Skip to main content

Advertisement

Log in

Influence of Vascular Function and Pulsatile Hemodynamics on Cardiac Function

  • Hypertension and the Heart (SD Solomon and O Vardeny, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Interactions between cardiac and vascular structure and function normally are optimized to ensure delivery of cardiac output with modest pulsatile hemodynamic overhead. Aortic stiffening with age or disease impairs optimal ventricular-vascular coupling, increases pulsatile load, and contributes to left ventricular (LV) hypertrophy, reduced systolic function, and impaired diastolic relaxation. Aortic pulse pressure and timing of peak systolic pressure are well-known measures of hemodynamic ventricular-vascular interaction. Recent work has elucidated the importance of direct, mechanical coupling between the aorta and the heart. LV systolic contraction results in displacement of aortic and mitral annuli, thereby producing longitudinal stretch in the ascending aorta and left atrium, respectively. Force associated with longitudinal stretch increases systolic load on the LV. However, the resulting energy stored in the elastic elements of the proximal aorta during systole facilitates early diastolic LV recoil and rapid filling. This review discusses current views on hemodynamics and mechanics of ventricular-vascular coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 2010;56:563–70.

    Article  CAS  PubMed  Google Scholar 

  2. Nichols WW, Peterson JW, Denardo SJ, et al. Arterial stiffness, wave reflection amplitude and left ventricular afterload are increased in overweight individuals. Artery Res. 2013;7:222–9.

    Article  Google Scholar 

  3. Westerhof N, Lankhaar JW, Westerhof BE. The arterial Windkessel. Med Biol Eng Comput. 2009;47:131–41.

    Article  PubMed  Google Scholar 

  4. Mitchell GF. Clinical achievements of impedance analysis. Med Biol Eng Comput. 2009;47:153–63.

    Article  PubMed  Google Scholar 

  5. Bell V, Sigurdsson S, Westenberg JJ, et al. Relations between aortic stiffness and left ventricular structure and function in older participants in the age, gene/environment susceptibility—Reykjavik study. Circ Cardiovasc Imaging. 2015;8, e003039. This study observed an association between longitudinal stretch of the ascending aorta and LV structure and function in an older cohort. Greater aortic stiffness and less longitudinal stretch were associated with greater LV mass and late filling. Greater aortic work performed stretching the aorta in systole was associated with greater early filling in men and had no relation in women, suggesting a dramatic sex difference in the interaction between longitudinal aortic stretch and LV function that may relate to greater susceptibility of older women in developing HFpEF.

    Article  PubMed  Google Scholar 

  6. Redheuil A, Yu WC, Wu CO, et al. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension. 2010;55:319–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Antonini-Canterin F, Carerj S, Di Bello V, et al. Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist’s point of view. Eur J Echocardiogr. 2009;10:36–43.

    Article  PubMed  Google Scholar 

  8. Nichols WW, Denardo SJ, Wilkinson IB, et al. Effects of arterial stiffness, pulse wave velocity, and wave reflections on the central aortic pressure waveform. J Clin Hypertens (Greenwich). 2008;10:295–303.

    Article  Google Scholar 

  9. Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43:1239–45.

    Article  CAS  PubMed  Google Scholar 

  10. Borlaug BA, Melenovsky V, Redfield MM, et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol. 2007;50:1570–7.

    Article  PubMed  Google Scholar 

  11. Grossman W, Paulus WJ. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest. 2013;123:3701–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and prognosis. Circulation. 2000;102:470–9.

    Article  CAS  PubMed  Google Scholar 

  13. Russo C, Jin Z, Palmieri V, et al. Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function. Hypertension. 2012;60:362–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ye Z, Coutinho T, Pellikka PA, et al. Associations of alterations in pulsatile arterial load with left ventricular longitudinal strain. Am J Hypertens. 2015. doi:10.1093/ajh/hpv039. This study showed that proximal aortic stiffness, as assessed by Zc, was associated with impaired GLS and therefore impaired LV longitudinal function.

