Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome

  • Sunil K. Panchal
  • Stephen Wanyonyi
  • Lindsay Brown
Hypertension and Metabolic Syndrome (J Sperati, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hypertension and Metabolic Syndrome


Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.


Micronutrients Chromium Selenium Vanadium Metabolic syndrome 


Compliance with Ethical Standards

Conflict of Interest

Drs. Panchal, Wanyonyi, and Brown declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Friend A, Craig L, Turner S. The prevalence of metabolic syndrome in children: a systematic review of the literature. Metab Syndr Relat Disord. 2013;11:71–80.PubMedCrossRefGoogle Scholar
  2. 2.
    Rochlani Y, Pothineni NV, Mehta JL. Metabolic syndrome: does it differ between women and men? Cardiovasc Drugs Ther. 2015;29:329–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Can U, Buyukinan M, Guzelant A, Ugur A, Karaibrahimoglu A, Yabanciun S. Investigation of the inflammatory biomarkers of metabolic syndrome in adolescents. J Pediatr Endocrinol Metab. 2016;29:1277–83.PubMedGoogle Scholar
  4. 4.
    O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16:1–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Ilich JZ, Kelly OJ, Kim Y, Spicer MT. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Hig Rada Toksikol. 2014;65:139–48.PubMedCrossRefGoogle Scholar
  6. 6.
    Barnes AS. Obesity and sedentary lifestyles: risk for cardiovascular disease in women. Tex Heart Inst J. 2012;39:224–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013;1281:141–59.PubMedCrossRefGoogle Scholar
  8. 8.
    Pitsavos C, Panagiotakos D, Weinem M, Stefanadis C. Diet, exercise and the metabolic syndrome. Rev Diabet Stud. 2006;3:118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Brown L, Poudyal H, Panchal SK. Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev. 2015;16:914–41.PubMedCrossRefGoogle Scholar
  10. 10.
    Shenkin A. Micronutrients in health and disease. Postgrad Med J. 2006;82:559–67.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wiernsperger N, Rapin J. Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr. 2010;2:70.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Houston M. Nutrition and nutraceutical supplements for the treatment of hypertension: part II. J Clin Hypertens (Greenwich). 2013;15:845–51.CrossRefGoogle Scholar
  13. 13.
    Houston MC. The role of nutrition, nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Altern Ther Health Med. 2013;19(Suppl 1):32–49.PubMedGoogle Scholar
  14. 14.
    Duntas LH. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009;41:443–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Omrani H, Golmohamadi S, Pasdar Y, Jasemi K, Almasi A. Effect of selenium supplementation on lipid profile in hemodialysis patients. J Renal Inj Prev. 2016;5:179–82.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sun M, Liu G, Wu Q. Speciation of organic and inorganic selenium in selenium-enriched rice by graphite furnace atomic absorption spectrometry after cloud point extraction. Food Chem. 2013;141:66–71.PubMedCrossRefGoogle Scholar
  17. 17.
    Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101:294–301.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang X, Wu L, Cao J, Hong X, Ye R, Chen W, et al. Magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction of selenium for speciation in foods and beverages. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33:1190–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Rayman MP, Infante HG, Sargent M. Food-chain selenium and human health: spotlight on speciation. Br J Nutr. 2008;100:238–53.PubMedGoogle Scholar
  20. 20.
    Tinggi U. Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett. 2003;137:103–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Barceloux DG, Barceloux D. Selenium. J Toxicol Clin Toxicol. 1999;37:145–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, et al. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomson CD. Selenium and iodine intakes and status in New Zealand and Australia. Br J Nutr. 2004;91:661–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012;21:320–6.PubMedGoogle Scholar
  25. 25.
    Yao Y, Pei F, Kang P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition. 2011;27:1095–100.PubMedCrossRefGoogle Scholar
  26. 26.
    Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol. 2013;78:155–64.CrossRefGoogle Scholar
  27. 27.
