Skip to main content

Hypertension, Blood Pressure Variability, and Target Organ Lesion

Abstract

Hypertensive patients have a higher risk of developing health complications, particularly cardiovascular (CV) events, than individuals with normal blood pressure (BP). Severity of complications depends on the magnitude of BP elevation and other CV risk factors associated with the target organ damage. Therefore, BP control and management of organ damage may contribute to reduce this risk. BP variability (BPV) has been considered a physiological marker of autonomic nervous system control and may be implicated in increased CV risk in hypertension. This review will present some evidence relating BPV and target organ damage in hypertension in clinical and experimental settings.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. doi:10.1001/jama.2013.284427.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55(4):1049–57. doi:10.1161/HYPERTENSIONAHA.109.140798.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14(5):421–31. doi:10.1007/s11906-012-0290-7.

    PubMed  Article  Google Scholar 

  5. 5.

    Dolan E, O’Brien E. Is it daily, monthly, or yearly blood pressure variability that enhances cardiovascular risk? Curr Cardiol Rep. 2015;17(11):93. doi:10.1007/s11886-015-0649-x.

    PubMed  Article  Google Scholar 

  6. 6.

    Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10(3):143–55. doi:10.1038/nrcardio.2013.1.

    PubMed  Article  Google Scholar 

  7. 7.

    Dolan E, Stanton AV, Thom S, Caulfield M, Atkins N, McInnes G, et al. Ambulatory blood pressure monitoring predicts cardiovascular events in treated hypertensive patients—an Anglo-Scandinavian cardiac outcomes trial substudy. J Hypertens. 2009;27(4):876–85. doi:10.1097/HJH.0b013e328322cd62.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Diaz KM, Tanner RM, Falzon L, Levitan EB, Reynolds K, Shimbo D, et al. Visit-to-visit variability of blood pressure and cardiovascular disease and all-cause mortality: a systematic review and meta-analysis. Hypertension. 2014;64(5):965–82. doi:10.1161/HYPERTENSIONAHA.114.03903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Su DF, Miao CY. Reduction of blood pressure variability: a new strategy for the treatment of hypertension. Trends Pharmacol Sci. 2005;26(8):388–90. doi:10.1016/j.tips.2005.06.003.

    CAS  PubMed  Article  Google Scholar 

  10. 10.••

    Grassi G, Bombelli M, Brambilla G, Trevano FQ, Dell’oro R, Mancia G. Total cardiovascular risk, blood pressure variability and adrenergic overdrive in hypertension: evidence, mechanisms and clinical implications. Curr Hypertens Rep. 2012;14(4):333–8. doi:10.1007/s11906-012-0273-8. The authors performed a extense review of the mechanisms linking total cardiovascular risk, blood pressure variability and adrenergic overdrive in hypertension. The great scientific contribution of the group in this area must be highlighted.

    PubMed  Article  Google Scholar 

  11. 11.

    Nagai M, Hoshide S, Dote K, Kario K. Visit-to-visit blood pressure variability and dementia. Geriatr Gerontol Int. 2015;15 Suppl 1:26–33. doi:10.1111/ggi.12660.

    PubMed  Article  Google Scholar 

  12. 12.

    Fagard RH, Van Den Broeke C, De Cort P. Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice. J Hum Hypertens. 2005;19(10):801–7. doi:10.1038/sj.jhh.1001903.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Juhanoja EP, Niiranen TJ, Johansson JK, Puukka PJ, Jula AM. Agreement between ambulatory, home, and office blood pressure variability. J Hypertens. 2016;34(1):61–7. doi:10.1097/HJH.0000000000000772.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63(4):790–6. doi:10.1161/HYPERTENSIONAHA.113.02681.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M, et al. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med. 1992;152(9):1855–60.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Mancia G, Zanchetti A, Agabiti-Rosei E, Benemio G, De Cesaris R, Fogari R, et al. Ambulatory blood pressure is superior to clinic blood pressure in predicting treatment-induced regression of left ventricular hypertrophy. SAMPLE Study Group. Study on Ambulatory Monitoring of Blood Pressure and Lisinopril Evaluation. Circulation. 1997;95(6):1464–70.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Madden JM, O’Flynn AM, Dolan E, Fitzgerald AP, Kearney PM. Short-term blood pressure variability over 24 h and target organ damage in middle-aged men and women. J Hum Hypertens. 2015;29(12):719–25. doi:10.1038/jhh.2015.18.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Madden JM, O’Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2015. doi:10.1038/hr.2015.126.

    Google Scholar 

  19. 19.