    Google Scholar 

  15. Cooper LL, Rong J, Benjamin EJ, et al. Components of hemodynamic load and cardiovascular events: the Framingham Heart Study. Circulation. 2015;131:354–61. This study demonstrated that forward wave amplitude and proximal aortic Zc were associated with an increased risk for a first major cardiovascular disease event.

    Article  PubMed  Google Scholar 

  16. Mitchell GF, Wang N, Palmisano JN, et al. Hemodynamic correlates of blood pressure across the adult age spectrum: noninvasive evaluation in the Framingham Heart Study. Circulation. 2010;122:1379–86.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol. 1992;19:1550–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rider OJ, Nethononda R, Petersen SE, et al. Concentric left ventricular remodeling and aortic stiffness: a comparison of obesity and hypertension. Int J Cardiol. 2013;167:2989–94.

    Article  PubMed  Google Scholar 

  19. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56:56–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lieb W, Gona P, Larson MG, et al. The natural history of left ventricular geometry in the community: clinical correlates and prognostic significance of change in LV geometric pattern. JACC Cardiovasc Imaging. 2014;7:870–8.

    Article  PubMed  Google Scholar 

  21. de Simone G, Devereux RB, Roman MJ, et al. Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23:600–6.

    Article  PubMed  Google Scholar 

  22. Pluim BM, Zwinderman AH, van der Laarse A, et al. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101:336–44.

    Article  CAS  PubMed  Google Scholar 

  23. Ben DA, Benessiano J, Poitevin P, et al. Arterial expansive remodeling induced by high flow rates. Am J Physiol. 1997;272:H851–8.

    Google Scholar 

  24. Farasat SM, Morrell CH, Scuteri A, et al. Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension. Hypertension. 2008;51:196–202.

    Article  CAS  PubMed  Google Scholar 

  25. Powell JT, Vine N, Crossman M. On the accumulation of D-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis. 1992;97:201–8.

    Article  CAS  PubMed  Google Scholar 

  26. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89:957–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Torjesen AA, Sigurethsson S, Westenberg JJ, et al. Pulse pressure relation to aortic and left ventricular structure in the age, gene/environment susceptibility (AGES)—Reykjavik study. Hypertension. 2014;64:756–61.

    Article  CAS  PubMed  Google Scholar 

  28. Chirinos JA, Segers P, Gupta AK, et al. Time-varying myocardial stress and systolic pressure-stress relationship: role in myocardial-arterial coupling in hypertension. Circulation. 2009;119:2798–807.

    Article  PubMed  Google Scholar 

  29. Saba PS, Roman MJ, Pini R, et al. Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects. J Am Coll Cardiol. 1993;22:1873–80.

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi S, Yano M, Kohno M, et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8.

    Article  CAS  PubMed  Google Scholar 

  31. Torjesen AA, Wang N, Larson MG, et al. Forward and backward wave morphology and central pressure augmentation in men and women in the Framingham Heart Study. Hypertension. 2014;64:259–65. Demonstrated that central aortic pressure augmentation is heavily influenced by ventricular ejection characteristics and shape, as well as amplitude and timing, of the reflected wave.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fok H, Guilcher A, Brett S, et al. Dominance of the forward compression wave in determining pulsatile components of blood pressure: similarities between inotropic stimulation and essential hypertension. Hypertension. 2014;64:1116–23.

    Article  CAS  PubMed  Google Scholar 

  33. Schultz MG, Davies JE, Roberts-Thomson P, et al. Exercise central (aortic) blood pressure is predominantly driven by forward traveling waves, not wave reflection. Hypertension. 2013;62:175–82.

    Article  CAS  PubMed  Google Scholar 

  34. Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001;6:5–21.

    Article  CAS  PubMed  Google Scholar 

  35. van den Bos GC, Westerhof N, Randall OS. Pulse wave reflection: can it explain the differences between systemic and pulmonary pressure and flow waves? A study in dogs. Circ Res. 1982;51:479–85.

