Skip to main content

Advertisement

Log in

Influence of Physical Activity on Hypertension and Cardiac Structure and Function

  • Hypertension and the Heart (SD Solomon and O Vardeny, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The global burden of hypertension is rising and accounts for substantial morbidity and mortality. Lifestyle factors such as diet and physical inactivity contribute to this burden, further highlighting the need for prevention efforts to curb this public health epidemic. Regular physical activity is associated with lower blood pressure, reduced cardiovascular risk, and cardiac remodeling. While exercise and hypertension can both be associated with the development of left ventricular hypertrophy (LVH), the cardiac remodeling from hypertension is pathologic with an associated increase in myocyte hypertrophy, fibrosis, and risk of heart failure and mortality, whereas LVH in athletes is generally non-pathologic and lacks the fibrosis seen in hypertension. In hypertensive patients, physical activity has been associated with paradoxical regression or prevention of LVH, suggesting a mechanism by which exercise can benefit hypertensive patients. Further studies are needed to better understand the mechanisms underlying the benefits of physical activity in the hypertensive heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Campbell NRC, Lackland DT, Niebylski ML, the World Hypertension League and International Society of Hypertension Executive Committees. High blood pressure: why prevention and control are urgent and important—a 2014 fact sheet from the World Hypertension League and the International Society of Hypertension. J Clin Hypertens. 2014;16:551–3.

    Article  Google Scholar 

  2. Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, et al. Prognostic value of left ventricular mass normalized to different body size indexes: findings from the PAMELA population. J Hypertens. 2015;33:1082–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pierdomenico SD, Lapenna D, Cuccurullo F. Regression of echocardiographic left ventricular hypertrophy after 2 years of therapy reduces cardiovascular risk in patients with essential hypertension. Am J Hypertens. 2008;21:464–70.

    Article  PubMed  Google Scholar 

  4. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8.

    Article  PubMed  Google Scholar 

  5. Rodilla E, Pascual JM, Costa JA, Martin J, Gonzalez C, Redon J. Regression of left ventricular hypertrophy and microalbuminuria changes during antihypertensive treatment. J Hypertens. 2013;31:1683–91.

    Article  CAS  PubMed  Google Scholar 

  6. Diaz KM, Shimbo D. Physical activity and the prevention of hypertension. Curr Hypertens Rep. 2013;15:659–68.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure–regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46:667–75.

    Article  CAS  PubMed  Google Scholar 

  8. Leitzmann MF, Park Y, Blair A, et al. Physical activity recommendations and decreased risk of mortality. Arch Intern Med. 2007;167:2453–60.

    Article  PubMed  Google Scholar 

  9. Rossi A, Dikareva A, Bacon SL, Daskalopoulou SS. The impact of physical activity on mortality in patients with high blood pressure: a systematic review. J Hypertens. 2012;30:1277–88.

    Article  CAS  PubMed  Google Scholar 

  10. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint national committee (jnc 8). JAMA. 2014;311:507–20.

    Article  CAS  PubMed  Google Scholar 

  11. Members AF, Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J. 2013;34:2159–219.

    Article  Google Scholar 

  12. Mendis S, World Health Organization. Global status report on noncommunicable diseases 2014. 2014.

  13. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  14. Fagard RH. Exercise therapy in hypertensive cardiovascular disease. Prog Cardiovasc Dis. 2011;53:404–11.

    Article  PubMed  Google Scholar 

  15. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta‐analysis. J Am Heart Assoc. 2013;2, e004473. A systematic review and meta-analysis of 93 studies summarizing the effects of exercise on resting blood pressure.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Carlson DJ, Dieberg G, Hess NC, Millar PJ, Smart NA. Isometric exercise training for blood pressure management: a systematic review and meta-analysis. Mayo Clin Proc. 2014;89:327–34.

    Article  PubMed  Google Scholar 

  17. Pescatello LS. Exercise and hypertension: recent advances in exercise prescription. Curr Hypertens Rep. 2005;7:281–6.