    Sega R, Facchetti R, Bombelli M, Cesana G, Corrao G, Grassi G, et al. Prognostic value of ambulatory and home blood pressures compared with office blood pressure in the general population: follow-up results from the Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study. Circulation. 2005;111(14):1777–83. doi:10.1161/01.CIR.0000160923.04524.5B.

    PubMed  Article  Google Scholar 

  20. 20.

    O’Brien E, Parati G, Stergiou G. Ambulatory blood pressure measurement: what is the international consensus? Hypertension. 2013;62(6):988–94. doi:10.1161/HYPERTENSIONAHA.113.02148.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Staessen JA, Thijs L, Fagard R, O’Brien ET, Clement D, de Leeuw PW, et al. Predicting cardiovascular risk using conventional vs ambulatory blood pressure in older patients with systolic hypertension. Systolic Hypertension in Europe Trial Investigators. JAMA. 1999;282(6):539–46.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61. doi:10.1161/HYPERTENSIONAHA.107.100727.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15. doi:10.1056/NEJMoa022273.

    PubMed  Article  Google Scholar 

  24. 24.

    Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10. doi:10.1161/HYPERTENSIONAHA.109.133900.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–54. doi:10.1161/01.HYP.0000198541.12640.0f.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Kario K. Prognosis in relation to blood pressure variability: pro side of the argument. Hypertension. 2015;65(6):1163–9. doi:10.1161/HYPERTENSIONAHA.115.04800. discussion 9.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Turak O, Afsar B, Ozcan F, Canpolat U, Grbovic E, Mendi MA, et al. Relationship between elevated morning blood pressure surge, uric acid, and cardiovascular outcomes in hypertensive patients. J Clin Hypertens (Greenwich). 2014;16(7):530–5. doi:10.1111/jch.12359.

    CAS  Google Scholar 

  28. 28.

    Li Y, Thijs L, Hansen TW, Kikuya M, Boggia J, Richart T, et al. Prognostic value of the morning blood pressure surge in 5645 subjects from 8 populations. Hypertension. 2010;55(4):1040–8. doi:10.1161/HYPERTENSIONAHA.109.137273.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Verdecchia P, Angeli F, Mazzotta G, Garofoli M, Ramundo E, Gentile G, et al. Day-night dip and early-morning surge in blood pressure in hypertension: prognostic implications. Hypertension. 2012;60(1):34–42. doi:10.1161/HYPERTENSIONAHA.112.191858.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Bombelli M, Fodri D, Toso E, Macchiarulo M, Cairo M, Facchetti R, et al. Relationship among morning blood pressure surge, 24-hour blood pressure variability, and cardiovascular outcomes in a white population. Hypertension. 2014;64(5):943–50. doi:10.1161/HYPERTENSIONAHA.114.03675.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Head GA, Chatzivlastou K, Lukoshkova EV, Jennings GL, Reid CM. A novel measure of the power of the morning blood pressure surge from ambulatory blood pressure recordings. Am J Hypertens. 2010;23(10):1074–81. doi:10.1038/ajh.2010.126.

    PubMed  Article  Google Scholar 

  32. 32.

    Asayama K, Wei FF, Liu YP, Hara A, Gu YM, Schutte R, et al. Does blood pressure variability contribute to risk stratification? Methodological issues and a review of outcome studies based on home blood pressure. Hypertens Res. 2015;38(2):97–101. doi:10.1038/hr.2014.153.

    PubMed  Article  Google Scholar 

  33. 33.

    Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905. doi:10.1016/S0140-6736(10)60308-X.

    PubMed  Article  Google Scholar 

  34. 34.

    Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80. doi:10.1016/S1474-4422(10)70066-1.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Arashi H, Ogawa H, Yamaguchi J, Kawada-Watanabe E, Hagiwara N. Impact of visit-to-visit variability and systolic blood pressure control on subsequent outcomes in hypertensive patients with coronary artery disease (from the HIJ-CREATE substudy). Am J Cardiol. 2015;116(2):236–42. doi:10.1016/j.amjcard.2015.04.011.

    PubMed  Article  Google Scholar 

  36. 36.

    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–6. doi:10.1161/HYPERTENSIONAHA.110.162255.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Chowdhury EK, Owen A, Krum H, Wing LM, Nelson MR, Reid CM. Systolic blood pressure variability is an important predictor of cardiovascular outcomes in elderly hypertensive patients. J Hypertens. 2014;32(3):525–33. doi:10.1097/HJH.0000000000000028.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Hata Y, Muratani H, Kimura Y, Fukiyama K, Kawano Y, Ashida T, et al. Office blood pressure variability as a predictor of acute myocardial infarction in elderly patients receiving antihypertensive therapy. J Hum Hypertens. 2002;16(2):141–6. doi:10.1038/sj.jhh.1001301.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15. doi:10.1016/S0140-6736(10)60235-8.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Stergiou GS, Nasothimiou EG. Home monitoring is the optimal method for assessing blood pressure variability. Hypertens Res. 2011;34(12):1246–8. doi:10.1038/hr.2011.145.