    Article  PubMed  Google Scholar 

  36. Sharman JE, Davies JE, Jenkins C, et al. Augmentation index, left ventricular contractility, and wave reflection. Hypertension. 2009;54:1099–105.

    Article  CAS  PubMed  Google Scholar 

  37. Heffernan KS, Patvardhan EA, Hession M, et al. Elevated augmentation index derived from peripheral arterial tonometry is associated with abnormal ventricular-vascular coupling. Clin Physiol Funct Imaging. 2010;30:313–7.

    PubMed Central  PubMed  Google Scholar 

  38. Lartaud-Idjouadiene I, Lompre AM, Kieffer P, et al. Cardiac consequences of prolonged exposure to an isolated increase in aortic stiffness. Hypertension. 1999;34:63–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mitchell GF, Pfeffer MA, Finn PV, et al. Equipotent antihypertensive agents variously affect pulsatile hemodynamics and regression of cardiac hypertrophy in spontaneously hypertensive rats. Circulation. 1996;94:2923–9.

    Article  CAS  PubMed  Google Scholar 

  40. Mitchell GF, Lacourciere Y, Ouellet JP, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  41. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985;56:586–95.

    Article  CAS  PubMed  Google Scholar 

  42. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chirinos JA, Rietzschel ER, Shiva-Kumar P, et al. Effective arterial elastance is insensitive to pulsatile arterial load. Hypertension. 2014;64:1022–31. Underscores the limited direct relation between effective arterial elastance (Ea) and aortic stiffness.

    Article  CAS  PubMed  Google Scholar 

  44. Gillebert TC, Leite-Moreira AF, De Hert SG. Relaxation-systolic pressure relation. A load-independent assessment of left ventricular contractility. Circulation. 1997;95:745–52.

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell GF, Tardif JC, Arnold JM, et al. Pulsatile hemodynamics in congestive heart failure. Hypertension. 2001;38:1433–9.

    Article  CAS  PubMed  Google Scholar 

  46. Mitchell GF, Vita JA, Larson MG, et al. Cross-sectional relations of peripheral microvascular function, cardiovascular disease risk factors, and aortic stiffness: the Framingham Heart Study. Circulation. 2005;112:3722–8.

    Article  PubMed  Google Scholar 

  47. Fernandes VR, Polak JF, Cheng S, et al. Arterial stiffness is associated with regional ventricular systolic and diastolic dysfunction: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28:194–201.

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Khoury DS, Yue Y, et al. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. Eur Heart J. 2008;29:1283–9.

    Article  CAS  PubMed  Google Scholar 

  49. Yip G, Wang M, Zhang Y, et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart. 2002;87:121–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gunther S, Grossman W. Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation. 1979;59:679–88.

    Article  CAS  PubMed  Google Scholar 

  51. Desai AS, Mitchell GF, Fang JC, et al. Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction. J Card Fail. 2009;15:658–64.

    Article  PubMed  Google Scholar 

  52. Redfield MM, Jacobsen SJ, Burnett Jr JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  PubMed  Google Scholar 

  53. Little WC, Oh JK. Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation. 2009;120:802–9.

    Article  PubMed  Google Scholar 

  54. Zile MR, Gaasch WH, Carroll JD, et al. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation. 2001;104:779–82.

    Article  CAS  PubMed  Google Scholar 

  55. Conraads VM, Metra M, Kamp O, et al. Effects of the long-term administration of nebivolol on the clinical symptoms, exercise capacity, and left ventricular function of patients with diastolic dysfunction: results of the ELANDD study. Eur J Heart Fail. 2012;14:219–25.

