Skip to main content

Advertisement

Log in

Exercise, the Brain, and Hypertension

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Exercise training is the cornerstone in the prevention and management of hypertension and atherosclerotic cardiovascular disease. However, blood pressure (BP) response to exercise is exaggerated in hypertension often to the range that raises the safety concern, which may prohibit patients from regular exercise. This augmented pressor response is shown to be related to excessive sympathetic stimulation caused by overactive muscle reflex. Exaggerated sympathetic-mediated vasoconstriction further contributes to the rise in BP during exercise in hypertension. Exercise training has been shown to reduce both exercise pressor reflex and attenuate the abnormal vasoconstriction. Hypertension also contributes to cognitive impairment, and exercise training has been shown to improve cognitive function through both BP-dependent and BP-independent pathways. Additional studies are still needed to determine if newer modes of exercise training such as high-intensity interval training may offer advantages over traditional continuous moderate training in improving BP and brain health in hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the American Heart Association. Hypertension. 2013;61(6):1360–83. This AHA scientific statement summarizes the available evidence and makes evidence based recommendations on exercise and other non-pharmacologic modalities for reducing blood pressure. Dynamic aerobic exercise received a class I, level of evidence A for BP lowering effect, Dynamic resistance exercise received a class IIA, level of evidence B and Isometric handgrip exercise received Class IIB, level of evidence C.

    Article  CAS  PubMed  Google Scholar 

  2. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.

    Article  PubMed  Google Scholar 

  3. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473. This article analyzed the literature on different forms of exercise training and estimated the blood pressure lowering effect of each mode of exercise.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wiley RL, Dunn CL, Cox RH, Hueppchen NA, Scott MS. Isometric exercise training lowers resting blood pressure. Med Sci Sports Exerc. 1992;24(7):749–54.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251–6.

    Article  PubMed  Google Scholar 

  6. Millar PJ, MacDonald MJ, Bray SR, McCartney N. Isometric handgrip exercise improves acute neurocardiac regulation. Eur J Appl Physiol. 2009;107(5):509–15.

    Article  PubMed  Google Scholar 

  7. Wiles JD, Coleman DA, Swaine IL. The effects of performing isometric training at two exercise intensities in healthy young males. Eur J Appl Physiol. 2010;108(3):419–28.

    Article  PubMed  Google Scholar 

  8. Stiller-Moldovan C, Kenno K, McGowan CL. Effects of isometric handgrip training on blood pressure (resting and 24 h ambulatory) and heart rate variability in medicated hypertensive patients. Blood Press Monit. 2012;17(2):55–61.

    Article  PubMed  Google Scholar 

  9. Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23(5):620–6.

    CAS  PubMed  Google Scholar 

  10. Badrov MB, Bartol CL, DiBartolomeo MA, Millar PJ, McNevin NH, McGowan CL. Effects of isometric handgrip training dose on resting blood pressure and resistance vessel endothelial function in normotensive women. Eur J Appl Physiol. 2013;113(8):2091–100.

    Article  PubMed  Google Scholar 

  11. Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45(5):679–92. This meta-analysis of the available literature showed interval was more effective that MICT in improving vascular function.

    Article  PubMed  Google Scholar 

  12. Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Nemoto K, Gen-no H, Masuki S, Okazaki K, Nose H. Effects of high-intensity interval walking training on physical fitness and blood pressure in middle-aged and older people. Mayo Clin Proc. 2007;82(7):803–11.

    Article  PubMed  Google Scholar 

  14. Molmen-Hansen HE, Stolen T, Tjonna AE, Aamot IL, Ekeberg IS, Tyldum GA, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2011;19(2):151–60.

    Article  PubMed  Google Scholar 

  15. Collier SR, Frechette V, Sandberg K, Schafer P, Ji H, Smulyan H, et al. Sex differences in resting hemodynamics and arterial stiffness following 4 weeks of resistance versus aerobic exercise training in individuals with pre-hypertension to stage 1 hypertension. Biol Sex Differ. 2011;2(1):9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667–75.

    Article  CAS  PubMed  Google Scholar 

  17. Guimaraes GV, Ciolac EG, Carvalho VO, D’Avila VM, Bortolotto LA, Bocchi EA. Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens Res. 2010;33(6):627–32.

    Article  CAS  PubMed  Google Scholar 

  18. Ciolac EG, Bocchi EA, Bortolotto LA, Carvalho VO, Greve JM, Guimaraes GV. Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res. 2010;33(8):836–43.

