Skip to main content

Advertisement

Log in

Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: a Comprehensive Review

  • Hypertension and the Kidney (RM Carey, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Cardiovascular autonomic dysfunction is a major complication of chronic kidney disease (CKD), likely contributing to the high incidence of cardiovascular mortality in this patient population. In addition to adrenergic overdrive in affected individuals, clinical and experimental evidence now strongly indicates the presence of impaired reflex control of both sympathetic and parasympathetic outflow to the heart and vasculature. Although the principal underlying mechanisms are not completely understood, potential involvements of altered baroreceptor, cardiopulmonary, and chemoreceptor reflex function, along with factors including but not limited to increased renin–angiotensin–aldosterone system activity, activation of the renal afferents and cardiovascular structural remodeling have been suggested. This review therefore analyzes potential mechanisms underpinning autonomic imbalance in CKD, covers results accumulated thus far on cardiovascular autonomic function studies in clinical and experimental renal failure, discusses the role of current interventional and therapeutic strategies in ameliorating autonomic deficits associated with chronic renal dysfunction, and identifies gaps in our knowledge of neural mechanisms driving cardiovascular disease in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–70. doi:10.1038/ki.2011.368.

    PubMed  Google Scholar 

  2. Collins AJ, Foley RN, Gilbertson DT, Chen SC. The state of chronic kidney disease, ESRD, and morbidity and mortality in the first year of dialysis. Clin J Am Soc Nephrol CJASN. 2009;4 Suppl 1:S5–11. doi:10.2215/cjn.05980809.

    Google Scholar 

  3. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47. doi:10.1681/asn.2005101085.

    PubMed  Google Scholar 

  4. U.S. renal data system. U.S. renal data system annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National institutes of health, national institute of diabetes and digestive and kidney diseases, Bethesda, MD2013 Jan. Report No.: 1523–6838 (Electronic) 0272–6386 (Linking).

  5. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85–97. doi:10.1161/circulationaha.106.678342.

    PubMed  Google Scholar 

  6. Kidney disease outcomes quality initiative (KDOQI) clinical practice guideline for chronic kidney disease care [database on the Internet]. National kidney foundation http://www.kidney.org/. 2013. Accessed.

  7. Wuhl E, Schaefer F. Managing kidney disease with blood-pressure control. Nat Rev Nephrol. 2011;7(8):434–44. doi:10.1038/nrneph.2011.73.

    PubMed  Google Scholar 

  8. Morgado E, Neves PL. Hypertension and chronic kidney disease: cause and consequence—therapeutic considerations. In: Babaei H, editor. Antihypertensive drugs. Rijeka: InTech; 2012.

    Google Scholar 

  9. Neumann J, Ligtenberg G, Klein IH, Boer P, Oey PL, Koomans HA, et al. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension. 2007;49(3):506–10. doi:10.1161/01.HYP.0000256530.39695.a3.

    CAS  PubMed  Google Scholar 

  10. Yao Y, Hildreth CM, Farnham MM, Saha M, Sun QJ, Pilowsky PM, et al. The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. J Hypertens. 2015. doi:10.1097/hjh.0000000000000535. This recent observational study assessed the role of the renin–angiotensin system in triggering differential reflex sympathetic responses in a rat model of CKD.

    Google Scholar 

  11. Ameer OZ, Hildreth CM, Phillips JK. Sympathetic overactivity prevails over the vascular amplifier phenomena in a chronic kidney disease rat model of hypertension. Physiol Rep 2014;2(11). doi:10.14814/phy2.12205.

  12. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–51. This well-executed clinical study demonstrated increases in SNA during the early stages of renal disease that contribute to further decline in GFR in patients with CKD.

    CAS  PubMed  Google Scholar 

  13. Salman IM, Hildreth CM, Ameer OZ, Phillips JK. Differential contribution of afferent and central pathways to the development of baroreflex dysfunction in chronic kidney disease. Hypertension. 2014;63(4):804–10. doi:10.1161/hypertensionaha.113.02110. This was the first study to provide a comprehensive investigation of mechanisms of altered baroreflex function in a rat model of CKD.

    CAS  PubMed  Google Scholar 

  14. Hildreth CM, Kandukuri DS, Goodchild AK, Phillips JK. Temporal development of baroreceptor dysfunction in a rodent model of chronic kidney disease. Clin Exp Pharmacol Physiol. 2013;40(7):458–65.

    CAS  PubMed  Google Scholar 

  15. Robinson TG, Carr SJ. Cardiovascular autonomic dysfunction in uremia. Kidney Int. 2002;62(6):1921–32.

    PubMed  Google Scholar 

  16. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension. Ann Intern Med. 2003;139(9):761–76.

    CAS  PubMed  Google Scholar 

  17. Ameer OZ, Salman IM, Avolio AP, Phillips JK, Butlin M. Opposing changes in thoracic and abdominal aortic biomechanical properties in rodent models of vascular calcification and hypertension. Am J Physiol Heart Circ Physiol. 2014. doi:10.1152/ajpheart.00139.2014.

    Google Scholar 

  18. Passauer J, Pistrosch F, Bussemaker E, Lassig G, Herbrig K, Gross P. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol. 2005;16(4):959–65. doi:10.1681/asn.2004070582.