    Article  CAS  PubMed  Google Scholar 

  56. Edelmann F, Wachter R, Schmidt AG, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91.

    Article  CAS  PubMed  Google Scholar 

  57. Redfield MM, Chen HH, Borlaug BA, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77.

    Article  CAS  PubMed  Google Scholar 

  58. Coutinho T, Borlaug BA, Pellikka PA, et al. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103. This study reported that proximal aortic stiffness, as assessed by Zc, was greater in older women than in men. Zc was associated with diastolic dysfunction and impaired ventricular-vascular coupling in women only.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Shim CY, Park S, Choi D, et al. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57:1226–33.

    Article  PubMed  Google Scholar 

  60. Ballo P, Nistri S, Cameli M, et al. Association of left ventricular longitudinal and circumferential systolic dysfunction with diastolic function in hypertension: a nonlinear analysis focused on the interplay with left ventricular geometry. J Card Fail. 2014;20:110–20. This study observed that diastolic LV function is related to longitudinal but not circumferential systolic function.

    Article  PubMed  Google Scholar 

  61. Courtois M, Kovacs Jr SJ, Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation. 1988;78:661–71.

    Article  CAS  PubMed  Google Scholar 

  62. Katz LN. The role played by the ventricular relaxation process in filling the ventricle. Am J Physiol. 1930;95:542–53.

    Google Scholar 

  63. Firstenberg MS, Smedira NG, Greenberg NL, et al. Relationship between early diastolic intraventricular pressure gradients, an index of elastic recoil, and improvements in systolic and diastolic function. Circulation. 2001;104:I330–5.

    Article  CAS  PubMed  Google Scholar 

  64. Notomi Y, Martin-Miklovic MG, Oryszak SJ, et al. Enhanced ventricular untwisting during exercise: a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation. 2006;113:2524–33.

    Article  PubMed  Google Scholar 

  65. Vogel WM, Apstein CS, Briggs LL, et al. Acute alterations in left ventricular diastolic chamber stiffness. Role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res. 1982;51:465–78.

    Article  CAS  PubMed  Google Scholar 

  66. Maksuti E, Bjallmark A, Broome M. Modelling the heart with the atrioventricular plane as a piston unit. Med Eng Phys. 2015;37:87–92. This report created a model of cardiac function based on the idea of a constant total heart volume and piston-like atrioventricular plane displacement. Diastolic filling of the LV is accomplished by both a pressure gradient between the LA and LV and movement of the atrioventricular plane around blood in the LA.

    Article  PubMed  Google Scholar 

  67. Carlsson M, Ugander M, Mosen H, et al. Atrioventricular plane displacement is the major contributor to left ventricular pumping in healthy adults, athletes, and patients with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2007;292:H1452–9.

    Article  CAS  PubMed  Google Scholar 

  68. Rogers Jr WJ, Shapiro EP, Weiss JL, et al. Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation. 1991;84:721–31.

    Article  PubMed  Google Scholar 

  69. Rushmer RF, Crystal DK, Wagner C. The functional anatomy of ventricular contraction. Circ Res. 1953;1:162–70.

    Article  CAS  PubMed  Google Scholar 

  70. Bell V, Mitchell WA, Sigurethsson S, et al. Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc. 2014;3, e001536. This study observed substantial displacement of the proximal ascending aorta and calculated resulting longitudinal strain in the ascending aorta during systolic stretch. Both aortic displacement and longitudinal strain were larger in women.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Beller CJ, Labrosse MR, Thubrikar MJ, et al. Role of aortic root motion in the pathogenesis of aortic dissection. Circulation. 2004;109:763–9.

    Article  PubMed  Google Scholar 

  72. Kozerke S, Scheidegger MB, Pedersen EM, et al. Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med. 1999;42:970–8.

    Article  CAS  PubMed  Google Scholar 

  73. Weber TF, Muller T, Biesdorf A, et al. True four-dimensional analysis of thoracic aortic displacement and distension using model-based segmentation of computed tomography angiography. Int J Cardiovasc Imaging. 2014;30:185–94.