    Article  CAS  PubMed  Google Scholar 

  19. Murphy MN, Mizuno M, Mitchell JH, Smith SA. Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol. 2011;301(4):H1191–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kindig AE, Hayes SG, Kaufman MP. Purinergic 2 receptor blockade prevents the responses of group IV afferents to post-contraction circulatory occlusion. J Physiol. 2007;578(Pt 1):301–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mizuno M, Murphy MN, Mitchell JH, Smith SA. Skeletal muscle reflex-mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;300(3):H968–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Murphy MN, Mizuno M, Downey RM, Squiers JJ, Squiers KE, Smith SA. Neuronal nitric oxide synthase expression is lower in areas of the nucleus tractus solitarius excited by skeletal muscle reflexes in hypertensive rats. Am J Physiol Heart Circ Physiol. 2013;304(11):H1547–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vongpatanasin W, Wang Z, Arbique D, Arbique G, Adams-Huet B, Mitchell JH, et al. Functional sympatholysis is impaired in hypertensive humans. J Physiol. 2011;589(Pt 5):1209–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Smith SA, Leal AK, Murphy MN, Downey RM, Mizuno M. Muscle mechanoreflex overactivity in hypertension: a role for centrally-derived nitric oxide. Auton Neurosci. 2015;188:58–63. This is a comprehensive review of the literature addressing mechanistic role of centrally - derived NO in modulating mechanoreflex reflex in hypertension.

    Article  CAS  PubMed  Google Scholar 

  25. Leal AK, Mitchell JH, Smith SA. Treatment of muscle mechanoreflex dysfunction in hypertension: effects of L-arginine dialysis in the nucleus tractus solitarii. Exp Physiol. 2013;98(9):1337–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Mizuno M, Downey RM, Mitchell JH, Auchus RJ, Smith SA, Vongpatanasin W. Aldosterone and salt loading independently exacerbate the exercise pressor reflex in rats. Hypertension. 2015;66(3):627–33. This is a recent paper that shows a novel role of aldosterone and dietary sodium in EPR.

    Article  CAS  PubMed  Google Scholar 

  27. Yamauchi K, Tsuchimochi H, Stone AJ, Stocker SD, Kaufman MP. Increased dietary salt intake enhances the exercise pressor reflex. Am J Physiol Heart Circ Physiol. 2014;306(3):H450–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mizuno M, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA. Exercise training improves functional sympatholysis in spontaneously hypertensive rats through a nitric oxide-dependent mechanism. Am J Physiol Heart Circ Physiol. 2014;307(2):H242–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mizuno M, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats. American journal of physiology Heart and circulatory physiology. 2015 :ajpheart 00358 2015.

  30. Nelson AJ, Juraska JM, Ragan BG, Iwamoto GA. Effects of exercise training on dendritic morphology in the cardiorespiratory and locomotor centers of the mature rat brain. J Appl Physiol. 2010;108(6):1582–90.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nelson AJ, Iwamoto GA. Reversibility of exercise-induced dendritic attenuation in brain cardiorespiratory and locomotor areas following exercise detraining. J Appl Physiol. 2006;101(4):1243–51.

    Article  PubMed  Google Scholar 

  32. Ichiyama RM, Gilbert AB, Waldrop TG, Iwamoto GA. Changes in the exercise activation of diencephalic and brainstem cardiorespiratory areas after training. Brain Res. 2002;947(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  33. Sinoway L, Shenberger J, Leaman G, Zelis R, Gray K, Baily R, et al. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise. J Appl Physiol. 1996;81(4):1778–84.

    CAS  PubMed  Google Scholar 

  34. Mostoufi-Moab S, Widmaier EJ, Cornett JA, Gray K, Sinoway LI. Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip. J Appl Physiol. 1998;84(1):277–83.

    CAS  PubMed  Google Scholar 

  35. Tarumi T, Zhang R. Cerebral hemodynamics of the aging brain: risk of Alzheimer disease and benefit of aerobic exercise. Front Physiol. 2014;5:6.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–17.

    Article  CAS  PubMed  Google Scholar 

  37. Lee MC, Okamoto M, Liu YF, Inoue K, Matsui T, Nogami H, et al. Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling. J Appl Physiol. 2012;113(8):1260–6 (Bethesda, Md : 1985).

    Article  PubMed  Google Scholar 

  38. Kishi T, Sunagawa K. Exercise training plus calorie restriction causes synergistic protection against cognitive decline via up-regulation of BDNF in hippocampus of stroke-prone hypertensive rats. Conf Proc. 2012;2012:6764–7.

