Skip to main content

Advertisement

Log in

The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension

  • GUT MICROBIOME, SYMPATHETIC NERVOUS SYSTEM, AND HYPERTENSION (MK RAIZADA AND EM RICHARDS, SECTION EDITORS)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The influence of gut bacteria upon host physiology is increasingly recognized, but mechanistic links are lacking. Diseases of energetic imbalance such as obesity and diabetes represent major risk factors for cardiovascular diseases such as hypertension. Thus, here, we review current mechanistic contributions of the gut microbiota to host energetics.

Recent Findings

Gut bacteria generate a multitude of small molecules which can signal to host tissues within and beyond the gastrointestinal tract to influence host physiology, and gut bacteria can also influence host digestive efficiency by altering the bioavailability of polysaccharides, yet the quantitative energetic effects of these processes remain unclear. Recently, our team has demonstrated that gut bacteria constitute a major anaerobic thermogenic biomass, which can quantitatively account for obesity.

Summary

Quantitative understanding of the mechanisms by which gut bacteria influence energy homeostasis may ultimately inform the relationship between gut bacteria and cardiovascular dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14. doi:10.1001/jama.2014.732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322. doi:10.1161/cir.0000000000000152.

    Article  PubMed  Google Scholar 

  3. Bramlage P, Pittrow D, Wittchen HU, Kirch W, Boehler S, Lehnert H, et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am J Hypertens. 2004;17(10):904–10. doi:10.1016/j.amjhyper.2004.05.017.

    Article  PubMed  Google Scholar 

  4. Centers for Disease Control and Prevention. National diabetes statistics report: estimates of diabetes and its burden in the United States, 2014. In: US Department of Health and Human Services, editor. Atlanta, GA 2014.

  5. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Associationʼs strategic impact goal through 2020 and beyond. Circulation. 2010;121(4):586–613. doi:10.1161/circulationaha.109.192703.

    Article  PubMed  Google Scholar 

  6. Huffman MD, Capewell S, Ning H, Shay CM, Ford ES, Lloyd-Jones DM. Cardiovascular health behavior and health factor changes (1988-2008) and projections to 2020: results from the National Health and Nutrition Examination Surveys. Circulation. 2012;125(21):2595–602. doi:10.1161/CIRCULATIONAHA.111.070722.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826–37. doi:10.1016/s0140-6736(11)60812-x.

    Article  PubMed  Google Scholar 

  8. Hassan Y, Head V, Jacob D, Bachmann MO, Diu S, Ford J. Lifestyle interventions for weight loss in adults with severe obesity: a systematic review. Clinical obesity. 2016; doi:10.1111/cob.12161.

    PubMed  Google Scholar 

  9. Torgerson JS, Hauptman J, Boldrin MN, Sjostrom L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155–61.

    Article  CAS  PubMed  Google Scholar 

  10. • Fothergill E, Guo J, Howard L, Kerns JC, Knuth ND, Brychta R, et al. Persistent metabolic adaptation 6 years after “the biggest loser” competition. Obesity (Silver Spring, Md). 2016;24(8):1612–9. doi:10.1002/oby.21538. The human body resists weight loss predominantly through the adaptation/suppression of RMR

    Article  Google Scholar 

  11. Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. Journal of medical toxicology : official journal of the American College of Medical Toxicology. 2011;7(3):205–12. doi:10.1007/s13181-011-0162-6.

    Article  CAS  Google Scholar 

  12. Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Molecular metabolism. 2016;5(9):759–70. doi:10.1016/j.molmet.2016.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4. doi:10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  14. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. doi:10.1073/pnas.0504978102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carmody RN, Gerber GK, Luevano Jr JM, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17(1):72–84. doi:10.1016/j.chom.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  16. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63. doi:10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  17. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23. doi:10.1016/j.chom.2008.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. doi:10.1126/scitranslmed.3000322.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. doi:10.1038/nature11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome medicine. 2016;8(1):48. doi:10.1186/s13073-016-0297-9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Bahr SM, Weidemann BJ, Castro AN, Walsh JW, deLeon O, Burnett CM, et al. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure. EBioMedicine. 2015;2(11):1725–34. doi:10.1016/j.ebiom.2015.10.018. Excess weight gain with risperidone is caused by changes in the gut microbiome, and subsequent loss of anaerobic energy expenditure

    Article  PubMed Central  Google Scholar 

  22. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am J Phys Anthropol. 2014;155(4):652–64. doi:10.1002/ajpa.22621.

