Skip to main content

Advertisement

Log in

Device-Based Therapy for Drug-Resistant Hypertension: An Update

  • Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Drug-resistant hypertension (RH) remains a significant and common cardiovascular risk despite the availability of multiple potent antihypertensive medications. Uncontrolled resistant hypertension contributes substantially to excessive cardiovascular and renal morbidity and mortality. Clinical and experimental evidence suggest that sympathetic nervous system over-activity is the main culprit for the development and maintenance of drug-resistant hypertension. Both medical and interventional strategies, targeting the sympathetic over-activation, have been designed in patients with hypertension over the past few decades. Minimally invasive, catheter-based, renal sympathetic denervation (RDN) and carotid baroreceptor activation therapy (BAT) have been extensively evaluated in patients with RH in clinical trials. Current trial outcomes, though at times impressive, have been mostly uncontrolled trials in need of validation. Device-based therapy for drug-resistant hypertension has the potential to provide alternative treatment options to certain groups of patients who are refractory or intolerant to current antihypertensive medications. However, more research is needed to prove its efficacy in both animal models and in humans. In this article, we will review the evidence from recent renal denervation, carotid baroreceptor stimulation therapy, and newly emerged central arteriovenous anastomosis trials to pinpoint the weak links, and speculate on potential alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.

    Article  PubMed  Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.

    Article  PubMed  Google Scholar 

  3. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.

    Article  CAS  PubMed  Google Scholar 

  4. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    Article  PubMed  Google Scholar 

  5. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22.

    PubMed  Google Scholar 

  6. Esler M. Sympathetic nervous system moves toward center stage in cardiovascular medicine: from Thomas Willis to resistant hypertension. Hypertension. 2014;63(3):e25–32.

    Article  PubMed  Google Scholar 

  7. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens. 2004;17(3):217–22.

    Article  PubMed  Google Scholar 

  8. Evelyn KA, Alexander F, Cooper SR. Effect of sympathectomy on blood pressure in hypertension; a review of 13 years’ experience of the Massachusetts General Hospital. J Am Med Assoc. 1949;140(7):592–602.

    Article  CAS  PubMed  Google Scholar 

  9. Evelyn KA. The role of surgery in the modern treatment of hypertension. Med Clin North Am. 1961;45:453–66.

    Article  CAS  PubMed  Google Scholar 

  10. Sen SK. Some observations on decapsulation and denervation of the kidney. Br J Urol. 1936;8(4):319–28.

    Article  Google Scholar 

  11. VA cooperative group. Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood pressures averaging 115 through 129 mm Hg. JAMA. 1967;202(11):1028–34.

    Article  Google Scholar 

  12. Ahmed MI, Calhoun DA. Resistant hypertension: bad and getting worse. Hypertension. 2011;57(6):1045–6.

    Article  CAS  PubMed  Google Scholar 

  13. De Nicola L, Gabbai FB, Agarwal R, Chiodini P, Borrelli S, Bellizzi V, et al. Prevalence and prognostic role of resistant hypertension in chronic kidney disease patients. J Am Coll Cardiol. 2013;61(24):2461–7.

    Article  PubMed  Google Scholar 

  14. Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension. 2011;57(6):1076–80.

    Article  CAS  PubMed  Google Scholar 

  15. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    Article  CAS  PubMed  Google Scholar 

  16. Judd E, Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. J Hum Hypertens. 2014;28(8):463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.

    Article  PubMed  Google Scholar 

  18. White WB, Turner JR, Sica DA, Bisognano JD, Calhoun DA, Townsend RR, et al. Detection, evaluation, and treatment of severe and resistant hypertension: proceedings from an American Society of Hypertension Interactive forum held in Bethesda, MD, U.S.A., October 10th 2013. J Am Soc Hypertens. 2014;8(10):743–57.

    Article  PubMed  Google Scholar 

  19. Oliveras A, de la Sierra A. Resistant hypertension: patient characteristics, risk factors, co-morbidities and outcomes. J Hum Hypertens. 2014;28(4):213–7.