    CAS  Google Scholar 

  39. Ruscheweyh R, Willemer C, Kruger K, Duning T, Warnecke T, Sommer J, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32(7):1304–19.

    Article  CAS  PubMed  Google Scholar 

  40. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Voss MW, Nagamatsu LS, Liu-Ambrose T, Kramer AF. Exercise, brain, and cognition across the life span. J Appl Physiol. 2011;111(5):1505–13.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Bechara RG, Lyne R, Kelly AM. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat. Behav Brain Res. 2014;275:297–306.

    Article  CAS  PubMed  Google Scholar 

  43. Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Okonkwo OC, Schultz SA, Oh JM, Larson J, Edwards D, Cook D, et al. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014;83((19):1753–60. This study showed that exercise decreased amyloid beta deposition in preclinical AD providing a strong link between exercise and Alzheimer’s disease.

    Article  Google Scholar 

  45. Ruiz JR, Gil-Bea F, Bustamante-Ara N, Rodrguez-Romo G, Fiuza-Luces C, Serra-Rexach JA, et al. Resistance training does not have an effect on cognition or related serum biomarkers in nonagenarians: a randomized controlled trial. Int J Sports Med. 2015;36(1):54–60.

    CAS  PubMed  Google Scholar 

  46. Hotting K, Reich B, Holzschneider K, Kauschke K, Schmidt T, Reer R, et al. Differential cognitive effects of cycling versus stretching/coordination training in middle-aged adults. Health Psychol. 2012;31(2):145–55.

    Article  PubMed  Google Scholar 

  47. Pastula RM, Stopka CB, Delisle AT, Hass CJ. Effect of moderate-intensity exercise training on the cognitive function of young adults with intellectual disabilities. J Strength Cond Res. 2012;26(12):3441–8.

    Article  PubMed  Google Scholar 

  48. Wiesmann M, Kiliaan AJ, Claassen JA. Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab. 2013;33(11):1696–706. This paper examines the interconnectedness of vascular dementia, Alzheimer’s dementia and hypertension as these conditions share both decreased cerebral blood flow and increased amyloid beta deposition in the brain.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kruyer A, Soplop N, Strickland S, Norris EH. Chronic hypertension leads to neurodegeneration in the TgSwDI mouse model of Alzheimer’s disease. Hypertension. 2015;66(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  50. Peltz CB, Corrada MM, Berlau DJ, Kawas CH. Cognitive impairment in nondemented oldest-old: prevalence and relationship to cardiovascular risk factors. Alzheimers Dement. 2012;8(2):87–94.

    Article  PubMed Central  PubMed  Google Scholar 

  51. White WB, Wolfson L, Wakefield DB, Hall CB, Campbell P, Moscufo N, et al. Average daily blood pressure, not office blood pressure, is associated with progression of cerebrovascular disease and cognitive decline in older people. Circulation. 2011;124(21):2312–9.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  PubMed  Google Scholar 

  53. Schjerve IE, Tyldum GA, Tjonna AE, Stolen T, Loennechen JP, Hansen HE, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond). 2008;115(9):283–93.

    Article  Google Scholar 

  54. Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013;45(8):1436–42.

    Article  PubMed  Google Scholar 

  55. Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: A pilot study. J Appl Physiol (1985). 2014 :jap 00518 2014. This small study of 15 diastolic heart failure patients showed that 4 weeks of high intensity interval training resulted in a significant improvement in both cardiorespiratory fitness and LV diastolic dysfunction when compared to moderate intensity exercise. No improvement was observed in the moderate intensity group.

  56. Mitranun W, Deerochanawong C, Tanaka H, Suksom D. Continuous vs interval training on glycemic control and macro- and microvascular reactivity in type 2 diabetic patients. Scand J Med Sci Sports. 2014;24(2):e69–76.

    Article  CAS  PubMed  Google Scholar 

  57. Klonizakis M, Moss J, Gilbert S, Broom D, Foster J, Tew GA. Low-volume high-intensity interval training rapidly improves cardiopulmonary function in postmenopausal women. Menopause. 2014;21(10):1099–105.

    Article  PubMed  Google Scholar 

  58. Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA, et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol. 2015;179:203–10.