    Article  PubMed  Google Scholar 

  18. Ash GI, Eicher JD, Pescatello LS. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: the 2013 update. Curr Hypertens Rev. 2013;9:130–47.

    Article  CAS  PubMed  Google Scholar 

  19. Hamer M. The anti-hypertensive effects of exercise: integrating acute and chronic mechanisms. Sports Med Auckl NZ. 2006;36:109–16.

    Article  Google Scholar 

  20. Semlitsch T, Jeitler K, Hemkens LG, Horvath K, Nagele E, Schuermann C, et al. Increasing physical activity for the treatment of hypertension: a systematic review and meta-analysis. Sports Med. 2013;43:1009–23. A systematic review and meta-analysis of 9 studies summarizing the impact of physical activity on treatment of hypertension.

    Article  PubMed  Google Scholar 

  21. Pescatello LS, Blanchard BE, Tsongalis GJ, O’Connell AA, Gordish-Dressman H, Maresh CM, et al. A comparison of the genetic and clinical profile of men that respond and do not respond to the immediate antihypertensive effects of aerobic exercise. Appl Clin Genet. 2008;1:7–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling mechanisms: part 1 of 2. Circulation. 2013;128:388–400.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wachtell K, Dahlöf B, Rokkedal J, Papademetriou V, Nieminen MS, Smith G, et al. Change of left ventricular geometric pattern after 1 year of antihypertensive treatment: the Losartan Intervention For Endpoint reduction in hypertension (LIFE) study. Am Heart J. 2002;144:1057–64.

    Article  CAS  PubMed  Google Scholar 

  24. Vaziri SM, Larson MG, Lauer MS, Benjamin EJ, Levy D. Influence of blood pressure on left atrial size. Tthe Framingham Heart Study. Hypertension. 1995;25:1155–60.

    Article  CAS  PubMed  Google Scholar 

  25. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. Am J Hypertens. 2013;26:456–64.

    Article  PubMed  Google Scholar 

  26. De Simone G. Left ventricular concentric geometry is associated with impaired relaxation in hypertension: the HyperGEN study. Eur Heart J. 2005;26:1039–45.

    Article  PubMed  Google Scholar 

  27. Cuspidi C, Meani S, Fusi V, Valerio C, Catini E, Sala C, et al. Prevalence and correlates of left atrial enlargement in essential hypertension: role of ventricular geometry and the metabolic syndrome: the Evaluation of Target Organ Damage in Hypertension study. J Hypertens. 2005;23:875–82.

    Article  CAS  PubMed  Google Scholar 

  28. Wachtell K, Smith G, Gerdts E, Dahlöf B, Nieminen MS, Papademetriou V, et al. Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study)∗. Am J Cardiol. 2000;85:466–72.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuda M, Matsuda Y. Mechanism of left atrial enlargement related to ventricular diastolic impairment in hypertension. Clin Cardiol. 1996;19:954–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cuspidi C, Sala C, Muiesan ML, De Luca N, Schillaci G. Right ventricular hypertrophy in systemic hypertension: an updated review of clinical studies. J Hypertens. 2013;31:858–65.

    Article  CAS  PubMed  Google Scholar 

  31. Cuspidi C, Negri F, Giudici V, Valerio C, Meani S, Sala C, et al. Prevalence and clinical correlates of right ventricular hypertrophy in essential hypertension. J Hypertens. 2009;27:854–60.

    Article  CAS  PubMed  Google Scholar 

  32. Morganroth J, Maron BJ, Henry WL, Epstein SE. Comparative left ventricular dimensions in trained athletes. Ann Intern Med. 1975;82:521–4.

    Article  CAS  PubMed  Google Scholar 

  33. Pelliccia A, Maron MS, Maron BJ. Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis. 2012;54:387–96. A review detailing the spectrum of cardiac remodeling in the athlete's heart compared hypertrophic cardiomyopathy.

    Article  PubMed  Google Scholar 

  34. Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol. 2008;104:1121–8.