    Boldery R, Fielding G, Rafter T, Pascoe AL, Scalia GM. Nutritional deficiency of selenium secondary to weight loss (bariatric) surgery associated with life-threatening cardiomyopathy. Heart Lung Circ. 2007;16:123–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Weber KT, Weglicki WB, Simpson RU. Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium. Cardiovasc Res. 2009;81:500–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Iglesias P, Selgas R, Romero S, Diez JJ. Selenium and kidney disease. J Nephrol. 2013;26:266–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Lymbury RS, Marino MJ, Perkins AV. Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Mol Nutr Food Res. 2010;54:1436–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Alexanian I, Parissis J, Farmakis D, Pantziou C, Ikonomidis I, Paraskevaidis I, et al. Selenium contributes to myocardial injury and cardiac remodeling in heart failure. Int J Cardiol. 2014;176:272–3.PubMedCrossRefGoogle Scholar
  32. 32.
    MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, et al. Acute selenium toxicity associated with a dietary supplement. Arch Intern Med. 2010;170:256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Nuttall KL. Evaluating selenium poisoning. Ann Clin Lab Sci. 2006;36:409–20.PubMedGoogle Scholar
  34. 34.
    See KA, Lavercombe PS, Dillon J, Ginsberg R. Accidental death from acute selenium poisoning. Med J Aust. 2006;185:388–9.PubMedGoogle Scholar
  35. 35.
    Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett. 2014;230:295–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Li X, Zhang Y, Yuan Y, Sun Y, Qin Y, Deng Z, et al. Protective effects of selenium, vitamin E, and purple carrot anthocyanins on D-galactose-induced oxidative damage in blood, liver, heart and kidney rats. Biol Trace Elem Res. 2016;173:433–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Ezaki O. The insulin-like effects of selenate in rat adipocytes. J Biol Chem. 1990;265:1124–8.PubMedGoogle Scholar
  38. 38.
    Mueller AS, Pallauf J. Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem. 2006;17:548–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhou J, Huang K, Lei XG. Selenium and diabetes - evidence from animal studies. Free Radic Biol Med. 2013;65:1548–56.PubMedCrossRefGoogle Scholar
  40. 40.
    • Bahmani F, Kia M, Soleimani A, Mohammadi AA, Asemi Z. The effects of selenium supplementation on biomarkers of inflammation and oxidative stress in patients with diabetic nephropathy: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2016;116:1222–8. Characterisation of an effective selenium dose in patients with diabetic nephropathy PubMedCrossRefGoogle Scholar
  41. 41.
    Ogawa-Wong AN, Berry MJ, Seale LA. Selenium and metabolic disorders: an emphasis on type 2 diabetes risk. Nutrients. 2016;8:80.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wei J, Zeng C. Gong Q-y, Yang H-b, Li X-x, Lei G-h, et al. The association between dietary selenium intake and diabetes: a cross-sectional study among middle-aged and older adults Nutr J. 2015;14:18.PubMedGoogle Scholar
  43. 43.
    Steinbrenner H, Speckmann B, Pinto A, Sies H. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr. 2011;48:40–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang X, Zhang W, Chen H, Liao N, Wang Z, Zhang X, et al. High selenium impairs hepatic insulin sensitivity through opposite regulation of ROS. Toxicol Lett. 2014;224:16–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Bleys J, Navas-Acien A, Stranges S, Menke A, Miller 3rd ER, Guallar E. Serum selenium and serum lipids in US adults. Am J Clin Nutr. 2008;88:416–23.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Laclaustra M, Stranges S, Navas-Acien A, Ordovas JM, Guallar E. Serum selenium and serum lipids in US adults: National Health and nutrition examination survey (NHANES) 2003–2004. Atherosclerosis. 2010;210:643–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med. 2011;154:656–65.PubMedCrossRefGoogle Scholar
  48. 48.
    • Cold F, Winther KH, Pastor-Barriuso R, Rayman MP, Guallar E, Nybo M, et al. Randomised controlled trial of the effect of long-term selenium supplementation on plasma cholesterol in an elderly Danish population. Br J Nutr. 2015;114:1807–18. No differences in lipid concentrations with selenium supplementation PubMedCrossRefGoogle Scholar
  49. 49.