    Article  PubMed  Google Scholar 

  59. Stensvold D, Viken H, Rognmo O, Skogvoll E, Steinshamn S, Vatten LJ, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open. 2015;5(2):e007519. This randomized controlled trial is looking at the effect of 5 years of exercise training (high intensity and moderate intensity) on mortality in the elderly. This will be one of the largest exercise studies to date with a planned recruitment goal of 1500 patients.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Nascimento CM, Pereira JR, de Andrade LP, Garuffi M, Talib LL, Forlenza OV, et al. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res. 2014;11(8):799–805. In this study, exercise reduced inflammatory markers and improved cognitive function in patients with mild cognitive impairment. This supports the use of exercise to attenuate age related cognitive decline.

    Article  PubMed  Google Scholar 

  61. de Freitas Brito A, Coutinho de Oliveira CV, Brasileiro-Santos MD, Sarmento da Nobrega TK, Lucia de Moraes Forjaz C, da Cruz Santos A. high-intensity resistance exercise promotes postexercise hypotension greater than moderate intensity and affects cardiac autonomic responses in women who are hypertensive. Journal of strength and conditioning research / National Strength & Conditioning Association. 2015.

  62. Dias T, Polito M. Acute cardiovascular response during resistance exercise with whole-body vibration in sedentary subjects: a randomized cross-over trial. Res Sports Med. 2015;2:1–12.

    CAS  Google Scholar 

  63. Moraes MR, Bacurau RF, Simoes HG, Campbell CS, Pudo MA, Wasinski F, et al. Effect of 12 weeks of resistance exercise on post-exercise hypotension in stage 1 hypertensive individuals. J Hum Hypertens. 2012;26(9):533–9.

    Article  CAS  PubMed  Google Scholar 

  64. Ghroubi S, Elleuch W, Abid L, Abdenadher M, Kammoun S, Elleuch MH. Effects of a low-intensity dynamic-resistance training protocol using an isokinetic dynamometer on muscular strength and aerobic capacity after coronary artery bypass grafting. Ann Phys Rehabil Med. 2013;56(2):85–101.

    Article  CAS  PubMed  Google Scholar 

  65. Drigny J, Gremeaux V, Dupuy O, Gayda M, Bherer L, Juneau M, et al. Effect of interval training on cognitive functioning and cerebral oxygenation in obese patients: a pilot study. J Rehabil Med. 2014;46(10):1050–4.

    Article  PubMed  Google Scholar 

  66. Chin LM, Keyser RE, Dsurney J, Chan L. Improved cognitive performance following aerobic exercise training in people with traumatic brain injury. Arch Phys Med Rehabil. 2015;96(4):754–9.

    Article  PubMed  Google Scholar 

  67. Hillman CH, Pontifex MB, Castelli DM, Khan NA, Raine LB, Scudder MR, et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134(4):e1063–71.

    Article  PubMed  Google Scholar 

  68. Nouchi R, Taki Y, Takeuchi H, Sekiguchi A, Hashizume H, Nozawa T, et al. Four weeks of combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people: evidence from a randomized controlled trial. Age. 2014;36(2):787–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Forte R, Boreham CA, Leite JC, De Vito G, Brennan L, Gibney ER, et al. Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging. 2013;8:19–27.

    Article  PubMed Central  PubMed  Google Scholar 

  70. David FJ, Robichaud JA, Leurgans SE, Poon C, Kohrt WM, Goldman JG, et al. Exercise improves cognition in Parkinson’s disease: the PRET-PD randomized, clinical trial. Mov Disord. 2015;6.

  71. Loprinzi PD, Kane CJ. Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clin Proc. 2015;90(4):450–60.

    Article  PubMed  Google Scholar 

  72. Nagamatsu LS, Chan A, Davis JC, Beattie BL, Graf P, Voss MW, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861893.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Cancela JM, Ayan C, Varela S, Seijo M. Effects of a long-term aerobic exercise intervention on institutionalized patients with dementia. J Sci MedSport. 2015;4.

  74. Yu F, Bronas UG, Konety S, Nelson NW, Dysken M, Jack Jr C, et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (The FIT-AD trial). Trials. 2014;15:394.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Drs. Peri-Okonny, Fu, Zhang, and Vongpatanasin declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding Support

Dr. Vongpatanasin is supported by R01HL078782 and RO1HL113738.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanpen Vongpatanasin.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peri-Okonny, P., Fu, Q., Zhang, R. et al. Exercise, the Brain, and Hypertension. Curr Hypertens Rep 17, 82 (2015). https://doi.org/10.1007/s11906-015-0593-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0593-6

Keywords

Navigation