.2015.

    Article  CAS  PubMed  Google Scholar 

  13. Larsen PJ, Mikkelsen JD. Functional identification of central afferent projections conveying information of acute “stress” to the hypothalamic paraventricular nucleus. J Neurosci. 1995;15(4):2609–27.

    CAS  PubMed  Google Scholar 

  14. Oldfield BJ, Badoer E, Hards DK, McKinley MJ. Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience. 1994;60(1):255–62.

    Article  CAS  PubMed  Google Scholar 

  15. Weiss ML, Hatton GI. Collateral input to the paraventricular and supraoptic nuclei in rat. I. Afferents from the subfornical organ and the anteroventral third ventricle region. Brain Res Bull. 1990;24(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  16. Denton D, Shade R, Zamarippa F, Egan G, Blair-West J, McKinley M, et al. Neuroimaging of genesis and satiation of thirst and an interoceptor-driven theory of origins of primary consciousness. Proc Natl Acad Sci U S A. 1999;96(9):5304–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hollis JH, McKinley MJ, D'Souza M, Kampe J, Oldfield BJ. The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst. Am J Physiol Regul Integr Comp Physiol. 2008;294(4):R1390–401. doi:10.1152/ajpregu.00869.2007.

    Article  CAS  PubMed  Google Scholar 

  18. Dong HW, Swanson LW. Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol. 2006;494(1):75–107. doi:10.1002/cne.20790.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Buggy J, Johnson AK. Anteroventral third ventricle periventricular ablation: temporary adipsia and persisting thirst deficits. Neurosci Lett. 1977;5(3–4):177–82.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson AK, Buggy J. Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Am J Phys. 1978;234(3):R122–9.

    CAS  Google Scholar 

  21. Johnson AK, Hoffman WE, Buggy J. Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic-hypothalamic periventricular ablation. Brain Res. 1978;157(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  22. Berecek KH, Barron KW, Webb RL, Brody MJ. Vasopressin-central nervous system interactions in the development of DOCA hypertension. Hypertension. 1982;4(3_Pt_2):131–7. doi:10.1161/01.HYP.4.3_Pt_2.131.

    Article  CAS  PubMed  Google Scholar 

  23. Goto A, Ganguli M, Tobian L, Johnson MA, Iwai J. Effect of an anteroventral third ventricle lesion on NaCl hypertension in Dahl salt-sensitive rats. Am J Phys. 1982;243(4):H614–8.

    CAS  Google Scholar 

  24. Marson O, Saragoca MA, Ribeiro AB, Bossolan D, Tufik S, Ramos OL. Anteroventral third ventricle and renin-angiotensin system interaction in the two-kidney, one clip hypertensive rat. Hypertension. 1983;5(6 Pt 3):V90–3.

    Article  CAS  PubMed  Google Scholar 

  25. Thrasher TN, Keil LC, Ramsay DJ. Lesions of the organum vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology. 1982;110(5):1837–9. doi:10.1210/endo-110-5-1837.

    Article  CAS  PubMed  Google Scholar 

  26. McKinley MJ, Mathai ML, Pennington G, Rundgren M, Vivas L. Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. Am J Phys. 1999;276(3 Pt 2):R673–83.

    CAS  Google Scholar 

  27. Simpson JB, Epstein AN, Camardo JS Jr. Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J Comp Physiol Psychol. 1978;92(4):581–601.

    Article  CAS  PubMed  Google Scholar 

  28. Lind RW, Thunhorst RL, Johnson AK. The subfornical organ and the integration of multiple factors in thirst. Physiol Behav. 1984;32(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  29. Mangiapane ML, Thrasher TN, Keil LC, Simpson JB, Ganong WF. Role for the subfornical organ in vasopressin release. Brain Res Bull. 1984;13(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  30. Starbuck EM, Fitts DA. Effects of SFO lesion or captopril on drinking induced by intragastric hypertonic saline. Brain Res. 1998;795(1–2):37–43.