    Stranges S, Laclaustra M, Ji C, Cappuccio FP, Navas-Acien A, Ordovas JM, et al. Higher selenium status is associated with adverse blood lipid profile in British adults. J Nutr. 2010;140:81–7.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de Lorgeril M, Salen P. Selenium and antioxidant defenses as major mediators in the development of chronic heart failure. Heart Fail Rev. 2006;11:13–7.PubMedCrossRefGoogle Scholar
  51. 51.
    McKeag NA, McKinley MC, Woodside JV, Harbinson MT, McKeown PP. The role of micronutrients in heart failure. J Acad Nutr Diet. 2012;112:870–86.PubMedCrossRefGoogle Scholar
  52. 52.
    Saliba W, El Fakih R, Shaheen W. Heart failure secondary to selenium deficiency, reversible after supplementation. Int J Cardiol. 2010;141:e26–7.Google Scholar
  53. 53.
    Gunes S, Sahinturk V, Karasati P, Sahin IK, Ayhanci A. Cardioprotective effect of selenium against cyclophosphamide-induced cardiotoxicity in rats. Biol Trace Elem Res. 2016; doi: 10.1007/s12011-016-0858-1.PubMedGoogle Scholar
  54. 54.
    Chaabane M, Tir M, Hamdi S, Boudawara O, Jamoussi K, Boudawara T, et al. Improvement of heart redox states contributes to the beneficial effects of selenium against penconazole-induced cardiotoxicity in adult rats. Biol Trace Elem Res. 2016;169:261–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E. Serum selenium concentrations and hypertension in the US population. Circ Cardiovasc Qual Outcomes. 2009;2:369–76.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Berthold HK, Michalke B, Krone W, Guallar E, Gouni-Berthold I. Influence of serum selenium concentrations on hypertension: the lipid analytic cologne cross-sectional study. J Hypertens. 2012;30:1328–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Kuruppu D, Hendrie HC, Yang L, Gao S. Selenium levels and hypertension: a systematic review of the literature. Public Health Nutr. 2014;17:1342–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Byrne AR, Kosta L. Vanadium in foods and in human body fluids and tissues. Sci Total Environ. 1978;10:17–30.PubMedCrossRefGoogle Scholar
  59. 59.
    Gruzewska K, Michno A, Pawelczyk T, Bielarczyk H. Essentiality and toxicity of vanadium supplements in health and pathology. J Physiol Pharmacol. 2014;65:603–11.PubMedGoogle Scholar
  60. 60.
    French RJ, Jones PJ. Role of vanadium in nutrition: metabolism, essentiality and dietary considerations. Life Sci. 1993;52:339–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Barceloux DG, Barteloux D. Vanadium. J Toxicol Clin Toxicol. 1999;37:265–78.PubMedCrossRefGoogle Scholar
  62. 62.
    Sanna D, Micera G, Garribba E. Interaction of insulin-enhancing vanadium compounds with human serum holo-transferrin. Inorg Chem. 2013;52:11975–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Pessoa JC, Tomaz I. Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem. 2010;17:3701–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Sanna D, Serra M, Micera G, Garribba E. Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorg Chem. 2014;53:1449–64.PubMedCrossRefGoogle Scholar
  65. 65.
    Rehder D. The role of vanadium in biology. Metallomics. 2015;7:730–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Sanna D, Garribba E, Micera G. Interaction of VO2+ ion with human serum transferrin and albumin. J Inorg Biochem. 2009;103:648–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Crans DC, Bunch RL, Theisen LA. Interaction of trace levels of vanadium(IV) and vanadium(V) in biological systems. J Am Chem Soc. 1989;111:7597–607.CrossRefGoogle Scholar
  68. 68.
    Zampella G, Fantucci P, Pecoraro VL, De Gioia L. Insight into the catalytic mechanism of vanadium haloperoxidases. DFT investigation of vanadium cofactor reactivity. Inorg Chem. 2006;45:7133–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the βKlotho/FGFR1c receptor complex. Sci Transl Med. 2012;4:162ra153.PubMedCrossRefGoogle Scholar
  70. 70.