    Article  PubMed  Google Scholar 

  35. Weiner RB, Wang F, Isaacs SK, Malhotra R, Berkstresser B, Kim JH, et al. Blood pressure and left ventricular hypertrophy during american-style football participation. Circulation. 2013;128:524–31.

    Article  PubMed  Google Scholar 

  36. Baggish AL, Yared K, Weiner RB, Wang F, Demes R, Picard MH, et al. Differences in cardiac parameters among elite rowers and sub-elite rowers. Med Sci Sports Exerc. 2009;1.

  37. Lauschke J, Maisch B. Athlete’s heart or hypertrophic cardiomyopathy? Clin Res Cardiol. 2009;98:80–8.

    Article  CAS  PubMed  Google Scholar 

  38. Utomi V, Oxborough D, Whyte GP, Somauroo J, Sharma S, Shave R, et al. Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete’s. Heart. 2013;99:1727–33. A systematic review and meta-analysis of 92 studies summarizing the cardiac remodeling of the athlete's heart.

    Article  PubMed  Google Scholar 

  39. Naylor LH, George K, O’Driscoll G, Green DJ. The athlete’s heart: a contemporary appraisal of the “Morganroth hypothesis.”. Sports Med Auckl NZ. 2008;38:69–90.

    Article  Google Scholar 

  40. Gerche AL, Timothy R, Claessen G. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series). Pulm Circ. 2014;4:407–16.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Pagourelias ED, Kouidi E, Efthimiadis GK, Deligiannis A, Geleris P, Vassilikos V. Right atrial and ventricular adaptations to training in male Caucasian athletes: an echocardiographic study. J Am Soc Echocardiogr. 2013;26:1344–52.

    Article  PubMed  Google Scholar 

  42. La Gerche A, Burns AT, D’Hooge J, MacIsaac AI, Heidbüchel H, Prior DL. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25:253–62.e1.

  43. Kovacs R, Baggish AL. Cardiovascular adaptation in athletes. Trends Cardiovasc Med. 2015. A recent review of physiologic vs. pathologic cardiac remodeling of the athlete's heart.

  44. Pelliccia A, Maron BJ, Di Paolo FM, Biffi A, Quattrini FM, Pisicchio C, et al. Prevalence and clinical significance of left atrial remodeling in competitive athletes. J Am Coll Cardiol. 2005;46:690–6.

    Article  PubMed  Google Scholar 

  45. Rawlins J, Carre F, Kervio G, Papadakis M, Chandra N, Edwards C, et al. Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. Circulation. 2010;121:1078–85.

    Article  CAS  PubMed  Google Scholar 

  46. Pelliccia A, Maron BJ, Culasso F, Spataro A, Caselli G. Athlete’s heart in women: echocardiographic characterization of highly trained elite female athletes. JAMA. 1996;276:211–5.

    Article  CAS  PubMed  Google Scholar 

  47. Basavarajaiah S, Boraita A, Whyte G, Wilson M, Carby L, Shah A, et al. Ethnic differences in left ventricular remodeling in highly-trained athletes. J Am Coll Cardiol. 2008;51:2256–62.

    Article  PubMed  Google Scholar 

  48. La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33:998–1006.

    Article  PubMed  Google Scholar 

  49. Wilson M, O’Hanlon R, Prasad S, Deighan A, MacMillan P, Oxborough D, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 2011;110:1622–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Knackstedt C, Schmidt K, Syrocki L, Lang A, Bjarnason-Wehrens B, Hildebrandt U, et al. Long-term follow-up of former world-class swimmers: evaluation of cardiovascular function. Heart Vessel. 2015;30:369–78.

    Article  Google Scholar 

  51. Pelliccia A, Maron BJ, Luca RD, Paolo FMD, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105:944–9.

    Article  PubMed  Google Scholar 

  52. Maron BJ, Pelliccia A, Spataro A, Granata M. Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. Br Heart J. 1993;69:125–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Weiner RB, Wang F, Berkstresser B, Kim J, Wang TJ, Lewis GD, et al. Regression of “Gray Zone” exercise-induced concentric left ventricular hypertrophy during prescribed detraining. J Am Coll Cardiol. 2012;59:1992–4.