    Article  CAS  PubMed  Google Scholar 

  31. Thrasher TN, Simpson JB, Ramsay DJ. Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology. 1982;35(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  32. Collister JP, Olson MK, Nahey DB, Vieira AA, Osborn JW. OVLT lesion decreases basal arterial pressure and the chronic hypertensive response to AngII in rats on a high-salt diet. Physiol Rep. 2013;1(5):e00128. doi:10.1002/phy2.128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Osborn JW, Hendel MD, Collister JP, Ariza-Guzman PA, Fink GD. The role of the subfornical organ in angiotensin II-salt hypertension in the rat. Exp Physiol. 2012;97(1):80–8. doi:10.1113/expphysiol.2011.060491.

    Article  CAS  PubMed  Google Scholar 

  34. Hendel MD, Collister JP. Contribution of the subfornical organ to angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol. 2005;288(2):H680–5. doi:10.1152/ajpheart.00823.2004.

    Article  CAS  PubMed  Google Scholar 

  35. Osborn JW, Jacob F, Hendel M, Collister JP, Clark L, Guzman PA. Effect of subfornical organ lesion on the development of mineralocorticoid-salt hypertension. Brain Res. 2006;1109(1):74–82. doi:10.1016/j.brainres.2006.06.073.

    Article  CAS  PubMed  Google Scholar 

  36. Bruner CA, Mangiapane ML, Fink GD. Subfornical organ. Does it protect against angiotensin II-induced hypertension in the rat? Circ Res. 1985;56(3):462–6.

    Article  CAS  PubMed  Google Scholar 

  37. Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–31. doi:10.1038/nrn2400.

    Article  CAS  PubMed  Google Scholar 

  38. Cancelliere NM, Black EA, Ferguson AV. Neurohumoral integration of cardiovascular function by the lamina terminalis. Curr Hypertens Rep. 2015;17(12):93. doi:10.1007/s11906-015-0602-9.

    Article  PubMed  CAS  Google Scholar 

  39. Hattori Y, Kasai M, Uesugi S, Kawata M, Yamashita H. Atrial natriuretic polypeptide depresses angiotensin II induced excitation of neurons in the rat subfornical organ in vitro. Brain Res. 1988;443(1–2):355–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ehrlich KJ, Fitts DA. Atrial natriuretic peptide in the subfornical organ reduces drinking induced by angiotensin or in response to water deprivation. Behav Neurosci. 1990;104(2):365–72.

    Article  CAS  PubMed  Google Scholar 

  41. Ferguson AV, Renaud LP. Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons. Am J Phys. 1986;251(4 Pt 2):R712–7.

    CAS  Google Scholar 

  42. Allen AM, McKinley MJ, Mendelsohn FA. Comparative neuroanatomy of angiotensin II receptor localization in the mammalian hypothalamus. Clin Exp Pharmacol Physiol. 1988;15(2):137–45.

    Article  CAS  PubMed  Google Scholar 

  43. Huang BS, Ahmadi S, Ahmad M, White RA, Leenen FH. Central neuronal activation and pressor responses induced by circulating ANG II: role of the brain aldosterone-“ouabain” pathway. Am J Physiol Heart Circ Physiol. 2010;299(2):H422–30. doi:10.1152/ajpheart.00256.2010.

    Article  CAS  PubMed  Google Scholar 

  44. Xue B, Zhang Z, Roncari CF, Guo F, Johnson AK. Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension. Hypertension. 2012;60(4):1023–30. doi:10.1161/HYPERTENSIONAHA.112.196576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smith PM, Chambers AP, Price CJ, Ho W, Hopf C, Sharkey KA, et al. The subfornical organ: a central nervous system site for actions of circulating leptin. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R512–20. doi:10.1152/ajpregu.90858.2008.

    Article  CAS  PubMed  Google Scholar 

  46. Hilzendeger AM, Cassell MD, Davis DR, Stauss HM, Mark AL, Grobe JL, et al. Angiotensin type 1a receptors in the subfornical organ are required for deoxycorticosterone acetate-salt hypertension. Hypertension. 2013;61(3):716–22. doi:10.1161/HYPERTENSIONAHA.111.00356.

    Article  CAS  PubMed  Google Scholar 

  47. Alim I, Fry WM, Walsh MH, Ferguson AV. Actions of adiponectin on the excitability of subfornical organ neurons are altered by food deprivation. Brain Res. 2010;1330:72–82. doi:10.1016/j.brainres.2010.02.076.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed AS, Dai L, Ho W, Ferguson AV, Sharkey KA. The subfornical organ: a novel site of action of cholecystokinin. Am J Physiol Regul Integr Comp Physiol. 2014;306(5):R363–73. doi:10.1152/ajpregu.00462.2013.