    Shechter Y, Goldwaser I, Mironchik M, Fridkin M, Gefel D. Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coordin Chem Rev. 2003;237:3–11.CrossRefGoogle Scholar
  71. 71.
    • Domingo JL, Gomez M. Vanadium compounds for the treatment of human diabetes mellitus: a scientific curiosity? A review of thirty years of research. Food Chem Toxicol. 2016;95:137–41. Good results in animal studies have not led to long-term improvement in human diabetics PubMedCrossRefGoogle Scholar
  72. 72.
    Ulbricht C, Chao W, Costa D, Culwell S, Eichelsdoerfer P, Flanagan K, et al. An evidence-based systematic review of vanadium by the natural standard research collaboration. J Diet Suppl. 2012;9:223–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Metelo AM, Perez-Carro R, Castro MMCA, Lopez-Larrubia P. VO(dmpp)2 normalizes pre-diabetic parameters as assessed by in vivo magnetic resonance imaging and spectroscopy. J Inorg Biochem. 2012;115:44–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Iglesias-Gonzalez T, Sanchez-Gonzalez C, Montes-Bayon M, Llopis-Gonzalez J, Sanz-Medel A. Absorption, transport and insulin-mimetic properties of bis(maltolato)oxovanadium (IV) in streptozotocin-induced hyperglycemic rats by integrated mass spectrometric techniques. Anal Bioanal Chem. 2012;402:277–85.PubMedCrossRefGoogle Scholar
  75. 75.
    Cam MC, Rodrigues B, McNeill JH. Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes. Eur J Endocrinol. 1999;141:546–54.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsiani E, Bogdanovic E, Sorisky A, Nagy L, Fantus IG. Tyrosine phosphatase inhibitors, vanadate and pervanadate, stimulate glucose transport and GLUT translocation in muscle cells by a mechanism independent of phosphatidylinositol 3-kinase and protein kinase C. Diabetes. 1998;47:1676–86.PubMedCrossRefGoogle Scholar
  77. 77.
    Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L. Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995;95:2501–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Boden G, Chen X, Ruiz J, van Rossum GD, Turco S. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1996;45:1130–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR. Metabolic effects of sodium metavanadate in humans with insulin-dependent and noninsulin-dependent diabetes mellitus in vivo and in vitro studies. J Clin Endocrinol Metab. 1995;80:3311–20.PubMedGoogle Scholar
  80. 80.
    Shaver A, Ng JB, Hall DA, Posner BI. The chemistry of peroxovanadium compounds relevant to insulin mimesis. Mol Cell Biochem. 1995;153:5–15.PubMedCrossRefGoogle Scholar
  81. 81.
    Thompson KH. Vanadium and diabetes. Biofactors. 1999;10:43–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez-Madrueno JF, Medina-Santillan R. Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab. 2008;53:195–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Jiang P, Dong Z, Ma B, Ni Z, Duan H, Li X, et al. Effect of vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Appl Biochem Biotechnol. 2016;180:841-51.Google Scholar
  84. 84.
    Park SJ, Youn CK, Hyun JW, You HJ. The anti-obesity effect of natural vanadium-containing Jeju ground water. Biol Trace Elem Res. 2013;151:294–300.PubMedCrossRefGoogle Scholar
  85. 85.
    Dean NS, Mokry LM, Bond MR, O’Connor CJ, Carrano CJ. [Tris(pyrazolyl)borato]vanadium(III) phosphates: structural motifs from the extended solid and models for the interaction with DNA. Inorg Chem. 1996;35:2818–25.CrossRefGoogle Scholar
  86. 86.
    Crans DC, Tarlton ML, McLauchlan CC. Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors Eur J Inorg Chem. 2014;2014:4450–68.Google Scholar
  87. 87.