    Article  PubMed  Google Scholar 

  23. Mach N, Berri M, Estelle J, Levenez F, Lemonnier G, Denis C, et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep. 2015;7(3):554–69. doi:10.1111/1758-2229.12285.

    Article  CAS  PubMed  Google Scholar 

  24. Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013;17(6):883–94. doi:10.1016/j.cmet.2013.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. doi:10.1038/nature05414.

    Article  PubMed  Google Scholar 

  26. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. doi:10.1073/pnas.0407076101.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mattijssen F, Alex S, Swarts HJ, Groen AK, van Schothorst EM, Kersten S. Angptl4 serves as an endogenous inhibitor of intestinal lipid digestion. Molecular metabolism. 2014;3(2):135–44. doi:10.1016/j.molmet.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  28. Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, et al. Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res. 2011;52(8):1575–82. doi:10.1194/jlr.P015867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cani PD, Knauf C. How gut microbes talk to organs: the role of endocrine and nervous routes. Molecular metabolism. 2016;5(9):743–52. doi:10.1016/j.molmet.2016.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Broussard JL, Devkota S. The changing microbial landscape of western society: diet, dwellings and discordance. Molecular metabolism. 2016;5(9):737–42. doi:10.1016/j.molmet.2016.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Molecular metabolism. 2016;5(9):782–94. doi:10.1016/j.molmet.2016.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. MacDougall R. NIH human microbiome project defines normal bacterial makeup of the body. 2012. https://www.nih.gov/news-events/news-releases/nih-human-microbiome-project-defines-normal-bacterial-makeup-body. Accessed May 2016.

  33. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10. doi:10.1038/nature06244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makarieva AM, Gorshkov VG, Li BL. Energetics of the smallest: do bacteria breathe at the same rate as whales? Proceedings Biological sciences / The Royal Society. 2005;272(1577):2219–24. doi:10.1098/rspb.2005.3225.

    Article  Google Scholar 

  35. Kaiyala KJ, Ramsay DS. Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comp Biochem Physiol A Mol Integr Physiol. 2011;158(3):252–64. doi:10.1016/j.cbpa.2010.04.013.

    Article  PubMed  Google Scholar 

  36. McLean JA, Tobin G. Animal and human calorimetry. New York: Cambridge University Press; 1988.

    Book  Google Scholar 

  37. Lighton JRB. Measuring metabolic rates. New York: Oxford University Press; 2008.

    Book  Google Scholar 

  38. Pittet P, Gygax PH, Jequier E. Thermic effect of glucose and amino acids in man studied by direct and indirect calorimetry. Br J Nutr. 1974;31(3):343–9.

    Article  CAS  PubMed  Google Scholar 

  39. Pittet P, Chappuis P, Acheson K, De Techtermann F, Jequier E. Thermic effect of glucose in obese subjects studied by direct and indirect calorimetry. Br J Nutr. 1976;35(2):281–92.

    Article  CAS  PubMed  Google Scholar 

  40. Walsberg GE, Hoffman TC. Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J Exp Biol. 2005;208(Pt 6):1035–43. doi:10.1242/jeb.01477.

    Article  PubMed  Google Scholar 

  41. Walsberg GE, Hoffman TC. Using direct calorimetry to test the accuracy of indirect calorimetry in an ectotherm. Physiological and biochemical zoology : PBZ. 2006;79(4):830–5. doi:10.1086/505514.

    Article  PubMed  Google Scholar 

  42. Heuton M, Ayala L, Burg C, Dayton K, McKenna K, Morante A, et al. Paradoxical anaerobism in desert pupfish. J Exp Biol. 2015;218(Pt 23):3739–45. doi:10.1242/jeb.130633.

