Advertisement

Renal Denervation for Treatment of Hypertension: a Second Start and New Challenges

  • Alexandre Persu
  • Sverre Kjeldsen
  • Jan A Staessen
  • Michel AziziEmail author
Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Device-Based Approaches for Hypertension

Abstract

Following the publication of the randomized controlled but open-label trial Symplicity HTN-2, catheter-based renal sympathetic denervation was proposed as a novel treatment for drug-resistant hypertension. Thousands of procedures were routinely performed in Europe, Australia and Asia, and many observational studies were published. A sudden shift from overoptimistic views to radical scepticism occurred later, when the large US randomized sham-controlled trial Symplicity HTN-3 failed to meet its primary blood pressure lowering efficacy endpoint. Experts are divided on the reasons accounting for the large discrepancy between the results of initial studies and those of Symplicity HTN-3. Indeed, the blood pressure lowering effect associated with renal denervation was overestimated in initial trials due to various patient and physician-related biases, whereas it could have been underestimated in Symplicity HTN-3, which was well designed but not rigorously executed. Still, there is a large consensus on the need to further study catheter-based renal denervation in more controlled conditions, with particular emphasis on identification of predictors of blood pressure response. US and European experts have recently issued very similar recommendations on design of upcoming trials, procedural aspects, drug treatment, patient population and inclusion–exclusion criteria. Application of these new standards may represent a second chance for renal denervation to demonstrate—or not—its efficacy and safety in various patient populations. With its highly standardized treatment regimen, the French trial DENERHTN paved the way for this new approach and may inspire upcoming studies testing novel renal denervation systems in different populations.

Keywords

Renal denervation Renal sympathetic denervation Sympathetic nervous system Resistant hypertension Mild hypertension Ambulatory blood pressure Renal nerve stimulation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Azizi reports grants from French Minisitry of Health, Vessix, Boston Scientific Corporation, Medtronic and Servier, and personal fees from Vessix, Boston Scientific Corporation, Medtronic, and Servier. Dr. Kjeldsen reports honoraria from Bayer, MSD, and Takeda. Drs. Persu and Staessen report no conflicst of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9.CrossRefPubMedGoogle Scholar
  2. 2.••
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. In this large US randomised trial including a sham procedure, the benefit assignable to renal denervation was < 3 mmHg, vs. 25–30 mmHg in Symplicity HTN-2 and other previous studies. The main explanation accounting for this large discrepancy is blinding, which minimized patient- and physician-related biases in Symplicity HTN-3. The failure of Symplicity HTN-3 to meet its primary endpoint showed unequivocally that renal denervation is not ready for wide clinical dissemination. Google Scholar
  3. 3.
    Fadl Elmula FE, Hoffmann P, Larstorp AC, Fossum E, Brekke M, Kjeldsen SE, et al. Adjusted drug treatment is superior to renal sympathetic denervation in patients with true treatment-resistant hypertension. Hypertension. 2014;63(5):991–9.CrossRefPubMedGoogle Scholar
  4. 4.••
    Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65. This French randomized trial showed a significant −5.9 mmHg additional decrease in daytime ambulatory blood pressure in the renal denervation vs. control arm, leading to a more balanced evaluation of RDN after the “failure” of Symplicity HTN-3. One of the main assets of DENERHTN is that optimum and stepped-care standardized antihypertensive treatment was applied in both arms, both before and after randomisation. CrossRefPubMedGoogle Scholar
  5. 5.
    Rosa J, Widimský P, Toušek P, Petrák O, Curila K, Waldauf P, et al. Randomized comparison of renal denervation versus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-month results from the Prague-15 study. Hypertension. 2014;65:407–13.CrossRefPubMedGoogle Scholar
  6. 6.