    PubMed  Article  Google Scholar 

  41. 41.

    Parati G, Bilo G. Clinical relevance of day-by-day blood pressure and heart rate variability: new information from home self-measurements. Hypertension. 2008;52(6):1006–8. doi:10.1161/HYPERTENSIONAHA.108.115212.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59(2):212–8. doi:10.1161/HYPERTENSIONAHA.111.178657.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Hashimoto T, Kikuya M, Ohkubo T, Satoh M, Metoki H, Inoue R, et al. Home blood pressure level, blood pressure variability, smoking, and stroke risk in Japanese men: the Ohasama study. Am J Hypertens. 2012;25(8):883–91. doi:10.1038/ajh.2012.62.

    PubMed  Article  Google Scholar 

  44. 44.

    Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93. doi:10.1161/HYPERTENSIONAHA.111.171645.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Tamura K, Azushima K, Umemura S. Day-by-day home-measured blood pressure variability: another important factor in hypertension with diabetic nephropathy? Hypertens Res. 2011;34(12):1249–50. doi:10.1038/hr.2011.149.

    PubMed  Article  Google Scholar 

  46. 46.

    Schutte R, Thijs L, Liu YP, Asayama K, Jin Y, Odili A, et al. Within-subject blood pressure level—not variability—predicts fatal and nonfatal outcomes in a general population. Hypertension. 2012;60(5):1138–47. doi:10.1161/HYPERTENSIONAHA.112.202143.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Brickman AM, Reitz C, Luchsinger JA, Manly JJ, Schupf N, Muraskin J, et al. Long-term blood pressure fluctuation and cerebrovascular disease in an elderly cohort. Arch Neurol. 2010;67(5):564–9. doi:10.1001/archneurol.2010.70.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res. 2011;34(7):846–50. doi:10.1038/hr.2011.54.

    PubMed  Article  Google Scholar 

  49. 49.

    Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens : JASH. 2011;5(3):184–92. doi:10.1016/j.jash.2011.03.001.

    PubMed  Article  Google Scholar 

  50. 50.

    Kawai T, Ohishi M, Kamide K, Onishi M, Takeya Y, Tatara Y, et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res. 2012;35(2):239–43. doi:10.1038/hr.2011.170.

    PubMed  Article  Google Scholar 

  51. 51.••

    Muntner P, Whittle J, Lynch AI, Colantonio LD, Simpson LM, Einhorn PT, et al. Visit-to-visit variability of blood pressure and coronary heart disease, stroke, heart failure, and mortality: a cohort study. Ann Intern Med. 2015;163(5):329–38. doi:10.7326/M14-2803. The author did a cohort study as a secondary analysis using data from a large, prospective, randomized study. They concluded that the highest versus the lowest SD of SBP (visi-to-visit) was associated with a more CV outcomes (coronary artery disease, stroke, heart failure, and mortality).

    PubMed  Article  Google Scholar 

  52. 52.

    Shimbo D, Newman JD, Aragaki AK, LaMonte MJ, Bavry AA, Allison M, et al. Association between annual visit-to-visit blood pressure variability and stroke in postmenopausal women: data from the Women’s Health Initiative. Hypertension. 2012;60(3):625–30. doi:10.1161/HYPERTENSIONAHA.112.193094.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens. 2012;30(6):1241–51. doi:10.1097/HJH.0b013e32835339ac.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Manios E, Tsagalis G, Tsivgoulis G, Barlas G, Koroboki E, Michas F, et al. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J Hypertens. 2009;27(11):2244–8. doi:10.1097/HJH.0b013e328330a94f.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Felicio JS, de Souza AC, Kohlmann N, Kohlmann Jr O, Ribeiro AB, Zanella MT. Nocturnal blood pressure fall as predictor of diabetic nephropathy in hypertensive patients with type 2 diabetes. Cardiovasc Diabetol. 2010;9:36. doi:10.1186/1475-2840-9-36.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Minutolo R, Gabbai FB, Borrelli S, Scigliano R, Trucillo P, Baldanza D, et al. Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: an 8-week uncontrolled trial. Am J Kidney Dis. 2007;50(6):908–17. doi:10.1053/j.ajkd.2007.07.020.

    PubMed  Article  Google Scholar 

  57. 57.