    Garcia-Vicente S, Yraola F, Marti L, Gonzalez-Munoz E, Garcia-Barrado MJ, Canto C, et al. Oral insulin-mimetic compounds that act independently of insulin. Diabetes. 2007;56:486–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, et al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem. 1997;272:843–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Stankiewicz PJ, Gresser MJ, Tracey AS, Hass LF. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate. Biochemistry. 1987;26:1264–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Brichard SM, Henquin JC. The role of vanadium in the management of diabetes. Trends Pharmacol Sci. 1995;16:265–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Ścibior A. Vanadium (V) and magnesium (Mg) - In vivo interactions: a review. Chem Biol Interact. 2016;258:214–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Ozaki H, Urakawa N. Effects of vanadate on mechanical responses and Na-K pump in vascular smooth muscle. Eur J Pharmacol. 1980;68:339–47.PubMedCrossRefGoogle Scholar
  93. 93.
    Shimada T, Shimamura K, Sunano S. Effects of sodium vanadate on various types of vascular smooth muscles. Blood Vessels. 1986;23:113–24.PubMedGoogle Scholar
  94. 94.
    Di Salvo J, Semenchuk LA, Lauer J. Vanadate-induced contraction of smooth muscle and enhanced protein tyrosine phosphorylation. Arch Biochem Biophys. 1993;304:386–91.PubMedCrossRefGoogle Scholar
  95. 95.
    Srivastava AK, St-Louis J. Smooth muscle contractility and protein tyrosine phosphorylation. Mol Cell Biochem. 1997;176:47–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Bhuiyan MS, Fukunaga K. Cardioprotection by vanadium compounds targeting Akt-mediated signaling. J Pharmacol Sci. 2009;110:1–13.PubMedCrossRefGoogle Scholar
  97. 97.
    Bhuiyan MS, Shioda N, Fukunaga K. Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab. 2007;293:E1606–14.PubMedCrossRefGoogle Scholar
  98. 98.
    Bhuiyan MS, Shioda N, Shibuya M, Iwabuchi Y, Fukunaga K. Activation of endothelial nitric oxide synthase by a vanadium compound ameliorates pressure overload-induced cardiac injury in ovariectomized rats. Hypertension. 2009;53:57–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Shi SJ, Preuss HG, Abernethy DR, Li X, Jarrell ST, Andrawis NS. Elevated blood pressure in spontaneously hypertensive rats consuming a high sucrose diet is associated with elevated angiotensin II and is reversed by vanadium. J Hypertens. 1997;15:857–62.PubMedCrossRefGoogle Scholar
  100. 100.
    Cong XQ, Piao MH, Li Y, Xie L, Liu Y. Bis(maltolato)oxovanadium(IV) (BMOV) attenuates apoptosis in high glucose-treated cardiac cells and diabetic rat hearts by regulating the unfolded protein responses (UPRs). Biol Trace Elem Res. 2016;173:390–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Swarup G, Cohen S, Garbers DL. Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun. 1982;107:1104–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Shioda N, Ishigami T, Han F, Moriguchi S, Shibuya M, Iwabuchi Y, et al. Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience. 2007;148:221–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Vijaya S, Crane FL, Ramasarma T. A vanadate-stimulated NADH oxidase in erythrocyte membrane generates hydrogen peroxide. Mol Cell Biochem. 1984;62:175–85.PubMedCrossRefGoogle Scholar
  104. 104.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Fukunaga K, Kawano T. Akt is a molecular target for signal transduction therapy in brain ischemic insult. J Pharmacol Sci. 2003;92:317–27.PubMedCrossRefGoogle Scholar
  106. 106.