    Article  PubMed  Google Scholar 

  54. Kokkinos PF, Narayan P, Colleran JA, Pittaras A, Notargiacomo A, Reda D, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333:1462–7.

    Article  CAS  PubMed  Google Scholar 

  55. Turner MJ, Spina RJ, Kohrt WM, Ehsani AA. Effect of endurance exercise training on left ventricular size and remodeling in older adults with hypertension. J Gerontol A Biol Sci Med Sci. 2000;55:M245–51.

    Article  CAS  PubMed  Google Scholar 

  56. Hinderliter A, Sherwood A, Gullette ED, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162:1333–9.

    Article  PubMed  Google Scholar 

  57. Boman K, Olofsson M, Dahlöf B, Gerdts E, Nieminen MS, Papademetriou V, et al. Left ventricular structure and function in sedentary and physically active subjects with left ventricular hypertrophy (the LIFE Study). Am J Cardiol. 2005;95:280–3.

    Article  PubMed  Google Scholar 

  58. Palatini P, Visentin P, Dorigatti F, Guarnieri C, Santonastaso M, Cozzio S, et al. Regular physical activity prevents development of left ventricular hypertrophy in hypertension. Eur Heart J. 2009;30:225–32. Prospective study demonstrating lower risk of left ventricular hypertrophy in those who exercise compared to sedentary individuals with hypertension.

    Article  PubMed  Google Scholar 

  59. Pitsavos C, Chrysohoou C, Koutroumbi M, Aggeli C, Kourlaba G, Panagiotakos D, et al. The impact of moderate aerobic physical training on left ventricular mass, exercise capacity and blood pressure response during treadmill testing in borderline and mildly hypertensive males. Hell. J Cardiol HJC Hellēnikē Kardiologikē Epitheōrēsē. 2011;52:6–14. Randomized-controlled trial demonstrating a significant decrease in left ventricular mass index in the exercise group.

    Google Scholar 

  60. Boman K, Gerdts E, Wachtell K, Dahlöf B, Nieminen MS, Olofsson M, et al. Exercise and cardiovascular outcomes in hypertensive patients in relation to structure and function of left ventricular hypertrophy: the LIFE study. Eur J Cardiovasc Prev Rehabil. 2009;16:242–8.

    Article  PubMed  Google Scholar 

  61. Baglivo HP, Fabregues G, Burrieza H, Esper RC, Talarico M, Esper RJ. Effect of moderate physical training on left ventricular mass in mild hypertensive persons. Hypertension. 1990;15:I153.

    Article  CAS  PubMed  Google Scholar 

  62. Reid CM, Dart AM, Dewar EM, Jennings GL. Interactions between the effects of exercise and weight loss on risk factors, cardiovascular haemodynamics and left ventricular structure in overweight subjects. J Hypertens. 1994;12:291–302.

    CAS  PubMed  Google Scholar 

  63. Guirado GN, Damatto RL, Matsubara BB, Roscani MG, Fusco DR, Seki MM, et al. Combined exercise training in asymptomatic elderly with controlled hypertension: effects on functional capacity and cardiac diastolic function. Med Sci Monit. 2012;18:CR461–5.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Kelemen MH, Effron MB, Valenti SA, Stewart KJ. Exercise training combined with antihypertensive drug therapy: effects on lipids, blood pressure, and left ventricular mass. Jama. 1990;263:2766–71.

    Article  CAS  PubMed  Google Scholar 

  65. Weeks KL, McMullen JR. The athlete’s heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology. 2011;26:97–105. Overview of signaling mechanisms involved in physiologic and pathologic cardiac remodeling.

    Article  CAS  PubMed  Google Scholar 

  66. Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98:5–10. Review of signaling mechanisms involved in exercise-induced cardiac remodeling.