    Article  CAS  PubMed  Google Scholar 

  49. McKinley MJ, Burns P, Colvill LM, Oldfield BJ, Wade JD, Weisinger RS, et al. Distribution of Fos immunoreactivity in the lamina terminalis and hypothalamus induced by centrally administered relaxin in conscious rats. J Neuroendocrinol. 1997;9(6):431–7.

    Article  CAS  PubMed  Google Scholar 

  50. Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, et al. Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci U S A. 2002;99(3):1701–6. doi:10.1073/pnas.022647699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Felix D, Phillips MI. Inhibitory effects of luteinizing hormone releasing hormone (LH-RH) on neurons in the organum vasculosum lamina terminalis (OVLT). Brain Res. 1979;169(1):204–8.

    Article  CAS  PubMed  Google Scholar 

  52. Patterson M, Murphy KG, Thompson EL, Patel S, Ghatei MA, Bloom SR. Administration of kisspeptin-54 into discrete regions of the hypothalamus potently increases plasma luteinising hormone and testosterone in male adult rats. J Neuroendocrinol. 2006;18(5):349–54. doi:10.1111/j.1365-2826.2006.01420.x.

    Article  CAS  PubMed  Google Scholar 

  53. •• Oka Y, Ye M, Zuker CS. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature. 2015;520(7547):349–52. doi:10.1038/nature14108. This study was the first use of optogenetic approaches to manipulate neuronal activity of subfornic organ neurons and impact body fluid homeostasis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Nation HL, Nicoleau M, Kinsman BJ, Browning KN, Stocker SD. DREADD-induced activation of subfornical organ neurons stimulates thirst and salt appetite. J Neurophysiol. 2016;115(6):3123–9. doi:10.1152/jn.00149.2016. This study employed a chemogenetic approach to acute and chronically excite subfornical organ neurons and stimulate thirst and salt appetite

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, et al. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci. 2000;20(20):7743–51.

    CAS  PubMed  Google Scholar 

  56. •• Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, et al. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron. 2007;54(9):59–72. doi:10.1016/j.neuron.2007.03.014. This report indicates the ability of glial cells to sense changes in extracellular Na+ concentrations through the NaX channel and subsequently disinhibit SFO neurons via lactate signaling

    Article  CAS  PubMed  Google Scholar 

  57. Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, et al. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na(x), the brain sodium-level sensor, to suppress salt intake. Cell Metab. 2013;17(4):507–19. doi:10.1016/j.cmet.2013.02.018.

    Article  CAS  PubMed  Google Scholar 

  58. Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A, Kobayashi K, et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat Neurosci. 2017;20(2):230–41. doi:10.1038/nn.4463.

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto M, Hiyama TY, Kuboyama K, Suzuki R, Fujikawa A, Noda M. Channel properties of Nax expressed in neurons. PLoS One. 2015;10(5):e0126109. doi:10.1371/journal.pone.0126109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Berret E, Nehme B, Henry M, Toth K, Drolet G, Mouginot D. Regulation of central Na+ detection requires the cooperative action of the NaX channel and alpha1 isoform of Na+/K+-ATPase in the Na+-sensor neuronal population. J Neurosci. 2013;33(7):3067–78. doi:10.1523/JNEUROSCI.4801-12.2013.

    Article  CAS  PubMed  Google Scholar 

  61. • Tremblay C, Berret E, Henry M, Nehme B, Nadeau L, Mouginot D. Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus. J Neurophysiol. 2011;105(2):650–60. doi:10.1152/jn.00417.2010. This study provided the first evidence of a NaX channel expressed on median preoptic neurons contributing to Na sensing

    Article  PubMed  Google Scholar 

  62. Nehme B, Henry M, Mouginot D, Drolet G. The expression pattern of the Na(+) sensor, Na(X) in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front Neuroanat. 2012;6:26. doi:10.3389/fnana.2012.00026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagakura A, Hiyama TY, Noda M. Na(x)-deficient mice show normal vasopressin response to dehydration. Neurosci Lett. 2010;472(3):161–5. doi:10.1016/j.neulet.2010.01.077.