    Davidson MB, Hix JK, Vidt DG, Brotman DJ. Association of impaired diurnal blood pressure variation with a subsequent decline in glomerular filtration rate. Arch Intern Med. 2006;166(8):846–52. doi:10.1001/archinte.166.8.846.

    PubMed  Article  Google Scholar 

  58. 58.

    Timio M, Venanzi S, Lolli S, Lippi G, Verdura C, Monarca C, et al. “Non-dipper” hypertensive patients and progressive renal insufficiency: a 3-year longitudinal study. Clin Nephrol. 1995;43(6):382–7.

    CAS  PubMed  Google Scholar 

  59. 59.

    Jacob P, Hartung R, Bohlender J, Stein G. Utility of 24-h ambulatory blood pressure measurement in a routine clinical setting of patients with chronic renal disease. J Hum Hypertens. 2004;18(10):745–51. doi:10.1038/sj.jhh.1001734.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Tsioufis C, Andrikou I, Thomopoulos C, Petras D, Manolis A, Stefanadis C. Comparative prognostic role of nighttime blood pressure and nondipping profile on renal outcomes. Am J Nephrol. 2011;33(3):277–88. doi:10.1159/000324697.

    PubMed  Article  Google Scholar 

  61. 61.

    Okada T, Matsumoto H, Nagaoka Y, Nakao T. Association of home blood pressure variability with progression of chronic kidney disease. Blood Press Monit. 2012;17(1):1–7. doi:10.1097/MBP.0b013e32834f7125.

    PubMed  Article  Google Scholar 

  62. 62.

    Leoncini G, Viazzi F, Storace G, Deferrari G, Pontremoli R. Blood pressure variability and multiple organ damage in primary hypertension. J Hum Hypertens. 2013;27(11):663–70. doi:10.1038/jhh.2013.45.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Tatasciore A, Zimarino M, Tommasi R, Renda G, Schillaci G, Parati G, et al. Increased short-term blood pressure variability is associated with early left ventricular systolic dysfunction in newly diagnosed untreated hypertensive patients. J Hypertens. 2013;31(8):1653–61. doi:10.1097/HJH.0b013e328361e4a6.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Ryu J, Cha RH, Kim DK, Lee JH, Yoon SA, Ryu DR, et al. The clinical association of the blood pressure variability with the target organ damage in hypertensive patients with chronic kidney disease. J Korean Med Sci. 2014;29(7):957–64. doi:10.3346/jkms.2014.29.7.957.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Gomez Angelats E, Sierra C, Coca A, Pare JC, de la Sierra A. Lack of association between blood pressure variability and left ventricular hypertrophy in essential hypertension. Med Clin. 2004;123(19):731–4.

    Article  Google Scholar 

  67. 67.

    Kaneda R, Kario K, Hoshide S, Umeda Y, Hoshide Y, Shimada K. Morning blood pressure hyper-reactivity is an independent predictor for hypertensive cardiac hypertrophy in a community-dwelling population. Am J Hypertens. 2005;18(12 Pt 1):1528–33. doi:10.1016/j.amjhyper.2005.06.015.

    PubMed  Article  Google Scholar 

  68. 68.

    Yano Y, Hoshide S, Inokuchi T, Kanemaru Y, Shimada K, Kario K. Association between morning blood pressure surge and cardiovascular remodeling in treated elderly hypertensive subjects. Am J Hypertens. 2009;22(11):1177–82. doi:10.1038/ajh.2009.162.

    PubMed  Article  Google Scholar 

  69. 69.

    Vishram JK, Dahlof B, Devereux RB, Ibsen H, Kjeldsen SE, Lindholm LH, et al. Blood pressure variability predicts cardiovascular events independently of traditional cardiovascular risk factors and target organ damage: a LIFE substudy. J Hypertens. 2015;33(12):2422–30. doi:10.1097/HJH.0000000000000739.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Filomena J, Riba-Llena I, Vinyoles E, Tovar JL, Mundet X, Castane X, et al. Short-term blood pressure variability relates to the presence of subclinical brain small vessel disease in primary hypertension. Hypertension. 2015;66(3):634–40. doi:10.1161/HYPERTENSIONAHA.115.05440. discussion 445.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Yu JM, Kong QY, Schoenhagen P, Shen T, He YS, Wang JW, et al. The prognostic value of long-term visit-to-visit blood pressure variability on stroke in real-world practice: a dynamic cohort study in a large representative sample of Chinese hypertensive population. Int J Cardiol. 2014;177(3):995–1000. doi:10.1016/j.ijcard.2014.09.149.

    PubMed  Article  Google Scholar 

  72. 72.