    Article  CAS  PubMed  Google Scholar 

  67. Mann N, Rosenzweig A. Can exercise teach us how to treat heart disease? Circulation. 2012;126:2625–35. In-depth review of cellular and molecular mechanisms involved in the cardiac response to exercise.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Frystyk J. Exercise and the growth hormone-insulin-like growth factor axis. Med Sci Sports Exerc. 2010;42:58–66.

    Article  CAS  PubMed  Google Scholar 

  69. McMullen JR, Shioi T, Huang W-Y, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110α) pathway. J Biol Chem. 2004;279:4782–93.

    Article  CAS  PubMed  Google Scholar 

  70. Yamashita K, Kajstura J, Discher DJ, Wasserlauf BJ, Bishopric NH, Anversa P, et al. Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1. Circ Res. 2001;88:609–14.

    Article  CAS  PubMed  Google Scholar 

  71. Serneri GGN, Boddi M, Modesti PA, Cecioni I, Coppo M, Padeletti L, et al. Increased cardiac sympathetic activity and insulin-like growth factor-I formation are associated with physiological hypertrophy in athletes. Circ Res. 2001;89:977–82.

    Article  CAS  Google Scholar 

  72. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113:2097–104.

    Article  CAS  PubMed  Google Scholar 

  73. McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, et al. Phosphoinositide 3-kinase (p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci. 2003;100:12355–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. McMullen JR, Amirahmadi F, Woodcock EA, Schinke-Braun M, Bouwman RD, Hewitt KA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci. 2007;104:612–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther. 2010;128:191–227. In-depth review of the molecular and cellular mechanisms associated with physiologic and pathologic cardiac hypertrophy.

    Article  CAS  PubMed  Google Scholar 

  76. Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998;280:574–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wettschureck N, Rütten H, Zywietz A, Gehring D, Wilkie TM, Chen J, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat Med. 2001;7:1236–40.

    Article  CAS  PubMed  Google Scholar 

  78. Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE, et al. Endurance training in the spontaneously hypertensive rat conversion of pathological into physiological cardiac hypertrophy. Hypertension. 2009;53:708–14.

    Article  CAS  PubMed  Google Scholar 

  79. Carneiro-Júnior MA, Pelúzio MCG, Silva CHO, Amorim PRS, Silva KA, Souza MO, et al. Exercise training and detraining modify the morphological and mechanical properties of single cardiac myocytes obtained from spontaneously hypertensive rats. Braz J Med Biol Res. 2010;43:1042–6.

    Article  PubMed  Google Scholar 

  80. Kolwicz SC, MacDonnell SM, Renna BF, Reger PO, Seqqat R, Rafiq K, et al. Left ventricular remodeling with exercise in hypertension. AJP Heart Circ Physiol. 2009;297:H1361–8.

    Article  CAS  Google Scholar 

  81. Kemi OJ, Wisløff U. Mechanisms of exercise-induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiol. 2010;199:425–39.

    Article  CAS  Google Scholar 

  82. Kemi OJ, Ceci M, Condorelli G, Smith GL, Wisloff U. Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur J Cardiovasc Prev Rehabil. 2008;15:145–8.

    Article  PubMed  Google Scholar 

  83. Collins HL. Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. AJP Heart Circ Physiol. 2004;288:H532–40.

    Article  Google Scholar 

  84. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. das Neves VJ. Exercise training in hypertension: role of microRNAs. World J Cardiol. 2014;6:713.

    Article  Google Scholar 

  86. Wei X, Liu X, Rosenzweig A. What do we know about the cardiac benefits of exercise? Trends Cardiovasc Med. 2014. Review of the clinical and molecular responses underlying the cardiovascular benefits of physical activity.

  87. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21:584–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Hegde reports grants from National Institutes of Health. Dr. Solomon declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Solomon.

Additional information

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, S.M., Solomon, S.D. Influence of Physical Activity on Hypertension and Cardiac Structure and Function. Curr Hypertens Rep 17, 77 (2015). https://doi.org/10.1007/s11906-015-0588-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0588-3

Keywords

Navigation