    Article  CAS  PubMed  Google Scholar 

  64. Fitzsimons JT. Angiotensin, thirst, and sodium appetite. Physiol Rev. 1998;78(3):583–686.

    CAS  PubMed  Google Scholar 

  65. Shenoy SK, Lefkowitz RJ. Angiotensin II-stimulated signaling through G proteins and beta-arrestin. Sci STKE. 2005;2005(311):cm14. doi:10.1126/stke.3112005cm14.

    PubMed  Google Scholar 

  66. Coble JP, Cassell MD, Davis DR, Grobe JL, Sigmund CD. Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am J Physiol Regul Integr Comp Physiol. 2014;307(4):R376–86. doi:10.1152/ajpregu.00216.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Coble JP, Johnson RF, Cassell MD, Johnson AK, Grobe JL, Sigmund CD. Activity of protein kinase C-alpha within the subfornical organ is necessary for fluid intake in response to brain angiotensin. Hypertension. 2014;64(1):141–8. doi:10.1161/HYPERTENSIONAHA.114.03461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jo F, Jo H, Hilzendeger AM, Thompson AP, Cassell MD, Rutkowski DT, et al. Brain endoplasmic reticulum stress mechanistically distinguishes the saline-intake and hypertensive response to deoxycorticosterone acetate-salt. Hypertension. 2015;65(6):1341–8. doi:10.1161/HYPERTENSIONAHA.115.05377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Muta K, Morgan DA, Grobe JL, Sigmund CD, Rahmouni K. mTORC1 signaling contributes to drinking but not blood pressure responses to brain angiotensin II. Endocrinology. 2016;157(8):3140–8. doi:10.1210/en.2016-1243.

    Article  CAS  PubMed  Google Scholar 

  70. Abbott SB, Machado NL, Geerling JC, Saper CB. Reciprocal control of drinking behavior by median preoptic neurons in mice. J Neurosci. 2016;36(31):8228–37. doi:10.1523/JNEUROSCI.1244-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gizowski C, Zaelzer C, Bourque CW. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature. 2016;537(7622):685–8. doi:10.1038/nature19756.

    Article  CAS  PubMed  Google Scholar 

  72. Oldfield BJ, Bicknell RJ, McAllen RM, Weisinger RS, McKinley MJ. Intravenous hypertonic saline induces Fos immunoreactivity in neurons throughout the lamina terminalis. Brain Res. 1991;561(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  73. Kinsman B, Cowles J, Lay J, Simmonds SS, Browning KN, Stocker SD. Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am J Physiol Regul Integr Comp Physiol. 2014;307(9):R1092–100. doi:10.1152/ajpregu.00102.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sayer RJ, Hubbard JI, Sirett NE. Rat organum vasculosum laminae terminalis in vitro: responses to transmitters. Am J Phys. 1984;247(2 Pt 2):R374–9.

    CAS  Google Scholar 

  75. Ciura S, Bourque CW. Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci. 2006;26(35):9069–75. doi:10.1523/JNEUROSCI.0877-06.2006.

    Article  CAS  PubMed  Google Scholar 

  76. Kinsman BJ, Simmonds SS, Browning KN, Stocker SD. Organum vasculosum of the lamina terminalis detects NaCl to elevate sympathetic nerve activity and blood pressure. Hypertension. 2017;69(1):163–70. doi:10.1161/HYPERTENSIONAHA.116.08372.

    Article  CAS  PubMed  Google Scholar 

  77. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A. 2003;100(23):13698–703. doi:10.1073/pnas.1735416100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ciura S, Liedtke W, Bourque CW. Hypertonicity sensing in organum vasculosum lamina terminalis neurons: a mechanical process involving TRPV1 but not TRPV4. J Neurosci. 2011;31(41):14669–76. doi:10.1523/JNEUROSCI.1420-11.2011.

    Article  CAS  PubMed  Google Scholar 

  79. Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin DL, Liedtke W, et al. DeltaN-TRPV1: a molecular co-detector of body temperature and osmotic stress. Cell Rep. 2015;13(1):23–30. doi:10.1016/j.celrep.2015.08.061.

    Article  CAS  PubMed  Google Scholar 

  80. Tucker AB, Stocker SD. Hypernatremia-induced vasopressin secretion is not altered in TRPV1−/− rats. Am J Physiol Regul Integr Comp Physiol. 2016; doi:10.1152/ajpregu.00483.2015.