    Bohm M, Schumacher H, Leong D, Mancia G, Unger T, Schmieder R, et al. Systolic blood pressure variation and mean heart rate is associated with cognitive dysfunction in patients with high cardiovascular risk. Hypertension. 2015;65(3):651–61. doi:10.1161/HYPERTENSIONAHA.114.04568.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Yano Y, Ning H, Allen N, Reis JP, Launer LJ, Liu K, et al. Long-term blood pressure variability throughout young adulthood and cognitive function in midlife: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Hypertension. 2014;64(5):983–8. doi:10.1161/HYPERTENSIONAHA.114.03978.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Zakopoulos NA, Tsivgoulis G, Barlas G, Papamichael C, Spengos K, Manios E, et al. Time rate of blood pressure variation is associated with increased common carotid artery intima-media thickness. Hypertension. 2005;45(4):505–12. doi:10.1161/01.HYP.0000158306.87582.43.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, et al. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens. 2001;19(11):1981–9.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Chen Y, Xiong H, Wu D, Pirbhulal S, Tian X, Zhang R, et al. Relationship of short-term blood pressure variability with carotid intima-media thickness in hypertensive patients. Biomed Eng Online. 2015;14:71. doi:10.1186/s12938-015-0059-8.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Song H, Wei F, Liu Z, Zhao Y, Ye L, Lu F, et al. Visit-to-visit variability in systolic blood pressure: correlated with the changes of arterial stiffness and myocardial perfusion in on-treated hypertensive patients. Clin Exp Hypertens. 2015;37(1):63–9. doi:10.3109/10641963.2014.897724.

    PubMed  Article  Google Scholar 

  78. 78.

    Liu Z, Zhao Y, Lu F, Zhang H, Diao Y. Day-by-day variability in self-measured blood pressure at home: effects on carotid artery atherosclerosis, brachial flow-mediated dilation, and endothelin-1 in normotensive and mild-moderate hypertensive individuals. Blood Press Monit. 2013;18(6):316–25. doi:10.1097/MBP.0000000000000001.

    PubMed  Article  Google Scholar 

  79. 79.

    Nagai M, Kario K. Visit-to-visit blood pressure variability, silent cerebral injury, and risk of stroke. Am J Hypertens. 2013;26(12):1369–76. doi:10.1093/ajh/hpt167.

    PubMed  Article  Google Scholar 

  80. 80.

    Friberg P, Hallback-Nordlander M, Karlsson B, Ljung B. Circadian rhythm of arterial blood pressure and heart rate in spontaneously hypertensive rats and normotensive control rats. Proceedings of the 4th International Symposium on Rats with Spontaneous Hypertension and Related Studies. 1982:361–3.

  81. 81.

    Ponchon P, Elghozi JL. Contribution of the renin-angiotensin and kallikrein-kinin systems to short-term variability of blood pressure in two-kidney, one-clip hypertensive rats. Eur J Pharmacol. 1996;297(1–2):61–70.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD. Protective axis of the renin-angiotensin system in the brain. Clin Sci (Lond). 2014;127(5):295–306. doi:10.1042/CS20130450.

    CAS  Article  Google Scholar 

  83. 83.

    Casali KR, Dartora DR, Moura M, Bertagnolli M, Irigoyen MC, Bader M et al. Increased vascular sympathetic modulation in mice with Mas receptor deficiency. J Renin-Angiotensin-Aldosterone Syst. 2016;17.

  84. 84.

    Krieger EM. Neurogenic hypertension in the rat. Circ Res. 1964;15:511–21.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Irigoyen MC, Moreira ED, Ida F, Pires M, Cestari IA, Krieger EM. Changes of renal sympathetic activity in acute and chronic conscious sinoaortic denervated rats. Hypertension. 1995;26(6 Pt 2):1111–6.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Cowley Jr AW, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res. 1973;32(5):564–76.

    PubMed  Article  Google Scholar 

  87. 87.

    Su DF, Miao CY. Blood pressure variability and organ damage. Clin Exp Pharmacol Physiol. 2001;28(9):709–15.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Miao CY, Tao X, Guan YF, Yang YC, Chu ZX, Su DF. Aortic remodeling in rats with chronic sinoaortic denervation. Acad J Second Mil Med. 2000;21:734–8.

    Google Scholar 

  89. 89.

    Zhang C, Chen H, Xie HH, Shu H, Yuan WJ, Su DF. Inflammation is involved in the organ damage induced by sinoaortic denervation in rats. J Hypertens. 2003;21(11):2141–8. doi:10.1097/01.hjh.0000098121.00558.55.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Moraes-Silva IC, De La Fuente RN, Mostarda C, Rosa K, Flues K, Damaceno-Rodrigues NR, et al. Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats. Clin Exp Pharmacol Physiol. 2010;37(3):e114–20. doi:10.1111/j.1440-1681.2009.05333.x.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Mostarda C, Moraes-Silva IC, Moreira ED, Medeiros A, Piratello AC, Consolim-Colombo FM, et al. Baroreflex sensitivity impairment is associated with cardiac diastolic dysfunction in rats. J Card Fail. 2011;17(6):519–25. doi:10.1016/j.cardfail.2011.02.007.

    PubMed  Article  Google Scholar 

  92. 92.••

    Flues K, Moraes-Silva IC, Mostarda C, Souza PR, Diniz GP, Moreira ED, et al. Cardiac and pulmonary arterial remodeling after sinoaortic denervation in normotensive rats. Auton Neurosci : Basic Clin. 2012;166(1–2):47–53. doi:10.1016/j.autneu.2011.10.005. Increase of BPV by SAD, despite not changing BP, induced important adjustments in cardiac (LV and RV) structure and function and pulmonary hypertension. These changes may indicate that isolated BPV can modulate target tissue damage in rats.

    CAS  Article  Google Scholar 

  93. 93.

    Tao X, Zhang SH, Shen FM, Su DF. High-level apoptosis is persistent in myocardiocytes of sinoaortic-denervated rats. J Hypertens. 2004;22(3):557–63.

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Yasuoka S, Kai H, Kajimoto H, Kudo H, Takayama N, Anegawa T, et al. Blood pressure variability activates cardiac mineralocorticoid receptor and induces cardiac remodeling in hypertensive rats. Circ J. 2013;77(6):1474–81.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Martinka P, Fielitz J, Patzak A, Regitz-Zagrosek V, Persson PB, Stauss HM. Mechanisms of blood pressure variability-induced cardiac hypertrophy and dysfunction in mice with impaired baroreflex. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R767–76. doi:10.1152/ajpregu.00445.2004.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Sirvente RA, Irigoyen MC, Souza LE, Mostarda C, La Fuente RN, Candido GO, et al. Cardiac impairment evaluated by transesophageal echocardiography and invasive measurements in rats undergoing sinoaortic denervation. PLoS One. 2014;9(5):e87935. doi:10.1371/journal.pone.0087935.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Kudo H, Kai H, Kajimoto H, Koga M, Takayama N, Mori T, et al. Exaggerated blood pressure variability superimposed on hypertension aggravates cardiac remodeling in rats via angiotensin II system-mediated chronic inflammation. Hypertension. 2009;54(4):832–8. doi:10.1161/HYPERTENSIONAHA.109.135905.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Kai H, Griendling KK, Lassegue B, Ollerenshaw JD, Runge MS, Alexander RW. Agonist-induced phosphorylation of the vascular type 1 angiotensin II receptor. Hypertension. 1994;24(4):523–7.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Mostarda C, Rodrigues B, Vane M, Moreira ED, Rosa KT, Moraes-Silva IC, et al. Autonomic impairment after myocardial infarction: role in cardiac remodelling and mortality. Clin Exp Pharmacol Physiol. 2010;37(4):447–52. doi:10.1111/j.1440-1681.2009.05327.x.

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Mostarda CT, Rodrigues B, de Moraes OA, Moraes-Silva IC, Arruda PB, Cardoso R, et al. Low intensity resistance training improves systolic function and cardiovascular autonomic control in diabetic rats. J Diabetes Complicat. 2014;28(3):273–8. doi:10.1016/j.jdiacomp.2013.12.005.

    PubMed  Article  Google Scholar 

  101. 101.

    Perrino C, Naga Prasad SV, Mao L, Noma T, Yan Z, Kim HS, et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 2006;116(6):1547–60. doi:10.1172/JCI25397.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.•

    Aoki Y, Kai H, Kajimoto H, Kudo H, Takayama N, Yasuoka S, et al. Large blood pressure variability aggravates arteriolosclerosis and cortical sclerotic changes in the kidney in hypertensive rats. Circ J. 2014;78(9):2284–91. Large BPV, induced by SAD, aggravates pre-glomerular arteriolosclerosis, which results in the cortical sclerotic changes in SHRs through a local angiotensin II-mediated mechanism.

    PubMed  Article  Google Scholar 

  103. 103.