    Desch S, Okon T, Heinemann D, Kulle K, Röhnert K, Sonnabend M, et al. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension. 2015;65(6):1202–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Kario K, Ogawa H, Okumura K, Okura T, Saito S, Ueno T. First randomized controlled trial of catheter-based renal denervation in Asian patients. Circ J. 2015;79(6):1222–9.CrossRefPubMedGoogle Scholar
  8. 8.••
    Fadl Elmula FE, Jin Y, Yang WY, Thijs L, Lu YC, Larstorp AC, et al. Meta-analysis of randomized controlled trials of renal denervation in treatment-resistant hypertension. Blood Press. 2015;24(5):263–74. This meta-analysis including 7 randomised controlled trials testing renal denervation using the Symplicity system against maintained or intensified drug treatment alone failed to show a significant advantage of renal denervation. Nevertheless, it cannot rule out a significant benefit of the procedure in a minority of patients. PubMedGoogle Scholar
  9. 9.
    DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Esler M. Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 2015;14:107–15.CrossRefGoogle Scholar
  11. 11.
    Laurent S, Schlaich M, Esler M. New drugs, procedures, and devices for hypertension. Lancet. 2012;380(9841):591–600.CrossRefPubMedGoogle Scholar
  12. 12.
    Monge M, Lorthioir A, Bobrie G, Azizi M. New drug therapies interfering with the renin-angiotensin-aldosterone system for resistant hypertension. J Renin-Angiotensin-Aldosterone Syst. 2013;14(4):285–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Persu A, Renkin J, Asayama K, O’Brien E, Staessen JA. Renal denervation in treatment-resistant hypertension: the need for restraint and more and better evidence. Expert Rev Cardiovasc Ther. 2013;11(6):739–49.CrossRefPubMedGoogle Scholar
  15. 15.
    Kandzari DE, Bhatt DL, Sobotka PA, O’Neill WW, Esler M, Flack JM, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol. 2012;35(9):528–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Sapoval M, Azizi M. Renal artery denervation for the treatment of resistant hypertension. Update after Medtronic announcement that its Symplicity HTN3 study failed to meet its primary efficacy end point. Diagn Interv Imaging. 2014;95(4):353–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Azizi M, Steichen O, Frank M, Bobrie G, Plouin PF, Sapoval M. Catheter-based radiofrequency renal-nerve ablation in patients with resistant hypertension. Eur J Vasc Endovasc Surg. 2012;43(3):293–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Persu A, Renkin J, Thijs L, Staessen JA. Renal denervation: ultima ratio or standard in treatment-resistant hypertension. Hypertension. 2012;60(3):596–606.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Shun-Shin MJ, Howard JP, Francis DP. Removing the hype from hypertension. BMJ. 2014;348:g1937.CrossRefPubMedGoogle Scholar
  20. 20.
    Kjeldsen SE, Fadl Elmula FE, Persu A, Jin Y, Staessen JA. Renal sympathetic denervation in the aftermath of Symplicity HTN-3. Blood Press. 2014;23(5):256–61.CrossRefPubMedGoogle Scholar
  21. 21.
    Schmieder RE. Hypertension: How should data from SYMPLICITY HTN-3 be interpreted? Nat Rev Cardiol. 2014;11(7):375–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Esler M. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens. 2014;8(8):593–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Staessen JA, Wang JG, Thijs L. Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet. 2001;358(9290):1305–15.CrossRefPubMedGoogle Scholar
  24. 24.
    Persu A, Jin Y, Azizi M, Baelen M, Volz S, Elvan A, et al. Blood pressure changes after renal denervation at 10 European expert centers. J Hum Hypertens. 2014;28(3):150–6.PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Persu A, Azizi M, Jin Y, Volz S, Rosa J, Fadl Elmula FE, et al. Hyperresponders vs. nonresponder patients after renal denervation: do they differ? J Hypertens. 2014;32(12):2422–7.CrossRefPubMedGoogle Scholar
  26. 26.••
    Mahfoud F, Böhm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S, et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J. 2015;36(33):2219–27. A European perspective on the best way to move the renal denervation field forward. CrossRefPubMedGoogle Scholar
  27. 27.••
    White WB, Galis ZS, Henegar J, Kandzari DE, Victor R, Sica D, et al. Renal denervation therapy for hypertension: pathways for moving development forward. J Am Soc Hypertens. 2015;9(5):341–50. A US perspective on the best way to move the renal denervation field forward. CrossRefPubMedGoogle Scholar
  28. 28.
    Korb-Savoldelli V, Gillaizeau F, Pouchot J, Lenain E, Postel-Vinay N, Plouin PF, et al. Validation of the French version of the 8-item Morisky medication adherence scale in hypertensive adults. J Clin Hypertens. 2012;14(7):429–34.CrossRefGoogle Scholar
  29. 29.
    Kjeldsen SE, Persu A, Azizi M. Design of renal denervation studies not confounded by antihypertensive drugs. J Am Soc Hypertens. 2015;9(5):337–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Rippy MK, Zarins D, Barman NC, Wu A, Duncan KL, Zarins CK. Catheter-based renal sympathetic denervation: chronic preclinical evidence for renal artery safety. Clin Res Cardiol. 2011;100(12):1095–101.CrossRefPubMedGoogle Scholar
  31. 31.
    Patel HC, Dhillon PS, Mahfoud F, Lindsay AC, Hayward C, Ernst S, et al. The biophysics of renal sympathetic denervation using radiofrequency energy. Clin Res Cardiol. 2014;103(5):337–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Tzafriri AR, Keating JH, Markham PM, Spognardi AM, Stanley JR, Wong G, et al. Arterial microanatomy determines the success of energy-based renal denervation in controlling hypertension. Sci Transl Med. 2015;7(285):285ra65.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Tzafriri AR, Mahfoud F, Keating JH, Markham PM, Spognardi A, Wong G, et al. Innervation patterns may limit response to endovascular renal denervation. J Am Coll Cardiol. 2014;64(11):1079–87.PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Henegar JR, Zhang Y, Hata C, Narciso I, Hall ME, Hall JE. Catheter-based radiofrequency renal denervation: location effects on renal norepinephrine. Am J Hypertens. 2015;28(7):909–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015;66(16):1766–75.CrossRefPubMedGoogle Scholar
  36. 36.
    Machino T, Murakoshi N, Sato A, Xu D, Hoshi T, Kimura T, et al. Anti-hypertensive effect of radiofrequency renal denervation in spontaneously hypertensive rats. Life Sci. 2014;110(2):86–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Lohmeier TE, Iliescu R, Liu B, Henegar JR, Maric-Bilkan C, Irwin ED. Systemic and renal-specific sympathoinhibition in obesity hypertension. Hypertension. 2012;59(2):331–8.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Henegar JR, Zhang Y, De Rama R, Hata C, Hall ME, Hall JE. Catheter-based radiofrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens. 2014;27(10):1285–92.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Sakakura K, Tunev S, Yahagi K, O’Brien AJ, Ladich E, Kolodgie FD, et al. Comparison of histopathologic analysis following renal sympathetic denervation over multiple time points. Circ Cardiovasc Interv. 2015;8(2), e001813.CrossRefPubMedGoogle Scholar
  40. 40.
    Booth LC, Nishi EE, Yao ST, Ramchandra R, Lambert GW, Schlaich MP, et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension. 2015;65(2):393–400.CrossRefPubMedGoogle Scholar
  41. 41.
    Holmes Jr DR, Monahan KH, Packer D. Pulmonary vein stenosis complicating ablation for atrial fibrillation: clinical spectrum and interventional considerations. JACC Cardiovasc Interv. 2009;2(4):267–76.CrossRefPubMedGoogle Scholar
  42. 42.
    Templin C, Jaguszewski M, Ghadri JR, Sudano I, Gaehwiler R, Hellermann JP, et al. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre-and post-procedural comparison with the Simplicity® catheter system and the EnligHTN™ multi-electrode renal denervation catheter. Eur Heart J. 2013;34(28):2141–8.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Steigerwald K, Titova A, Malle C, Kennerknecht E, Jilek C, Hausleiter J, et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens. 2012;30(11):2230–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Persu A, Sapoval M, Azizi M, Monge M, Danse E, Hammer F, et al. Renal artery stenosis following renal denervation: a matter of concern. J Hypertens. 2014;32(10):2101–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Koppelstaetter C, Kerschbaum J, Lenzhofer M, Glodny B, Esterhammer R, Frick M, et al. Distal renal artery stenosis after percutaneous renal denervation leading to renal impairment but normotension. J Clin Hypertens (Greenwich). 2015;17(2):162–4.CrossRefGoogle Scholar
  46. 46.
    Mabin T, Sapoval M, Cabane V, Stemmett J, Iyer M. First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension. EuroIntervention. 2012;8(1):57–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Worthley SG, Tsioufis CP, Worthley MI, Sinhal A, Chew DP, Meredith IT, et al. Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial. Eur Heart J. 2013;34(28):2132–40.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Versaci F, Trivisonno A, Olivieri C, Caranci F, Brunese L, Prati F. Late renal artery stenosis after renal denervation: is it the tip of the iceberg? Int J Cardiol. 2014;172(3):e507–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Lambert T, Nahler A, Reiter C, Schwarz S, Gammer V, Blessberger H, et al. Frequency of renal artery stenosis after renal denervation in patients with resistant arterial hypertension. Am J Cardiol. 2015;115(11):1545–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Karanasos A, Van Mieghem N, Bergmann MW, Hartman E, Ligthart J, van der Heide E, et al. Multimodality intra-arterial imaging assessment of the vascular trauma induced by balloon-based and nonballoon-based renal denervation systems. Circ Cardiovasc Interv. 2015;8(7), e002474.CrossRefPubMedGoogle Scholar
  51. 51.
    Pathak A, Coleman L, Roth A, Stanley J, Bailey L, Markham P, et al. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the arterial wall and reduces sympathetic nerve activity. EuroIntervention. 2015;11(4):477–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(4):219–27.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Bakris GL, Townsend RR, Liu M, Cohen SA, D’Agostino R, Flack JM, et al. Impact of renal denervation on 24-h ambulatory blood pressure: results from SYMPLICITY HTN-3. J Am Coll Cardiol. 2014;64(11):1071–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Ewen S, Ukena C, Linz D, Kindermann I, Cremers B, Laufs U, et al. Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension. 2015;65(1):193–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–7.CrossRefGoogle Scholar
  56. 56.
    Dörr O, Liebetrau C, Möllmann H, Gaede L, Troidl C, Rixe J, et al. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension. 2014;63(5):984–90.CrossRefPubMedGoogle Scholar
  57. 57.
    Pöss J, Mahfoud F, Ukena C, Esler MD, Schlaich M, Hering D, et al. Association of vitamin D status and blood pressure response after renal denervation. Clin Res Cardiol. 2014;103(1):41–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Dörr O, Liebetrau C, Möllmann H, Gaede L, Troidl C, Haidner V, et al. Brain-derived neurotrophic factor as a marker for immediate assessment of the success of renal sympathetic denervation. J Am Coll Cardiol. 2015;65(11):1151–3.CrossRefPubMedGoogle Scholar
  59. 59.
    Liang FQ, Walline R, Earnest DJ. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus. Neurosci Lett. 1998;242(2):89–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Begliuomini S, Lenzi E, Ninni F, Casarosa E, Merlini S, Pluchino N, et al. Plasma brain-derived neurotrophic factor daily variations in men: correlation with cortisol circadian rhythm. J Endocrinol. 2008;197(2):429–35.CrossRefPubMedGoogle Scholar
  61. 61.
    Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, et al. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61(2):450–6.CrossRefPubMedGoogle Scholar
  62. 62.•
    Gal P, de Jong MR, Smit JJ, Adiyaman A, Staessen JA, Elvan A. Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J Hum Hypertens. 2014;29(5):292–5. First human study showing the feasibility and safety of renal nerve stimulation as a method to assess the completeness of renal nerve ablation. CrossRefPubMedGoogle Scholar
  63. 63.
    Dudenbostel T, Acelajado MC, Pisoni R, Li P, Oparil S, Calhoun DA. Refractory hypertension: evidence of heightened sympathetic activity as a cause of antihypertensive treatment failure. Hypertension. 2015;66(1):126–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Václavík J, Sedlák R, Plachy M, Navrátil K, Plásek J, Jarkovsky J, et al. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension. 2011;57(6):1069–75.CrossRefPubMedGoogle Scholar
  65. 65.
    Oxlund CS, Henriksen JE, Tarnow L, Schousboe K, Gram J, Jacobsen IA. Low dose spironolactone reduces blood pressure in patients with resistant hypertension and type 2 diabetes mellitus: a double blind randomized clinical trial. J Hypertens. 2013;31(10):2094–102.CrossRefPubMedGoogle Scholar
  66. 66.
    Weber MA, Black H, Bakris G, Krum H, Linas S, Weiss R, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374(9699):1423–31.CrossRefPubMedGoogle Scholar
  67. 67.
    Bakris GL, Lindholm LH, Black HR, Krum H, Linas S, Linseman JV, et al. Divergent results using clinic and ambulatory blood pressures: report of a darusentan-resistant hypertension trial. Hypertension. 2010;56(5):824–30.CrossRefPubMedGoogle Scholar
  68. 68.
    Bobrie G, Frank M, Azizi M, Peyrard S, Boutouyrie P, Chatellier G, et al. Sequential nephron blockade versus sequential renin-angiotensin system blockade in resistant hypertension: a prospective, randomized, open blinded endpoint study. J Hypertens. 2012;30(8):1656–64.CrossRefPubMedGoogle Scholar
  69. 69.
    Beaussier H, Boutouyrie P, Bobrie G, Frank M, Laurent S, Coudoré F, et al. True antihypertensive efficacy of sequential nephron blockade in patients with resistant hypertension and confirmed medication adherence. J Hypertens. 2015.Google Scholar
  70. 70.
    Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet. 2015.Google Scholar
  71. 71.
    Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8 Suppl 5:S39–43.CrossRefPubMedGoogle Scholar
  72. 72.
    Julius S, Majahalme S. The changing face of sympathetic overactivity in hypertension. Ann Med. 2000;32(5):365–70.CrossRefPubMedGoogle Scholar
  73. 73.
    Jung O, Gechter JL, Wunder C, Paulke A, Bartel C, Geiger H, et al. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J Hypertens. 2013;31(4):766–74.CrossRefPubMedGoogle Scholar
  74. 74.
    Tomaszewski M, White C, Patel P, Masca N, Damani R, Hepworth J, et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart. 2014;100(11):855–61.PubMedCentralCrossRefPubMedGoogle Scholar
  75. 75.
    Florczak E, Tokarczyk B, Warchoł-Celińska E, Szwench-Pietrasz E, Prejbisz A, Gosk M, et al. Assessment of adherence to treatment in patients with resistant hypertension using toxicological serum analysis. A subgroup evaluation of the RESIST-POL study. Pol Arch Med Wewn. 2015;125(1–2):65–72.PubMedGoogle Scholar
  76. 76.
    Jin Y, Jacobs L, Baelen M, Thijs L, Renkin J, Hammer F, et al. Rationale and design of the Investigator-Steered Project on Intravascular Renal Denervation for Management of Drug-Resistant Hypertension (INSPiRED) trial. Blood Press. 2014;23(3):138–46.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Calhoun DA. Hyperaldosteronism as a common cause of resistant hypertension. Annu Rev Med. 2013;64:233–47.CrossRefPubMedGoogle Scholar
  78. 78.
    Kikuya M, Hansen TW, Thijs L, Björklund-Bodegård K, Kuznetsova T, Ohkubo T, et al. Diagnostic thresholds for ambulatory blood pressure monitoring based on 10-year cardiovascular risk. Circulation. 2007;115(16):2145–52.CrossRefPubMedGoogle Scholar
  79. 79.
    Hansen TW, Kikuya M, Thijs L, Björklund-Bodegård K, Kuznetsova T, Ohkubo T, et al. Prognostic superiority of daytime ambulatory over conventional blood pressure in four populations: a meta-analysis of 7030 individuals. J Hypertens. 2007;25(8):1554–64.CrossRefPubMedGoogle Scholar
  80. 80.
    O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European society of hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731–68.PubMedGoogle Scholar
  81. 81.
    Persu A, O’Brien E, Verdecchia P. Use of ambulatory blood pressure measurement in the definition of resistant hypertension: a review of the evidence. Hypertens Res. 2014;37(11):967–72.CrossRefPubMedGoogle Scholar
  82. 82.
    de la Sierra A, Segura J, Banegas JR, Gorostidi M, de la Cruz JJ, Armario P, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902.CrossRefPubMedGoogle Scholar
  83. 83.
    Pierdomenico SD, Lapenna D, Bucci A, Di Tommaso R, Di Mascio R, Manente BM, et al. Cardiovascular outcome in treated hypertensive patients with responder, masked, false resistant, and true resistant hypertension. Am J Hypertens. 2005;18(11):1422–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Mahfoud F, Ukena C, Schmieder RE, Cremers B, Rump LC, Vonend O, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128(2):132–40.CrossRefPubMedGoogle Scholar
  85. 85.
    Lüscher TF, Mahfoud F. Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart J. 2014;35(26):1706–11.CrossRefPubMedGoogle Scholar
  86. 86.
    Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.CrossRefPubMedGoogle Scholar
  87. 87.
    Okada T, Pellerin O, Savard S, Curis E, Monge M, Frank M, et al. Eligibility for renal denervation: anatomical classification and results in essential resistant hypertension. Cardiovasc Intervent Radiol. 2015;38(1):79–87.CrossRefPubMedGoogle Scholar
  88. 88.
    Hering D, Marusic P, Walton AS, Duval J, Lee R, Sata Y, et al. Renal artery anatomy affects the blood pressure response to renal denervation in patients with resistant hypertension. Int J Cardiol. 2015;202:388–93.CrossRefPubMedGoogle Scholar
  89. 89.
    Id D, Kaltenbach B, Bertog SC, Hornung M, Hofmann I, Vaskelyte L, et al. Does the presence of accessory renal arteries affect the efficacy of renal denervation? JACC Cardiovasc Interv. 2013;6(10):1085–91.CrossRefPubMedGoogle Scholar
  90. 90.
    Schlaich MP, Esler MD, Fink GD, Osborn JW, Euler DE. Targeting the sympathetic nervous system: critical issues in patient selection, efficacy, and safety of renal denervation. Hypertension. 2014;63(3):426–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandre Persu
    • 1
    • 2
  • Sverre Kjeldsen
    • 3
  • Jan A Staessen
    • 4
    • 5
  • Michel Azizi
    • 6
    • 7
    • 8
    Email author
  1. 1.Pole of Cardiovascular Research, Institut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium
  2. 2.Division of Cardiology, Cliniques Universitaires Saint-LucUniversité Catholique de LouvainBrusselsBelgium
  3. 3.Department of Cardiology, Ullevaal University HospitalUniversity of OsloOsloNorway
  4. 4.Studies Coordinating Centre, Division of Hypertension and Cardiovascular Rehabilitation, Department of Cardiovascular SciencesUniversity of LeuvenLeuvenBelgium
  5. 5.R & D VitaK GroupMaastricht UniversityMaastrichtThe Netherlands
  6. 6.Paris-Descartes UniversityParisFrance
  7. 7.Assistance Publique-Hôpitaux de Paris, Hypertension UnitHôpital Européen Georges PompidouParisFrance
  8. 8.Institut National de la Santé et de la Recherche Médicale (INSERM)ParisFrance

Personalised recommendations