    Article  PubMed  Google Scholar 

  74. Morrison TM, Choi G, Zarins CK, et al. Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J Vasc Surg. 2009;49:1029–36.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Redheuil A, Yu WC, Mousseaux E, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58:1262–70.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Sugawara J, Hayashi K, Yokoi T, et al. Age-associated elongation of the ascending aorta in adults. JACC Cardiovasc Imaging. 2008;1:739–48.

    Article  PubMed  Google Scholar 

  77. Boutouyrie P, Laurent S, Girerd X, et al. Common carotid artery stiffness and patterns of left ventricular hypertrophy in hypertensive patients. Hypertension. 1995;25:651–9.

    Article  CAS  PubMed  Google Scholar 

  78. Rabkin SW, Chan SH. Correlation of pulse wave velocity with left ventricular mass in patients with hypertension once blood pressure has been normalized. Heart Int. 2012;7:e5.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Urbina EM, Dolan LM, McCoy CE, et al. Relationship between elevated arterial stiffness and increased left ventricular mass in adolescents and young adults. J Pediatr. 2011;158:715–21.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Rengier F, Weber TF, Henninger V, et al. Heartbeat-related distension and displacement of the thoracic aorta in healthy volunteers. Eur J Radiol. 2012;81:158–64.

    Article  PubMed  Google Scholar 

  81. Cheng S, Larson MG, McCabe EL, et al. Age- and sex-based reference limits and clinical correlates of myocardial strain and synchrony: the Framingham Heart Study. Circ Cardiovasc Imaging. 2013;6:692–9.

    Article  PubMed  Google Scholar 

  82. Chung CM, Lin YS, Chu CM, et al. Arterial stiffness is the independent factor of left ventricular hypertrophy determined by electrocardiogram. Am J Med Sci. 2012;344:190–3.

    Article  PubMed  Google Scholar 

  83. Raymond I, Pedersen F, Steensgaard-Hansen F, et al. Prevalence of impaired left ventricular systolic function and heart failure in a middle aged and elderly urban population segment of Copenhagen. Heart. 2003;89:1422–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Oh JK, Park SJ, Nagueh SF. Established and novel clinical applications of diastolic function assessment by echocardiography. Circ Cardiovasc Imaging. 2011;4:444–55.

    Article  PubMed  Google Scholar 

  85. Henein MY, Gibson DG. Long axis function in disease. Heart. 1999;81:229–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Russo C, Jin Z, Homma S, et al. Left atrial minimum volume and reservoir function as correlates of left ventricular diastolic function: impact of left ventricular systolic function. Heart. 2012;98:813–20. This study observed greater arterial stiffness and wave reflection in women. Arterial stiffness was associated with worse LV diastolic function in both men and women.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Arutunyan A. Atrio-ventricular plane displacement is the sole mechanism of atrial and ventricular refill. Am J Physiol Heart Circ Physiol. 2015. doi:10.1152/ajpheart.00058.2015.

    PubMed  Google Scholar 

  88. Carlhall C, Kindberg K, Wigstrom L, et al. Contribution of mitral annular dynamics to LV diastolic filling with alteration in preload and inotropic state. Am J Physiol Heart Circ Physiol. 2007;293:H1473–9.

    Article  CAS  PubMed  Google Scholar 

Download references

This study is funded by research grants HL094898, DK082447, HL107385, and HL104184 from the National Institutes of Health.

Compliance with Ethics Guidelines

Conflict of Interest

Dr Mitchell declares that he is the owner of Cardiovascular Engineering, Inc., a company that develops and manufactures devices to measure vascular stiffness; serves as a consultant to and receives honoraria from Novartis, Merck, and Servier and was funded by research grants HL094898, DK082447, HL107385, and HL104184 from the National Institutes of Health. Ms Bell declares that she is an employee of Cardiovascular Engineering, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Mitchell.

Additional information

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, V., Mitchell, G.F. Influence of Vascular Function and Pulsatile Hemodynamics on Cardiac Function. Curr Hypertens Rep 17, 68 (2015). https://doi.org/10.1007/s11906-015-0580-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0580-y

Keywords

Navigation