    Article  CAS  PubMed  Google Scholar 

  20. Muntner P, Davis BR, Cushman WC, Bangalore S, Calhoun DA, Pressel SL, et al. Treatment-resistant hypertension and the incidence of cardiovascular disease and end-stage renal disease: results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2014;64(5):1012–21.

    Article  CAS  PubMed  Google Scholar 

  21. Sander GE, Giles TD. Resistant hypertension: concepts and approach to management. Curr Hypertens Rep. 2011;13(5):347–55.

    Article  PubMed  Google Scholar 

  22. Pessina AC, Bisogni V, Fassina A, Rossi GP. Munchausen syndrome: a novel cause of drug-resistant hypertension. J Hypertens. 2013;31(7):1473–6.

    Article  CAS  PubMed  Google Scholar 

  23. Pavenstadt H. Renal denervation in a patient with dizziness, attacks of sweating, weight loss and resistant hypertension. Dtsch Med Wochenschr. 2013;138(48):2456–8.

    Article  CAS  PubMed  Google Scholar 

  24. Vongpatanasin W. Resistant hypertension: a review of diagnosis and management. JAMA. 2014;311(21):2216–24.

    Article  PubMed  Google Scholar 

  25. Weitzman D, Chodick G, Shalev V, Grossman C, Grossman E. Prevalence and factors associated with resistant hypertension in a large health maintenance organization in Israel. Hypertension. 2014;64(3):501–7.

    Article  CAS  PubMed  Google Scholar 

  26. Bertog SC, Sobotka PA, Sievert H. Renal denervation for hypertension. JACC Cardiovasc Interv. 2012;5(3):249–58.

    Article  PubMed  Google Scholar 

  27. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, et al. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43(2):169–75.

    Article  CAS  PubMed  Google Scholar 

  28. Grassi G, Bertoli S, Seravalle G. Sympathetic nervous system: role in hypertension and in chronic kidney disease. Curr Opin Nephrol Hypertens. 2012;21:46–51.

    Article  CAS  PubMed  Google Scholar 

  29. Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177(3):1020–5.

    Article  PubMed  Google Scholar 

  30. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25(4 Pt 2):878–82.

    Article  CAS  PubMed  Google Scholar 

  31. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. The first-in-human feasibility, safety, and proof-of-concept study of catheter-based renal sympathetic denervation for drug-resistant hypertension.

    Article  PubMed  Google Scholar 

  32. Symplicity HTN-2 Investigators. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9. The first randomized, controlled, and unblinded trial for comparison of medical treatment and renal sympathetic denervation in patients with resistant hypertension.

    Article  Google Scholar 

  33. Martin EA, Victor RG. Premise, promise, and potential limitations of invasive devices to treat hypertension. Curr Cardiol Rep. 2011;13(1):86–92.

    Article  PubMed  Google Scholar 

  34. Doumas M, Faselis C, Kokkinos P, Anyfanti P, Tsioufis C, Papademetriou V. Carotid baroreceptor stimulation: a promising approach for the management of resistant hypertension and heart failure. Curr Vasc Pharmacol. 2014;12(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  35. Atherton DS, Deep NL, Mendelsohn FO. Micro-anatomy of the renal sympathetic nervous system: a human postmortem histologic study. Clin Anat. 2012;25(5):628–33.

    Article  PubMed  Google Scholar 

  36. Kandzari DE, Bhatt DL, Sobotka PA, O’Neill WW, Esler M, Flack JM, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–35.

    Article  PubMed  Google Scholar 

  37. Papademetriou V, Rashidi AA, Tsioufis C, Doumas M. Renal nerve ablation for resistant hypertension: how did we get here, present status, and future directions. Circulation. 2014;129(13):1440–51.

    Article  PubMed  Google Scholar 

  38. Esler M. Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 2015;25(2):107–15.

    Article  PubMed  Google Scholar 

  39. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(4):219–27.

    Article  PubMed  Google Scholar 

  40. Papademetriou V, Tsioufis C, Doumas M. Renal denervation and Symplicity HTN-3: “Dubium sapientiae initium” (doubt is the beginning of wisdom). Circ Res. 2014;115(2):211–4.

