Skip to main content
Log in

Microbial Short-Chain Fatty Acids and Blood Pressure Regulation

  • Gut Microbiome, Sympathetic Nervous System, and Hypertension (MK Raizada and EM Richards, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript


Purpose of Review

Microbial short-chain fatty acids (SCFAs) are byproducts of microbial metabolism which can be absorbed into the bloodstream of the host, where they exert effects on host physiology. SCFAs have been known to influence several aspects of host physiology, including the regulation of blood pressure. In this review, we will consider recent studies linking SCFAs to blood pressure regulation.

Recent Findings

Several recent studies have found that changes in blood pressure often coordinate with expected changes in SCFAS. Efforts are now well underway to dissect and better understand this potential connection. One way that SCFAs can influence host cells is by interacting with host GPCRs, including Gpr41 and Olfr78, among others. Intriguingly, mice null for Olfr78 are hypotensive, whereas mice null for Gpr41 are hypertensive, implying that these pathways may be physiologically important links between SCFAs and host blood pressure control.


In sum, these studies demonstrate that there does indeed appear to be a link between SCFAs and blood pressure, which likely involves host GPCRs, at least in part; however, the details and intricacies of these interactions are not yet fully understood and will greatly benefit from further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40. This paper showed that changes in the gut microbiota, including changes in SCFA-producing bacteria, are associated with hypertension in the SHR model; in addition, this study provides evidence that gut dysbiosis occurs in human hypertension

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G-protein coupled receptor 41. Physiol Genomics. 2016;physiolgenomics 00089 2016. This paper demonstrated that Gpr41 null animals have a phenotype including isolated systolic hypertension, further indicating a role for SCFAs and SCFA receptors in blood pressure regulation.

  3. • Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410–5. This paper demonstrated that Olfr78 null animals have a phenotype including lowered plasma renin, indicating a role for SCFAs and SCFA receptors in blood pressure regulation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. •• Mell B, Jala VR, Mathew AV, Byun J, Waghulde H, Zhang Y, et al. Evidence for a link between gut microbiota and hypertension in the Dahl rat model. Physiol Genomics. 2015;47(6):187–97. This paper provided evidence for a link between gut microbiota and blood pressure in the Dahl salt-sensitive rat model of hypertension, including measurement of plasma SCFA levels

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Durgan DJ, Ganesh BP, Cope JL, Ajami NJ, Phillips SC, Petrosino JF, et al. Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension. 2016;67(2):469–74. This paper demonstrated changes in the gut microbiota in the rat obstructive sleep apnea/high fat diet model of hypertension, including changes in SCFA-producing microbiota

    CAS  PubMed  Google Scholar 

  6. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  7. Hoverstad T, Midtvedt T. Short-chain fatty acids in germfree mice and rats. J Nutr. 1986;116(9):1772–6.

    CAS  PubMed  Google Scholar 

  8. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cummings JH, Hill MJ, Bone ES, Branch WJ, Jenkins DJ. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.

    CAS  PubMed  Google Scholar 

  10. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  Google Scholar 

  11. Levrat MA, Remesy C, Demigne C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr. 1991;121(11):1730–7.

    CAS  PubMed  Google Scholar 

  12. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension. 2014;64(4):897–903.

    Article  CAS  PubMed  Google Scholar 

  13. Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J. Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens. 2005;23(3):475–81.

    Article  CAS  PubMed  Google Scholar 

  14. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453(7193):396–400.

    Article  CAS  PubMed  Google Scholar 

  15. Keshaviah PR. The role of acetate in the etiology of symptomatic hypotension. Artif Organs. 1982;6(4):378–87.

    Article  CAS  PubMed  Google Scholar 

  16. Pagel MD, Ahmad S, Vizzo JE, Scribner BH. Acetate and bicarbonate fluctuations and acetate intolerance during dialysis. Kidney Int. 1982;21(3):513–8.

    Article  CAS  PubMed  Google Scholar 

  17. Marques FZ, Nelson EM, Chu PY, Horlock D, Fiedler A, Ziemann M, et al. High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in DOCA-salt hypertensive mice. Circulation. 2016.

  18. Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM, Jr., et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics. 2016;physiolgenomics 00081 2016.

  19. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.

    Article  CAS  PubMed  Google Scholar 

  20. Le PE, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9.

    Article  Google Scholar 

  21. Liaw CW, Connolly DT. Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42. DNA Cell Biol. 2009;28(11):555–60.

    Article  CAS  PubMed  Google Scholar 

  22. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69(7):2826–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taggart AK, Kero J, Gan X, Cai TQ, Cheng K, Ippolito M, et al. (D)-beta-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 2005;280(29):26649–52.

    Article  CAS  PubMed  Google Scholar 

  25. Neuhaus EM, Zhang W, Gelis L, Deng Y, Noldus J, Hatt H. Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J Biol Chem. 2009;284(24):16218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. Odor coding by a mammalian receptor repertoire. Sci Signal. 2009;2(60):ra9. 1-14

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gelis L, Jovancevic N, Veitinger S, Mandal B, Arndt HD, Neuhaus EM, et al. Functional characterization of the odorant receptor 51E2 in human melanocytes. J Biol Chem. 2016;291(34):17772–86.

    Article  CAS  PubMed  Google Scholar 

  28. Chang AJ, Ortega FE, Riegler J, Adison DVM, Krasnow MA. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 2015;527(7577):240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aisenberg WH, Huang J, Zhu W, Rajkumar P, Cruz R, Santhanam L, et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep. 2016;6:38231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou T, Chien MS, Kaleem S, Matsunami H. Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol. 2016;594(15):4225–51.

    Article  CAS  PubMed  Google Scholar 

  31. Nutting CW, Islam S, Daugirdas JT. Vasorelaxant effects of short chain fatty acid salts in rat caudal artery. Am J Phys. 1991;261(2 Pt 2):H561–H7.

    CAS  Google Scholar 

  32. Mortensen FV, Nielsen H, Mulvany MJ, Hessov I. Short chain fatty acids dilate isolated human colonic resistance arteries. Gut. 1990;31(12):1391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nutting CW, Islam S, Ye MH, Batlle DC, Daugirdas JT. The vasorelaxant effects of acetate: role of adenosine, glycolysis, lyotropism, and pHi and Cai2+. Kidney Int. 1992;41(1):166–74.

    Article  CAS  PubMed  Google Scholar 

  34. Knock G, Psaroudakis D, Abbot S, Aaronson PI. Propionate-induced relaxation in rat mesenteric arteries: a role for endothelium-derived hyperpolarising factor. J Physiol. 2002;538(Pt 3):879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–7.

    Article  PubMed  Google Scholar 

Download references


I am grateful for support from the NIH NIDDK (R01DK-107726), NIH NHLBI (R01HL-128512), and the AHA (16IRG27260265), and to members of the Pluznick Lab, especially Dr. Niranjana Natarajan, for helpful discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jennifer L. Pluznick.

Ethics declarations

Conflict of Interest

Dr. Pluznick reports grants from NIH NIDDK (R01DK-107,726), NIH NHLBI (R01HL-128,512), and the AHA (16IRG27260265).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gut Microbiome, Sympathetic Nervous System, and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pluznick, J.L. Microbial Short-Chain Fatty Acids and Blood Pressure Regulation. Curr Hypertens Rep 19, 25 (2017).

Download citation

  • Published:

  • DOI: