Skip to main content

Advertisement

Log in

Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease

  • Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

A high incidence of acute cardiovascular events and sudden cardiac death following unexpected acute emotional stress or a natural catastrophic disaster has been well-documented over the past decades. Chronic psychosocial factors have been shown to be directly linked to the development of hypertension, cardiovascular disease and stroke. Activation of various neurogenic pathways is an important mediator of acute and chronic stress-induced hypertension and heart disease. Heightened sympathetic activation has been shown to be a critical contributor linking psychogenic effects on cardiovascular regulation to serious and often fatal CV outcomes. Accordingly, several therapeutic approaches that attenuate autonomic imbalance via modulation of increased sympathetic outflow by either non-pharmacological or interventional means have been shown to alleviate clinical symptoms. Likewise stress reduction per se achieved with transcendental medicine has been linked to improved patient outcomes. Therapies that oppose adrenergic activity and/or have the potential to attenuate negative emotions are likely to reduce cardiovascular risk and its adverse consequences attributable to chronic mental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation. 1999;99(16):2192–217. Highly cited paper reviewing the contribution of numerous psychological factors to cardiovascular disease, the involvement of potential mechanisms and therapeutic approaches.

    Article  CAS  PubMed  Google Scholar 

  2. Albert CM, Chae CU, Rexrode KM, Manson JE, Kawachi I. Phobic anxiety and risk of coronary heart disease and sudden cardiac death among women. Circulation. 2005;111(4):480–7. doi:10.1161/01.Cir.0000153813.64165.5d.

    Article  PubMed  Google Scholar 

  3. Pan A, Sun Q, Okereke OI, Rexrode KM, Hu FB. Depression and risk of stroke morbidity and mortality a meta-analysis and systematic review. JAMA. 2011;306(11):1241–9. doi:10.1001/jama.2011.1282.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Dong JY, Zhang YH, Tong J, Qin LQ. Depression and risk of stroke a meta-analysis of prospective studies. Stroke. 2012;43(1):32–7. doi:10.1161/Strokeaha.111.630871.

    Article  PubMed  Google Scholar 

  5. Henderson KM, Clark CJ, Lewis TT, Aggarwal NT, Beck T, Guo H, et al. Psychosocial distress and stroke risk in older adults. Stroke. 2013;44(2):367–72. doi:10.1161/STROKEAHA.112.679159.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Jackson CA, Mishra GD. Depression and risk of stroke in midaged women: a prospective longitudinal study. Stroke. 2013;44(6):1555–60. doi:10.1161/STROKEAHA.113.001147.

    Article  CAS  PubMed  Google Scholar 

  7. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi:10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  8. Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34(38):2949–3003. doi:10.1093/eurheartj/eht296.

    Article  Google Scholar 

  9. Esler M. Heart and mind: psychogenic cardiovascular disease. J Hypertens. 2009;27(4):692–5. doi:10.1097/HJH.0b013e328324f72b.

    Article  CAS  PubMed  Google Scholar 

  10. Buckley T, McKinley S, Tofler G, Bartrop R. Cardiovascular risk in early bereavement: a literature review and proposed mechanisms. Int J Nurs Stud. 2010;47(2):229–38. doi:10.1016/j.ijnurstu.2009.06.010.

    Article  PubMed  Google Scholar 

  11. Mostofsky E, Sherwood JB, Mittleman MA, Maclure M, Tofler GH, Muller JE. Response to letter regarding article, “Risk of acute myocardial infarction after the death of a significant person in one’s life: the determinants of myocardial infarction onset study”. Circulation. 2012;126(3):E37-E. doi:10.1161/Circulationaha.112.114470.

    Article  Google Scholar 

  12. Leor J, Poole WK, Kloner RA. Sudden cardiac death triggered by an earthquake. N Engl J Med. 1996;334(7):413–9. doi:10.1056/NEJM199602153340701. First study demonstrating the direct association between environmental disasters such as earthquake and sudden cardiac death.

    Article  CAS  PubMed  Google Scholar 

  13. Sato H, Tateishi H, T. U. Takotsubo-type cardiomyopathy due to multivessel spasm. In: Kodama K, Haze K, Hon M, eds. Clinical Aspect of Myocardial Injury: From Ischemia to Heart Failure. Tokyo, Japan: Kagakuhyouronsha; 1990: 56–64. 1990. First description of Takotsubo cardiomyopathy.

  14. Watanabe H, Kodama M, Okura Y, Aizawa Y, Tanabe N, Chinushi M, et al. Impact of earthquakes on Takotsubo cardiomyopathy. JAMA. 2005;294(3):305–7. doi:10.1001/jama.294.3.305.