    Du WM, Miao CY, Liu JG, Shen FM, Yang XQ, Su DF. Effects of long-term treatment with ketanserin on blood pressure variability and end-organ damage in spontaneously hypertensive rats. J Cardiovasc Pharmacol. 2003;41(2):233–9.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Liu JG, Xu LP, Chu ZX, Miao CY, Su DF. Contribution of blood pressure variability to the effect of nitrendipine on end-organ damage in spontaneously hypertensive rats. J Hypertens. 2003;21(10):1961–7. doi:10.1097/01.hjh.0000084762.37215.e7.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Sueta D, Koibuchi N, Hasegawa Y, Toyama K, Uekawa K, Katayama T, et al. Blood pressure variability, impaired autonomic function and vascular senescence in aged spontaneously hypertensive rats are ameliorated by angiotensin blockade. Atherosclerosis. 2014;236(1):101–7. doi:10.1016/j.atherosclerosis.2014.06.016.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Lu ZA, Xie HH, Xu LP, Yin AF, Miao CY, Su DF. Restoration of arterial baroreflex function contributes to organ protection in spontaneously hypertensive rats treated with long-term hydrochlorothiazide mixture. Clin Exp Pharmacol Physiol. 2003;30(1–2):49–54.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Ling G, Liu AJ, Shen FM, Cai GJ, Liu JG, Su DF. Effects of combination therapy with atenolol and amlodipine on blood pressure control and stroke prevention in stroke-prone spontaneously hypertensive rats. Acta Pharmacol Sin. 2007;28(11):1755–60. doi:10.1111/j.1745-7254.2007.00630.x.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Han P, Shen FM, Xie HH, Chen YY, Miao CY, Mehta JL, et al. The combination of atenolol and amlodipine is better than their monotherapy for preventing end-organ damage in different types of hypertension in rats. J Cell Mol Med. 2009;13(4):726–34. doi:10.1111/j.1582-4934.2008.00365.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Moreira ED, Mostarda CT, Moraes-Silva IC, Ferreira JB, Dos Santos F, Lacchini S, et al. Effect of simvastatin in the autonomic system is dependent on the increased gain/sensitivity of the baroreceptors. Physiol Rep. 2013;1(3):e00045. doi:10.1002/phy2.45.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Takayama N, Kai H, Kudo H, Yasuoka S, Mori T, Anegawa T, et al. Simvastatin prevents large blood pressure variability induced aggravation of cardiac hypertrophy in hypertensive rats by inhibiting RhoA/Ras-ERK pathways. Hypertens Res. 2011;34(3):341–7. doi:10.1038/hr.2010.229.

    CAS  PubMed  Article  Google Scholar 

  111. 111.••

    Lataro RM, Silva CA, Tefe-Silva C, Prado CM, Salgado HC. Acetylcholinesterase inhibition attenuates the development of hypertension and inflammation in spontaneously hypertensive rats. Am J Hypertens. 2015;28(10):1201–8. doi:10.1093/ajh/hpv017. Provided evidence that the donepezil, an antiacetylcholinesterase agent that crosses the blood–brain barrier, is capable of producing beneficial effects on BPV, inflammation and target organ damage.

    PubMed  Article  Google Scholar 

  112. 112.

    Bertagnolli M, Schenkel PC, Campos C, Mostarda CT, Casarini DE, Bello-Klein A, et al. Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens. 2008;21(11):1188–93. doi:10.1038/ajh.2008.270.

    CAS  PubMed  Article  Google Scholar 

  113. 113.••

    Bertagnolli M, Casali KR, De Sousa FB, Rigatto K, Becker L, Santos SH, et al. An orally active angiotensin-(1–7) inclusion compound and exercise training produce similar cardiovascular effects in spontaneously hypertensive rats. Peptides. 2014;51:65–73. doi:10.1016/j.peptides.2013.11.006. A compound containing angiotensin 1–7 had benefits on autonomic function and ventricular remodeling similar to aerobic exercise training.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Barbosa Neto O, Abate DT, Marocolo Junior M, Mota GR, Orsatti FL, Silva RC R e, et al. Exercise training improves cardiovascular autonomic activity and attenuates renal damage in spontaneously hypertensive rats. J Sports Sci Med. 2013;12(1):52–9.

    PubMed  Google Scholar 

  115. 115.

    Masson GS, Costa TS, Yshii L, Fernandes DC, Soares PP, Laurindo FR, et al. Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity. PLoS One. 2014;9(5):e94927. doi:10.1371/journal.pone.0094927.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Ceroni A, Chaar LJ, Bombein RL, Michelini LC. Chronic absence of baroreceptor inputs prevents training-induced cardiovascular adjustments in normotensive and spontaneously hypertensive rats. Exp Physiol. 2009;94(6):630–40. doi:10.1113/expphysiol.2008.046128.

    PubMed  Article  Google Scholar 

  117. 117.