    Article  CAS  PubMed  Google Scholar 

  41. Esler MD, Krum H, Schlaich M, Schmieder RE, Bohm M, Sobotka PA, et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976–82.

    Article  CAS  PubMed  Google Scholar 

  42. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicenter, open-label, randomised controlled trial. Lancet. 2015;385:1957–65.

    Article  PubMed  Google Scholar 

  43. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9.

    Article  PubMed  Google Scholar 

  44. Doumas M, Anyfanti P, Bakris G. Should ambulatory blood pressure monitoring be mandatory for future studies in resistant hypertension: a perspective. J Hypertens. 2012;30(5):874–6.

    Article  CAS  PubMed  Google Scholar 

  45. Mancia G, Parati G. Office compared with ambulatory blood pressure in assessing response to antihypertensive treatment: a meta-analysis. J Hypertens. 2004;22(3):435–45.

    Article  CAS  PubMed  Google Scholar 

  46. Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34(28):2132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Papademetriou V, Tsioufis CP, Sinhal A, Chew DP, Meredith IT, Malaiapan Y, et al. Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system. Hypertension. 2014;64(3):565–72.

    Article  CAS  PubMed  Google Scholar 

  48. Witkowski A, Prejbisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65.

    Article  CAS  PubMed  Google Scholar 

  49. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23:1250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mahfoud F, Ukena C, Schmieder RE, Cremers B, Rump LC, Vonend O, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128(2):132–40.

    Article  CAS  PubMed  Google Scholar 

  51. Ott C, Mahfoud F, Schmid A, Ditting T, Sobotka PA, Veelken R, et al. Renal denervation in moderate treatment-resistant hypertension. J Am Coll Cardiol. 2013;62(20):1880–6.

    Article  PubMed  Google Scholar 

  52. Lacourciere Y, Crikelair N, Glazer RD, Yen J, Calhoun DA. 24-Hour ambulatory blood pressure control with triple-therapy amlodipine, valsartan and hydrochlorothiazide in patients with moderate to severe hypertension. J Hum Hypertens. 2011;25(10):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mahfoud F, Cremers B, Janker J, Link B, Vonend O, Ukena C, et al. Renal hemodynamics and renal function after catheter-based renal sympathetic denervation in patients with resistant hypertension. Hypertension. 2012;60(2):419–24.

    Article  CAS  PubMed  Google Scholar 

  54. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60(6):1485–90.

    Article  CAS  PubMed  Google Scholar 

  55. Fadl Elmula FE, Hoffmann P, Larstorp AC, Fossum E, Brekke M, Kjeldsen SE, et al. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63(5):991–9.

    Article  CAS  PubMed  Google Scholar 

  56. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(2):1391–401. The first randomized, single-blinded, sham-controlled clinical trial of renal sympathetic denervation in resistant hypertension.

    Google Scholar 

  57. Epstein M, de Marchena E. Is the failure of SYMPLICITY HTN-3 trial to meet its efficacy endpoint the “end of the road” for renal denervation? J Am Soc Hypertens. 2015;9(2):140–9.

    Article  PubMed  Google Scholar 

  58. Sievert H, Schofer J, Ormiston J, Hoppe UC, Meredith IT, Walters DL, et al. Renal denervation with a percutaneous bipolar radiofrequency balloon catheter in patients with resistant hypertension: 6-month results from the REDUCE-HTN clinical study. EuroIntervention. 2015;10(10):1213–20.

    Article  PubMed  Google Scholar 

  59. Verheye S, Ormiston J, Bergmann MW, Sievert H, Schwindt A, Werner N, et al. Twelve-month results of the Rapid Renal Sympathetic Denervation for Resistant Hypertension Using the OneShotTM Ablation System (RAPID) study. EuroIntervention. 2015;10(10):1221–9.

    Article  PubMed  Google Scholar 

  60. Honton B, Pathak A, Sauguet A, Fajadet J. First report of transradial renal denervation with the dedicated radiofrequency Iberis catheter. EuroIntervention. 2014;9(12):1385–8.