    Matsui T, Li L, del Monte F, Fukui Y, Franke TF, Hajjar RJ, et al. Adenoviral gene transfer of activated phosphatidylinositol 3’-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation. 1999;100:2373–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Al-Awwadi N, Bichon-Laurent F, Dimo T, Michel A, Portet K, Cros G, et al. Differential effects of sodium tungstate and vanadyl sulfate on vascular responsiveness to vasoactive agents and insulin sensitivity in fructose-fed rats. Can J Physiol Pharmacol. 2004;82:911–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Willsky GR, Chi LH, Godzala 3rd M, Kostyniak PJ, Smee JJ, Trujillo AM, et al. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev. 2011;255:2258–69.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Willsky GR, Halvorsen K, Godzala 3rd ME, Chi LH, Most MJ, Kaszynski P, et al. Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics. 2013;5:1491–502.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Wiegmann TB, Day HD, Patak RV. Intestinal absorption and secretion of radioactive vanadium (48VO−3) in rats and effect of Al(OH)3. J Toxicol Environ Health. 1982;10:233–45.PubMedCrossRefGoogle Scholar
  111. 111.
    Parker RD, Sharma RP. Accumulation and depletion of vanadium in selected tissues of rats treated with vanadyl sulfate and sodium orthovanadate. J Environ Pathol Toxicol. 1978;2:235–45.PubMedGoogle Scholar
  112. 112.
    Ivancsits S, Pilger A, Diem E, Schaffer A, Rudiger HW. Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res. 2002;519:25–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Srivastava AK. Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem. 2000;206:177–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Gil J, Miralpeix M, Carreras J, Bartrons R. Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem. 1988;263:1868–71.PubMedGoogle Scholar
  115. 115.
    Blondel O, Bailbe D, Portha B. In vivo insulin resistance in streptozotocin-diabetic rats-evidence for reversal following oral vanadate treatment. Diabetologia. 1989;32:185–90.PubMedCrossRefGoogle Scholar
  116. 116.
    Sakurai H, Tsuchiya K, Nukatsuka M, Sofue M, Kawada J. Insulin-like effect of vanadyl ion on streptozotocin-induced diabetic rats. J Endocrinol. 1990;126:451–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Ganguli S, Reuland DJ, Franklin LA, Deakins DD, Johnston WJ, Pasha A. Effects of maternal vanadate treatment on fetal development. Life Sci. 1994;55:1267–76.PubMedCrossRefGoogle Scholar
  118. 118.
    Ganguli S, Reuland DJ, Franklin LA, Tucker M. Effect of vanadate on reproductive efficiency in normal and streptozocin-treated diabetic rats. Metabolism. 1994;43:1384–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Thompson KH, Orvig C. Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem. 2006;100:1925–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Boulassel B, Sadeg N, Roussel O, Perrin M, Belhadj-Tahar H. Fatal poisoning by vanadium. Forensic Sci Int. 2011;206:e79–81.PubMedCrossRefGoogle Scholar
  121. 121.
    Lewicki S, Zdanowski R, Krzyzowska M, Lewicka A, Debski B, Niemcewicz M, et al. The role of chromium III in the organism and its possible use in diabetes and obesity treatment. Ann Agric Environ Med. 2014;21:331–5.PubMedCrossRefGoogle Scholar
  122. 122.
    Vincent JB. Chromium: is it essential, pharmacologically relevant, or toxic? Met Ions Life Sci. 2013;13:171–98.PubMedCrossRefGoogle Scholar
  123. 123.
    EFSA Panel on Dietetic Products N. Allergies. Scientific opinion on dietary reference values for chromium. EFSA J. 2014;12:3845.CrossRefGoogle Scholar
  124. 124.
    Tinkov AA, Popova EV, Polyakova VS, Kwan OV, Skalny AV, Nikonorov AA. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol. 2015;29:176–81.PubMedCrossRefGoogle Scholar
  125. 125.
    Barceloux DG, Barceloux D. Chromium. J Toxicol Clin Toxicol. 1999;37:173–94.PubMedCrossRefGoogle Scholar
  126. 126.
    González-Villalva A, Colín-Barenque L, Bizarro-Nevares P, Rojas-Lemus M, Rodríguez-Lara V, García-Pelaez I, et al. Pollution by metals: is there a relationship in glycemic control? Environ Toxicol Pharmacol. 2016;46:337–43.PubMedCrossRefGoogle Scholar
  127. 127.