    Article  CAS  PubMed  Google Scholar 

  15. Fijalkowski M, Fijalkowska M, Nowak R, Rynkiewicz A. Takotsubo cardiomyopathy in a male during a Euro 2012 football match. Clin Res Cardiol. 2013;102(4):319–21. doi:10.1007/s00392-013-0536-7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman SP, Gerstenblith G, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48. doi:10.1056/NEJMoa043046. First study demonstrating that Takotsubo-stress induced cardiomyopathy is associated with increased plasma neurohumoral variables.

    Article  CAS  PubMed  Google Scholar 

  17. Sverrisdottir YB, Schultz T, Omerovic E, Elam M. Sympathetic nerve activity in stress-induced cardiomyopathy. Clin Auton Res. 2012;22(6):259–64. doi:10.1007/s10286-012-0162-x.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Vaccaro A, Despas F, Delmas C, Lairez O, Lambert E, Lambert G, et al. Direct evidences for sympathetic hyperactivity and baroreflex impairment in Tako Tsubo cardiopathy. PLoS One. 2014;9(3), e93278. doi:10.1371/journal.pone.0093278.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wilbert-Lampen U, Leistner D, Greven S, Pohl T, Sper S, Volker C, et al. Cardiovascular events during World Cup soccer. N Engl J Med. 2008;358(5):475–83. doi:10.1056/NEJMoa0707427. Study demonstrating the association between emotional stress and acute cardiovascular events.

    Article  CAS  PubMed  Google Scholar 

  20. Esler M, Jennings G, Lambert G. Measurement of overall and cardiac norepinephrine release into plasma during cognitive challenge. Psychoneuroendocrinology. 1989;14(6):477–81. First study demonstrating increased cardiac noradrenaline spillover in response to mental stress test in essential hypertension.

    Article  CAS  PubMed  Google Scholar 

  21. Deanfield JE, Shea M, Kensett M, Horlock P, Wilson RA, de Landsheere CM, et al. Silent myocardial ischaemia due to mental stress. Lancet. 1984;2(8410):1001–5. First study demonstrating reduced myocardial blood flow during mental stress test in patients with coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  22. Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD. The 'adrenaline hypothesis' of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens. 2000;18(6):717–23. First study indicating augmented adrenaline release from cardiac sympathetic nerves and the relevant contribution of adrenaline co-transmission in triggering noradrenaline release in essential hypertension development.

    Article  CAS  PubMed  Google Scholar 

  23. Muller JE, Kaufmann PG, Luepker RV, Weisfeldt ML, Deedwania PC, Willerson JT. Mechanisms precipitating acute cardiac events: review and recommendations of an NHLBI workshop. National Heart, Lung, and Blood Institute. Mechanisms precipitating acute cardiac events participants. Circulation. 1997;96(9):3233–9.

    Article  CAS  PubMed  Google Scholar 

  24. Everson-Rose SA, Roetker NS, Lutsey PL, Kershaw KN, Longstreth Jr WT, Sacco RL, et al. Chronic stress, depressive symptoms, anger, hostility, and risk of stroke and transient ischemic attack in the multi-ethnic study of atherosclerosis. Stroke. 2014;45(8):2318–23. doi:10.1161/STROKEAHA.114.004815.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Huo Y, Li JP, Qin XH, Huang YN, Wang XB, Gottesman RF, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China the CSPPT randomized clinical trial. JAMA. 2015;313(13):1325–35. doi:10.1001/jama.2015.2274.

    Article  CAS  PubMed  Google Scholar 

  26. Wilkinson DJ, Thompson JM, Lambert GW, Jennings GL, Schwarz RG, Jefferys D, et al. Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Arch Gen Psychiatry. 1998;55(6):511–20. First study demonstrating sympathetic activity in patients with panic disorder.

    Article  CAS  PubMed  Google Scholar 

  27. Mansour VM, Wilkinson DJ, Jennings GL, Schwarz RG, Thompson JM, Esler MD. Panic disorder: coronary spasm as a basis for cardiac risk? Med J Aust. 1998;168(8):390–2.

    CAS  PubMed  Google Scholar 

  28. Airaksinen KE. Autonomic mechanisms and sudden death after abrupt coronary occlusion. Ann Med. 1999;31(4):240–5. doi:10.3109/07853899908995886.

    Article  CAS  PubMed  Google Scholar 

  29. Ciecwierz D, Hering D, Somers VK, Wdowczyk-Szulc J, Kara T, Skarzynski P, et al. Sympathetic neural responses to coronary occlusion during balloon angioplasty. J Hypertens. 2007;25(8):1650–4. doi:10.1097/HJH.0b013e3281cd40e1. First study demonstrating the acute effect of coronary balloon angioplasty on muscle sympathetic nerve activity in patients with coronary artery disease.

    Article  CAS  PubMed  Google Scholar 

  30. Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry. 1998;55(7):580–92.