    Parati G, Schumacher H, Bilo G, Mancia G. Evaluating 24-h antihypertensive efficacy by the smoothness index: a meta-analysis of an ambulatory blood pressure monitoring database. J Hypertens. 2010;28(11):2177–83. doi:10.1097/HJH.0b013e32833e1150.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60. doi:10.1161/HYPERTENSIONAHA.111.174383.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Hermida RC, Ayala DE, Mojon A, Fontao MJ, Fernandez JR. Chronotherapy with valsartan/hydrochlorothiazide combination in essential hypertension: improved sleep-time blood pressure control with bedtime dosing. Chronobiol Int. 2011;28(7):601–10. doi:10.3109/07420528.2011.589935.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Matsui Y, O’Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan Combined Treatment With Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension. 2012;59(6):1132–8. doi:10.1161/HYPERTENSIONAHA.111.189217.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014;37(6):585–90. doi:10.1038/hr.2014.33.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Parati G, Dolan E, Ley L, Schumacher H. Impact of antihypertensive combination and monotreatments on blood pressure variability: assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database. J Hypertens. 2014;32(6):1326–33. doi:10.1097/HJH.0000000000000169.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Webb AJ, Wilson M, Lovett N, Paul N, Fischer U, Rothwell PM. Response of day-to-day home blood pressure variability by antihypertensive drug class after transient ischemic attack or nondisabling stroke. Stroke. 2014;45(10):2967–73. doi:10.1161/STROKEAHA.114.005982.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Karpov YA, Gorbunov VM, Deev AD. Effectiveness of fixed-dose perindopril/amlodipine on clinic, ambulatory and self-monitored blood pressure and blood pressure variability: an open-label, non comparative study in the general practice. High Blood Press Cardiovasc Prev. 2015;22(4):417–25. doi:10.1007/s40292-015-0117-0.

    CAS  PubMed  Article  Google Scholar 

  125. 125.

    Shiga Y, Miura S, Adachi S, Suematsu Y, Sugihara M, Iwata A, et al. Visit-to-visit variability and seasonal variation in blood pressure with single-pill fixed-dose combinations of angiotensin II receptor blocker/calcium channel blocker and angiotensin ii receptor blocker/diuretic in hypertensive patients. J Clin Med Res. 2015;7(10):802–6. doi:10.14740/jocmr2292w.

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Wijsman LW, de Craen AJ, Muller M, Sabayan B, Stott D, Ford I, et al. Blood pressure lowering medication, visit-to-visit blood pressure variability, and cognitive function in old age. Am J Hypertens. 2015. doi:10.1093/ajh/hpv101.

    Google Scholar 

  127. 127.

    Rakugi H, Ogihara T, Saruta T, Kawai T, Saito I, Teramukai S, et al. Preferable effects of olmesartan/calcium channel blocker to olmesartan/diuretic on blood pressure variability in very elderly hypertension: COLM study subanalysis. J Hypertens. 2015;33(10):2165–72. doi:10.1097/HJH.0000000000000668.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Sato N, Saijo Y, Sasagawa Y, Morimoto H, Takeuchi T, Sano H, et al. Visit-to-visit variability and seasonal variation in blood pressure: Combination of Antihypertensive Therapy in the Elderly, Multicenter Investigation (CAMUI) Trial subanalysis. Clin Exp Hypertens. 2015;37(5):411–9. doi:10.3109/10641963.2014.995802.

    CAS  PubMed  Article  Google Scholar 

  129. 129.

    Mancia G, Omboni S, Chazova I, Coca A, Girerd X, Haller H, et al. Effects of the lercanidipine-enalapril combination vs. the corresponding monotherapies on home blood pressure in hypertension: evidence from a large database. J Hypertens. 2016;34(1):139–48. doi:10.1097/HJH.0000000000000767.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Umemoto S, Ogihara T, Matsuzaki M, Rakugi H, Ohashi Y, Saruta T. Effects of calcium channel blocker-based combinations on intra-individual blood pressure variability: post hoc analysis of the COPE trial. Hypertens Res. 2016;39(1):46–53. doi:10.1038/hr.2015.104.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria-Cláudia Irigoyen.

Ethics declarations

Conflict of Interest

Drs. Irigoyen, De Angelis, dos Santos, Dartora, Rodrigues, and Consolim-Colombo declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Hypertension

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Irigoyen, MC., De Angelis, K., dos Santos, F. et al. Hypertension, Blood Pressure Variability, and Target Organ Lesion. Curr Hypertens Rep 18, 31 (2016). https://doi.org/10.1007/s11906-016-0642-9

Download citation

Keywords

  • Hypertension
  • Autonomic dysfunction
  • Blood pressure variability
  • Target-organ damage