    Chen Y, Watson HM, Gao J, Sinha SH, Cassady CJ, Vincent JB. Characterization of the organic component of low-molecular-weight chromium-binding substance and its binding of chromium. J Nutr. 2011;141:1225–32.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zhang Q, Sun X, Xiao X, Zheng J, Li M, Yu M, et al. Maternal chromium restriction leads to glucose metabolism imbalance in mice offspring through insulin signaling and Wnt signaling pathways. Int J Mol Sci. 2016;17:1767.PubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wu XY, Li F, Xu WD, Zhao JL, Zhao T, Liang LH, et al. Anti-hyperglycemic activity of chromium(III) malate complex in alloxan-induced diabetic rats. Biol Trace Elem Res. 2011;143:1031–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Komorowski JR, Tuzcu M, Sahin N, Juturu V, Orhan C, Ulas M, et al. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol Trace Elem Res. 2012;149:50–6.PubMedCrossRefGoogle Scholar
  131. 131.
    Wang ZQ, Zhang XH, Russell JC, Hulver M, Cefalu WT. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. J Nutr. 2006;136:415–20.PubMedGoogle Scholar
  132. 132.
    Racek J, Trefil L, Rajdl D, Mudrova V, Hunter D, Senft V. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res. 2006;109:215–30.PubMedCrossRefGoogle Scholar
  133. 133.
    Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011;25:149–53.PubMedCrossRefGoogle Scholar
  134. 134.
    Cefalu WT, Rood J, Pinsonat P, Qin J, Sereda O, Levitan L, et al. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. Metabolism. 2010;59:755–62.PubMedCrossRefGoogle Scholar
  135. 135.
    Jain SK, Kahlon G, Morehead L, Dhawan R, Lieblong B, Stapleton T, et al. Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: randomized, double-blind, placebo-controlled study. Mol Nutr Food Res. 2012;56:1333–41.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    • Paiva AN, Lima JG, Medeiros AC, Figueiredo HA, Andrade RL, Ururahy MA, et al. Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: a randomized clinical study. J Trace Elem Med Biol. 2015;32:66–72. Four month trial in poorly controlled type 2 diabetics improved glycaemic control PubMedCrossRefGoogle Scholar
  137. 137.
    Tinkov AA, Gatiatulina ER, Popova EV, Polyakova VS, Skalnaya AA, Agletdinov EF, et al. Early high-fat feeding induces alteration of trace element content in tissues of juvenile male Wistar rats. Biol Trace Elem Res. 2017;175:367–74.Google Scholar
  138. 138.
    Tuzcu M, Sahin N, Orhan C, Agca CA, Akdemir F, Tuzcu Z, et al. Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond). 2011;8:28.Google Scholar
  139. 139.
    Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, et al. Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009;7:143–50.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    • Tian H, Guo X, Wang X, He Z, Sun R, Ge S, et al. Chromium picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev. 2013;11:Cd010063. no current, reliable evidence to prove efficacy and safety of chromium supplements in overweight or obese adults Google Scholar
  141. 141.
    Preuss HG, Echard B, Bagchi D, Perricone NV. Comparing effects of carbohydrate (CHO) blockers and trivalent chromium on CHO-induced insulin resistance and elevated blood pressure in rats. J Am Coll Nutr. 2013;32:58–65.PubMedCrossRefGoogle Scholar
  142. 142.
    • Yanni AE, Stamataki NS, Konstantopoulos P, Stoupaki M, Abeliatis A, Nikolakea I, et al. Controlling type-2 diabetes by inclusion of Cr-enriched yeast bread in the daily dietary pattern: a randomized clinical trial. Eur J Nutr. 2016; doi: 10.1007/s00394-016-1315-9. Bread made with chromium-enriched yeast improved glycaemic control in type 2 diabetics Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sunil K. Panchal
    • 1
  • Stephen Wanyonyi
    • 1
  • Lindsay Brown
    • 1
    • 2
  1. 1.Institute for Agriculture and the EnvironmentUniversity of Southern QueenslandToowoombaAustralia
  2. 2.School of Health and WellbeingUniversity of Southern QueenslandToowoombaAustralia

Personalised recommendations