  81. Gomez-Sanchez EP, Gomez-Sanchez CE. Effect of central infusion of benzamil on Dahl S rat hypertension. Am J Phys. 1995;269(3 Pt 2):H1044–7.

    CAS  Google Scholar 

  82. Nishimura M, Ohtsuka K, Nanbu A, Takahashi H, Yoshimura M. Benzamil blockade of brain Na+ channels averts Na(+)-induced hypertension in rats. Am J Phys. 1998;274(3 Pt 2):R635–44.

    CAS  Google Scholar 

  83. Miller RL, Loewy AD. ENaC gamma-expressing astrocytes in the circumventricular organs, white matter, and ventral medullary surface: sites for Na+ regulation by glial cells. J Chem Neuroanat. 2013;53:72–80. doi:10.1016/j.jchemneu.2013.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A. 1995;92(4):1013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stam WB, Van der Graaf PH, Saxena PR. Characterization of receptors mediating contraction of the rat isolated small mesenteric artery and aorta to arginine vasopressin and oxytocin. Br J Pharmacol. 1998;125(4):865–73. doi:10.1038/sj.bjp.0702149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Goldsmith SR, Gheorghiade M. Vasopressin antagonism in heart failure. J Am Coll Cardiol. 2005;46(10):1785–91. doi:10.1016/j.jacc.2005.02.095.

    Article  CAS  PubMed  Google Scholar 

  87. Lee CR, Watkins ML, Patterson JH, Gattis W, O'Connor CM, Gheorghiade M, et al. Vasopressin: a new target for the treatment of heart failure. Am Heart J. 2003;146(1):9–18. doi:10.1016/S0002-8703(02)94708-3.

    Article  CAS  PubMed  Google Scholar 

  88. Yemane H, Busauskas M, Burris SK, Knuepfer MM. Neurohumoral mechanisms in deoxycorticosterone acetate (DOCA)-salt hypertension in rats. Exp Physiol. 2010;95(1):51–5. doi:10.1113/expphysiol.2008.046334.

    Article  CAS  PubMed  Google Scholar 

  89. Crofton JT, Ota M, Share L. Role of vasopressin, the renin-angiotensin system and sex in Dahl salt-sensitive hypertension. J Hypertens. 1993;11(10):1031–8.

    Article  CAS  PubMed  Google Scholar 

  90. Sharif Naeini R, Witty MF, Seguela P, Bourque CW. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci. 2006;9(1):93–8. doi:10.1038/nn1614.

    Article  PubMed  CAS  Google Scholar 

  91. Prager-Khoutorsky M, Khoutorsky A, Bourque CW. Unique interweaved microtubule scaffold mediates osmosensory transduction via physical interaction with TRPV1. Neuron. 2014;83(4):866–78. doi:10.1016/j.neuron.2014.07.023.

    Article  CAS  PubMed  Google Scholar 

  92. Stare J, Siami S, Trudel E, Prager-Khoutorsky M, Sharshar T, Bourque CW. Effects of peritoneal sepsis on rat central osmoregulatory neurons mediating thirst and vasopressin release. J Neurosci. 2015;35(35):12188–97. doi:10.1523/JNEUROSCI.5420-13.2015.

    Article  CAS  PubMed  Google Scholar 

  93. de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, et al. Angiotensin type-2 receptors influence the activity of vasopressin neurons in the paraventricular nucleus of the hypothalamus in male mice. Endocrinology. 2016;157(8):3167–80. doi:10.1210/en.2016-1131.

    Article  PubMed  CAS  Google Scholar 

  94. Stachniak TJ, Trudel E, Bourque CW. Cell-specific retrograde signals mediate antiparallel effects of angiotensin II on osmoreceptor afferents to vasopressin and oxytocin neurons. Cell Rep. 2014;8(2):355–62. doi:10.1016/j.celrep.2014.06.029.

    Article  CAS  PubMed  Google Scholar 

  95. Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Enhanced expression of heme oxygenase-1 and carbon monoxide excitatory effects in oxytocin and vasopressin neurones during water deprivation. J Neuroendocrinol. 2012;24(4):653–63. doi:10.1111/j.1365-2826.2011.02249.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Carbon monoxide and nitric oxide interactions in magnocellular neurosecretory neurones during water deprivation. J Neuroendocrinol. 2015;27(2):111–22. doi:10.1111/jne.12245.