    Article  CAS  PubMed  Google Scholar 

  31. Glassman AH, Shapiro PA. Depression and the course of coronary artery disease. Am J Psychiatry. 1998;155(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  32. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case–control study. Lancet. 2004;364(9438):953–62. doi:10.1016/S0140-6736(04)17019-0. Most relevant clinical trial demonstrating the relationship between psychosocial factors and myocardial infarction.

    Article  PubMed  Google Scholar 

  33. Penninx BW, Beekman AT, Honig A, Deeg DJ, Schoevers RA, van Eijk JT, et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry. 2001;58(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  34. Russ TC, Stamatakis E, Hamer M, Starr JM, Kivimaki M, Batty GD. Association between psychological distress and mortality: individual participant pooled analysis of 10 prospective cohort studies. Brit Med J. 2012;345. doi:10.1136/Bmj.E4933.

  35. Barton DA, Dawood T, Lambert EA, Esler MD, Haikerwal D, Brenchley C, et al. Sympathetic activity in major depressive disorder: identifying those at increased cardiac risk? J Hypertens. 2007;25(10):2117–24. doi:10.1097/HJH.0b013e32829baae7. First study demonstrating increased levels of cardiac noradrenaline spillover in major depressive disorder patients.

    Article  CAS  PubMed  Google Scholar 

  36. Steptoe A, Willemsen G. The influence of low job control on ambulatory blood pressure and perceived stress over the working day in men and women from the Whitehall II cohort. J Hypertens. 2004;22(5):915–20.

    Article  CAS  PubMed  Google Scholar 

  37. Timio M, Saronio P, Venanzi S, Gentili S, Verdura C, Timio F. Blood pressure in nuns in a secluded order: a 30-year follow-up. Miner Electrolyte Metab. 1999;25(1–2):73–9. First long-term follow-up study indicating the potential impact of stressfull environments on hypertension development and the importance of sympathetic activation on cardiovascular outcomes.

    Article  CAS  PubMed  Google Scholar 

  38. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45(4):522–5. doi:10.1161/01.HYP.0000160318.46725.46. First study demonstrating the impact of age and gender on sympathetic activation in healthy subjects.

    Article  CAS  PubMed  Google Scholar 

  39. Crump C, Winkleby MA, Sundquist K, Sundquist J. Comorbidities and mortality in persons with schizophrenia: a Swedish National Cohort Study. Am J Psychiatry. 2013;170(3):324–33. doi:10.1176/appi.ajp.2012.12050599.

    Article  PubMed  Google Scholar 

  40. Hennekens CH, Hennekens AR, Hollar D, Casey DE. Schizophrenia and increased risks of cardiovascular disease. Am Heart J. 2005;150(6):1115–21. doi:10.1016/j.ahj.2005.02.007.

    Article  PubMed  Google Scholar 

  41. Davidson M. Risk of cardiovascular disease and sudden death in schizophrenia. J Clin Psychiatry. 2002;63 Suppl 9:5–11.

    PubMed  Google Scholar 

  42. Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med. 2009;360(3):225–35. doi:10.1056/Nejmoa0806994. First study comparing the effects of typical and atypical antipsychotic drugs on sudden cardiac death.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Newcomer JW, Haupt DW. The metabolic effects of antipsychotic medications. Can J Psychiatr. 2006;51(8):480–91.

    Google Scholar 

  44. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9. doi:10.1016/S0140-6736(13)62192-3. First study demonstrating sustained blood pressure reduction out to 3 years following renal denervation in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  45. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9. doi:10.1093/eurheartj/ehu209. First randomized-controlled study demonstrating the long-term effect of renal denervation on sustained blood pressure reduction in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  46. Schneider RH, Grim CE, Rainforth MV, Kotchen T, Nidich SI, Gaylord-King C, et al. Stress reduction in the secondary prevention of cardiovascular disease: randomized, controlled trial of transcendental meditation and health education in Blacks. Circ Cardiovasc Qual Outcomes. 2012;5(6):750–8. doi:10.1161/CIRCOUTCOMES.112.967406. First study demonstrating the favourable effect of transcendental meditation in reducing cardiovascular outcomes.

    Article  PubMed  Google Scholar 

  47. Parati G, Izzo Jr JL, Gavish B. Respiration and blood pressure. In: Izzo Jr J, Sica D, Black HR, editors. Hypertension primer. Baltimore: Lippincott, Williams, and Wilkins; 2008. p. 136–8. Chapter 143.

    Google Scholar 

  48. Spicuzza L, Gabutti A, Porta C, Montano N, Bernardi L. Yoga and chemoreflex response to hypoxia and hypercapnia. Lancet. 2000;356(9240):1495–6. doi:10.1016/S0140-6736(00)02881-6. First study assessing the impact of long-term yoga on chemoreflex sensitivity.