    Article  PubMed  Google Scholar 

  61. Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention. 2012;8(1):57–61.

    Article  PubMed  Google Scholar 

  62. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.

    Article  PubMed  Google Scholar 

  63. Fischell TA, Fischell DR, Ghazarossian VE, Vega F, Ebner A. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc Revasc Med. 2015;16(4):221–7. The first clinical study of next-generation renal denervation with alcohol perivascular infusion-induced renal denervation using a novel drug infusion catheter.

    Article  PubMed  Google Scholar 

  64. Booth LC, Nishi EE, Yao ST, Ramchandra R, Lambert GW, Schlaich MP, et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension. 2015;65(2):393–400.

    Article  CAS  PubMed  Google Scholar 

  65. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Bohm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9.

    Article  PubMed  Google Scholar 

  66. Lambert GW, Hering D, Esler MD, Marusic P, Lambert EA, Tanamas SK, et al. Health-related quality of life after renal denervation in patients with treatment-resistant hypertension. Hypertension. 2012;60(6):1479–84.

    Article  CAS  PubMed  Google Scholar 

  67. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6.

    Article  CAS  PubMed  Google Scholar 

  68. Schlaich MP, Hering D, Sobotka P, Krum H, Lambert GW, Lambert E, et al. Effects of renal denervation on sympathetic activation, blood pressure, and glucose metabolism in patients with resistant hypertension. Front Physiol. 2012;3:10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sobotka PA, Krum H, Bohm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14(3):285–92.

    Article  PubMed  Google Scholar 

  70. Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens. 2014;8(8):593–8.

    Article  PubMed  Google Scholar 

  71. Redberg RF. Sham controls in medical device trials. N Engl J Med. 2014;371(10):892–3.

    Article  CAS  PubMed  Google Scholar 

  72. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26.

    Article  CAS  PubMed  Google Scholar 

  73. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8.

    Article  PubMed  Google Scholar 

  74. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73. The first double-blind, randomized, placebo-controlled trial of baroreflex activation therapy in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  75. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.

    Article  PubMed  Google Scholar 

  76. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6.

    Article  PubMed  Google Scholar 

  77. Wallbach M, Lehnig LY, Schroer C, Lüders S, Böhning E, Müller GA, et al. Hypertension. 2016;67(3):701–9.

    Article  CAS  PubMed  Google Scholar 

  78. Alnima T, de Leeuw PW, Kroon AA. Baroreflex activation therapy for the treatment of drug-resistant hypertension: new developments. Cardiol Res Pract. 2012;2012:587194.

    PubMed  PubMed Central  Google Scholar 

  79. Korsheed S, Eldehni MT, John SG, Fluck RJ, McIntyre CW. Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol Dial Transplant. 2011;26(10):3296–302.

    Article  PubMed  Google Scholar 

  80. Faul J, Schoors D, Brouwers S, Scott B, Jerrentrup A, Galvin J, et al. Creation of an iliac arteriovenous shunt lowers blood pressure in chronic obstructive pulmonary disease patients with hypertension. J Vasc Surg. 2014;59(4):1078–83.

    Article  PubMed  Google Scholar 

  81. Brouwers SDE, Galvin A, Dupont A, Schoors D. Creation of an iliofemoral arteriovenous fistula in patients with severe hypertension: a prospective open label multi-center pilot study. J Hypertens. 2013; Supplement(Oral Session 7C.02):e103.

    Google Scholar 

  82. Lobo MD, Sobotka PA, Stanton A, Cockcroft JR, Sulke N, Dolan E, et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385:1634–41. The first open-label, randomized controlled trial of the central arteriovenous anastomosis for the treatment of patients with resistant hypertension.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios Papademetriou.

Ethics declarations

Conflict of Interest

Drs. Li, Nader, Arunagiri, and Papademetriou declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Device-Based Approaches for Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Nader, M., Arunagiri, K. et al. Device-Based Therapy for Drug-Resistant Hypertension: An Update. Curr Hypertens Rep 18, 64 (2016). https://doi.org/10.1007/s11906-016-0671-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0671-4

Keywords

Navigation