    Article  PubMed  Google Scholar 

  43. Burnett CM, Grobe JL. Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. Am J Physiol Endocrinol Metab. 2013;305(7):E916–24. doi:10.1152/ajpendo.00387.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burnett CM, Grobe JL. Dietary effects on resting metabolic rate in C57BL/6 mice are differentially detected by indirect (O2/CO2 respirometry) and direct calorimetry. Molecular metabolism. 2014;3(4):460–4. doi:10.1016/j.molmet.2014.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Weidemann BJ, Voong S, Morales-Santiago FI, Kahn MZ, Ni J, Littlejohn NK, et al. Dietary sodium suppresses digestive efficiency via the renin-angiotensin system. Sci Rep. 2015;5:11123. doi:10.1038/srep11123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Teesch LM, et al. Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Transl Psychiatry. 2015;5:e652. doi:10.1038/tp.2015.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pevsner-Fischer M, Blacher E, Tatirovsky E, Ben-Dov IZ, Elinav E. The gut microbiome and hypertension. Curr Opin Nephrol Hypertens. 2016; doi:10.1097/mnh.0000000000000293.

    Google Scholar 

  48. • Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–40. doi:10.1161/hypertensionaha.115.05315. Hypertensive humans and rats exhibit similar changes in gut microbiome, and antibiotic treatment prevents hypertension in rat model

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim S, Wang G, Lobaton G, Li E, Yang T, Raizada M. OS 05-10 the microbial metabolite, butyrate attenuates angiotensin II-induced hypertension and DYSBIOSIS. J Hypertens. 2016;34(Suppl 1):e60–1. doi:10.1097/01.hjh.0000500010.38755.52.

    Article  PubMed  Google Scholar 

  50. • Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol. 2015;201:157–8. doi:10.1016/j.ijcard.2015.07.078. Antibiotic administration can reverse resistant hypertension in a human

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stewart DC, Rubiano A, Santisteban MM, Shenoy V, Qi Y, Pepine CJ, et al. Hypertension-linked mechanical changes of rat gut. Acta Biomater. 2016;45:296–302. doi:10.1016/j.actbio.2016.08.045.

    Article  PubMed  Google Scholar 

  52. Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-gut-bone marrow axis: implications for hypertension and related therapeutics. Circ Res. 2016;118(8):1327–36. doi:10.1161/circresaha.116.307709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res. 2016; doi:10.1161/circresaha.116.309006.

    PubMed Central  Google Scholar 

  54. Seoane-Collazo P, Ferno J, Gonzalez F, Dieguez C, Leis R, Nogueiras R, et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine. 2015;50(2):276–91. doi:10.1007/s12020-015-0658-y.

    Article  CAS  PubMed  Google Scholar 

  55. Claflin KE, Grobe JL. Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep. 2015;17(5):38. doi:10.1007/s11906-015-0549-x.

    Article  PubMed  Google Scholar 

  56. Grobe JL, Buehrer BA, Hilzendeger AM, Liu X, Davis DR, Xu D, et al. Angiotensinergic signaling in the brain mediates metabolic effects of deoxycorticosterone (DOCA)-salt in C57 mice. Hypertension. 2011;57(3):600–7. doi:10.1161/hypertensionaha.110.165829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grobe JL, Grobe CL, Beltz TG, Westphal SG, Morgan DA, Xu D, et al. The brain renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance. Cell Metab. 2010;12(5):431–42. doi:10.1016/j.cmet.2010.09.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Donia MS, Fischbach MA. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science. 2015;349(6246):1254766. doi:10.1126/science.1254766.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RAR and CMLB were supported by research fellowships from the University of Iowa Carver College of Medicine (SUMR, MSRP), and SNA was supported by a predoctoral fellowship from the University of Iowa Graduate College. This project was supported by grants from the NIH (HL084207, HL098276, HL134850 to JLG, and AI108255 to JRK), NSF (MCB-1244021 to JRK), American Diabetes Association (1-14-BS-079 to JLG), American Heart Association (15SFRN23730000 to JLG), the University of Iowa Center for Hypertension Research (to JLG), the University of Iowa/Fraternal Order of Eagles’ Diabetes Research Center (to JLG & JRK), and the Departments of Pharmacology and Microbiology at the University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Justin L. Grobe or John R. Kirby.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Gut Microbiome, Sympathetic Nervous System, and Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riedl, R.A., Atkinson, S.N., Burnett, C.M.L. et al. The Gut Microbiome, Energy Homeostasis, and Implications for Hypertension. Curr Hypertens Rep 19, 27 (2017). https://doi.org/10.1007/s11906-017-0721-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0721-6

Keywords

Navigation