    Article  CAS  PubMed  Google Scholar 

  49. Oneda B, Ortega KC, Gusmao JL, Araujo TG, Mion Jr D. Sympathetic nerve activity is decreased during device-guided slow breathing. Hypertens Res. 2010;33(7):708–12. doi:10.1038/hr.2010.74.

    Article  PubMed  Google Scholar 

  50. Hering D, Kucharska W, Kara T, Somers VK, Parati G, Narkiewicz K. Effects of acute and long-term slow breathing exercise on muscle sympathetic nerve activity in untreated male patients with hypertension. J Hypertens. 2013. doi:10.1097/HJH.0b013e32835eb2cf. First study assessing the long-term slow breathing effect on sympathetic activity in untreated essential hypertension.

    Google Scholar 

  51. Stults-Kolehmainen MA, Sinha R. The effects of stress on physical activity and exercise. Sports Med. 2014;44(1):81–121. doi:10.1007/s40279-013-0090-5.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Craft LL, Perna FM. The benefits of exercise for the clinically depressed. Prim Care Companion J Clin Psychiatry. 2004;6(3):104–11.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Blumenthal JA, Babyak MA, Moore KA, Craighead E, Herman S, Khatri P, et al. Effects of exercise training on older patients with major depression. Arch Intern Med. 1999;159(19):2349–56. doi:10.1001/archinte.159.19.2349.

    Article  CAS  PubMed  Google Scholar 

  54. DiLorenzo TM, Bargman EP, Stucky-Ropp R, Brassington GS, Frensch PA, LaFontaine T. Long-term effects of aerobic exercise on psychological outcomes. Prev Med. 1999;28(1):75–85. doi:10.1006/pmed.1998.0385.

    Article  CAS  PubMed  Google Scholar 

  55. Lawlor DA, Hopker SW. The effectiveness of exercise as an intervention in the management of depression: systematic review and meta-regression analysis of randomised controlled trials. Br Med J. 2001;322(7289):763–7. doi:10.1136/bmj.322.7289.763.

    Article  CAS  Google Scholar 

  56. Allen EV, Adson AW. Physiologic effects of extensive sympathectomy for essential hypertension—further observations. Ann Intern Med. 1938;11(12):2151–71.

    Article  Google Scholar 

  57. Hoobler SW, Manning JT, Paine WG, Mc CS, Helcher PO, Renfert Jr H, et al. The effects of splanchnicectomy on the blood pressure in hypertension; a controlled study. Circulation. 1951;4(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  58. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26(5):861–5.

    Article  CAS  PubMed  Google Scholar 

  59. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25(4 Pt 2):878–82. First study demonstrating the contribution of afferent renal nerves from the failing kidney to the brain stem resulting in blood pressure elevation and sympathetic activation.

    Article  CAS  PubMed  Google Scholar 

  60. Ferrier C, Jennings GL, Eisenhofer G, Lambert G, Cox HS, Kalff V, et al. Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens. 1993;11(11):1217–27. First study demonstrating increased brain noradrenaline turnover in the pathophysiology of human essential hypertension.

    Article  CAS  PubMed  Google Scholar 

  61. Lambert GW, Hering D, Esler MD, Marusic P, Lambert EA, Tanamas SK, et al. Health-related quality of life after renal denervation in patients with treatment-resistant hypertension. Hypertension. 2012;60(6):1479–84. doi:10.1161/HYPERTENSIONAHA.112.200865. First study demonstrating an improvement in several aspects of quality of life in patients with resistant hypertension following renal denervation.

    Article  CAS  PubMed  Google Scholar 

  62. Lenski D, Kindermann I, Lenski M, Ukena C, Bunz M, Mahfoud F, et al. Anxiety, depression, quality of life and stress in patients with resistant hypertension before and after catheter-based renal sympathetic denervation. Eurointervention. 2013;9(6):700–8. doi:10.4244/Eijv916a114.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr Schlaich is supported by career fellowships from the NHMRC, is an investigator in studies sponsored by Medtronic, serves on scientific advisory boards for Abbott (formerly Solvay) Pharmaceuticals, BI, Novartis Pharmaceuticals, BI and Medtronic and has received honoraria and travel support from Abbott, BI, Servier, Novartis and Medtronic. The laboratories of Dr Schlaich receive research funding from Medtronic, Abbott Pharmaceuticals, Otsuka and Servier Australia.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmara Hering.

Additional information

This article is part of the Topical Collection on Device-Based Approaches for Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hering, D., Lachowska, K. & Schlaich, M. Role of the Sympathetic Nervous System in Stress-Mediated Cardiovascular Disease. Curr Hypertens Rep 17, 80 (2015). https://doi.org/10.1007/s11906-015-0594-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0594-5

Keywords

Navigation