    Article  CAS  PubMed  Google Scholar 

  97. Doyon N, Vinay L, Prescott SA, De Koninck Y. Chloride regulation: a dynamic equilibrium crucial for synaptic inhibition. Neuron. 2016;89(6):1157–72. doi:10.1016/j.neuron.2016.02.030.

    Article  CAS  PubMed  Google Scholar 

  98. Kim JS, Kim WB, Kim YB, Lee Y, Kim YS, Shen FY, et al. Chronic hyperosmotic stress converts GABAergic inhibition into excitation in vasopressin and oxytocin neurons in the rat. J Neurosci. 2011;31(37):13312–22. doi:10.1523/JNEUROSCI.1440-11.2011.

    Article  CAS  PubMed  Google Scholar 

  99. Kim YB, Kim YS, Kim WB, Shen FY, Lee SW, Chung HJ, et al. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ Res. 2013;113(12):1296–307. doi:10.1161/CIRCRESAHA.113.301814.

    Article  CAS  PubMed  Google Scholar 

  100. •• Choe KY, Han SY, Gaub P, Shell B, Voisin DL, Knapp BA, et al. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron. 2015;85(3):549–60. doi:10.1016/j.neuron.2014.12.048. This study reports that high salt intake alters the regulation of vasopressin neurons through downregulation of KCC2 and chloride gradients

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. •• Konopacka A, Qiu J, Yao ST, Greenwood MP, Greenwood M, Lancaster T, et al. Osmoregulation requires brain expression of the renal Na-K-2Cl cotransporter NKCC2. J Neurosci. 2015;35(13):5144–55. doi:10.1523/JNEUROSCI.4121-14.2015. This study provides the first report that dehydration upregulates the expression of NKCC2 within hypothalamic regions to impact chloride gradients and regulation of vasopressin neuron excitability

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hussy N, Bres V, Rochette M, Duvoid A, Alonso G, Dayanithi G, et al. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci. 2001;21(18):7110–6.

    CAS  PubMed  Google Scholar 

  103. Choe KY, Olson JE, Bourque CW. Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci. 2012;32(36):12518–27. doi:10.1523/JNEUROSCI.1380-12.2012.

    Article  CAS  PubMed  Google Scholar 

  104. Hyzinski-Garcia MC, Rudkouskaya A, Mongin AA. LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J Physiol. 2014;592(22):4855–62. doi:10.1113/jphysiol.2014.278887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Syeda R, Qiu Z, Dubin AE, Murthy SE, Florendo MN, Mason DE, et al. LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell. 2016;164(3):499–511. doi:10.1016/j.cell.2015.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Antunes VR, Yao ST, Pickering AE, Murphy D, Paton JF. A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation. J Physiol. 2006;576(Pt 2):569–83. doi:10.1113/jphysiol.2006.115766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H, Patel KP, et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron. 2013;78(6):1036–49. doi:10.1016/j.neuron.2013.04.025.

    Article  CAS  PubMed  Google Scholar 

  108. Ribeiro N, Panizza Hdo N, Santos KM, Ferreira-Neto HC, Antunes VR. Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2015;309(11):R1369–79. doi:10.1152/ajpregu.00312.2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by National Heart, Lung, and Blood Institute Grants R01 HL113270 and R01 HL128388 (Sean D. Stocker), NIH F30 HL131269 (Brian J Kinsman), and American Heart Association Established Investigator Award (SDS) and Great Rivers Predoctoral Fellowship 14PRE1953001 (BJK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Stocker.

Ethics declarations

Conflict of Interest

Drs. Kinsman and Stocker report grants from National Institutes of Health and from the American Heart Association. Dr. Nation declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Secondary Hypertension: Nervous System Mechanisms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinsman, B.J., Nation, H.N. & Stocker, S.D. Hypothalamic Signaling in Body Fluid Homeostasis and Hypertension. Curr Hypertens Rep 19, 50 (2017). https://doi.org/10.1007/s11906-017-0749-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0749-7

Keywords

Navigation