    CAS  PubMed  Google Scholar 

  19. Hildreth CM. Prognostic indicators of cardiovascular risk in renal disease. Front Physiol. 2011;2:121. doi:10.3389/fphys.2011.00121.

    PubMed Central  PubMed  Google Scholar 

  20. Pal GK, Pal P, Nanda N, Amudharaj D, Adithan C. Cardiovascular dysfunctions and sympathovagal imbalance in hypertension and prehypertension: physiological perspectives. Futur Cardiol. 2013;9(1):53–69. doi:10.2217/fca.12.80.

    CAS  Google Scholar 

  21. Dursun B, Demircioglu F, Varan HI, Basarici I, Kabukcu M, Ersoy F, et al. Effects of different dialysis modalities on cardiac autonomic dysfunctions in end-stage renal disease patients: one year prospective study. Ren Fail. 2004;26(1):35–8. This prospective clinical study not only demonstrated cardiac autonomic dysfunction in ESRD patients but also showed that continuous ambulatory peritoneal dialysis had a better effect on cardiac autonomic indices than hemodialysis.

    PubMed  Google Scholar 

  22. Ranpuria R, Hall M, Chan CT, Unruh M. Heart rate variability (HRV) in kidney failure: measurement and consequences of reduced HRV. Nephrol Dial Transplant. 2008;23(2):444–9.

    PubMed  Google Scholar 

  23. Shamseddin MK, Parfrey PS. Sudden cardiac death in chronic kidney disease: epidemiology and prevention. Nat Rev Nephrol. 2011;7(3):145–54. doi:10.1038/nrneph.2010.191.

    PubMed  Google Scholar 

  24. Johansson M, Gao SA, Friberg P, Annerstedt M, Carlstrom J, Ivarsson T, et al. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens. 2007;25(1):163–8.

    CAS  PubMed  Google Scholar 

  25. Zoccali C, Mallamaci F, Tripepi G, Parlongo S, Cutrupi S, Benedetto FA, et al. Norepinephrine and concentric hypertrophy in patients with end-stage renal disease. Hypertension. 2002;40(1):41–6.

    CAS  PubMed  Google Scholar 

  26. Converse Jr RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    PubMed  Google Scholar 

  27. Campese VM, Krol E. Neurogenic factors in renal hypertension. Curr Hypertens Rep. 2002;4(3):256–60.

    PubMed  Google Scholar 

  28. Koomans HA, Blankestijn PJ, Joles JA. Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol. 2004;15(3):524–37.

    PubMed  Google Scholar 

  29. Neahring JC, Jones SY, DiBona GF. Cardiopulmonary baroreflex function in nephrotic rats. J Am Soc Nephrol. 1995;5(12):2082–6.

    CAS  PubMed  Google Scholar 

  30. Rassaf T, Schueller P, Westenfeld R, Floege J, Eickholt C, Hennersdorf M, et al. Peripheral chemosensor function is blunted in moderate to severe chronic kidney disease. Int J Cardiol. 2012;155(2):201–5.

    PubMed  Google Scholar 

  31. Tinucci T, Abrahao SB, Santello JL, Mion Jr D. Mild chronic renal insufficiency induces sympathetic overactivity. J Hum Hypertens. 2001;15(6):401–6.

    CAS  PubMed  Google Scholar 

  32. Gattone 2nd VH, Siqueira Jr TM, Powell CR, Trambaugh CM, Lingeman JE, Shalhav AL. Contribution of renal innervation to hypertension in rat autosomal dominant polycystic kidney disease. Exp Biol Med (Maywood, NJ). 2008;233(8):952–7. doi:10.3181/0802-rm-54.

    CAS  Google Scholar 

  33. Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23(7):1250–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20. doi:10.1016/j.ijcard.2013.01.218. This unique clinical study showed reductions in both BP and muscle SNA in renally denervated hypertensive patients with ESRD.

    PubMed  Google Scholar 

  35. Yildiz A, Sever MS, Demirel S, Akkaya V, Turk S, Turkmen A, et al. Improvement of uremic autonomic dysfunction after renal transplantation: a heart rate variability study. Nephron. 1998;80(1):57–60.

    CAS  PubMed  Google Scholar 

  36. Harris DC, Rangan GK. Retardation of kidney failure—applying principles to practice. Ann Acad Med Singap. 2005;34(1):16–23.

    CAS  PubMed  Google Scholar 

  37. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J Am Soc Nephrol. 2003;14(2):425–30.

    CAS  PubMed  Google Scholar 

  38. Herzog CA. Cardiac arrest in dialysis patients: approaches to alter an abysmal outcome. Kidney Int Suppl. 2003;84(200):S197–200.

    PubMed  Google Scholar 

  39. Kashihara N, Satoh M. Molecular pathogenesis of chronic kidney disease. Nihon Rinsho Jpn J Clin Med. 2008;66(9):1671–7.

    Google Scholar 

  40. Masuo K, Lambert GW, Esler MD, Rakugi H, Ogihara T, Schlaich MP. The role of sympathetic nervous activity in renal injury and end-stage renal disease. Hypertens Res Off J Jpn Soc Hypertens. 2010;33(6):521–8. doi:10.1038/hr.2010.35.

    CAS  Google Scholar 

  41. Jeewandara TM, Ameer OZ, Boyd R, Wyse BF, Underwood CF, Phillips JK. Protective cardiorenal effects of spironolactone in a rodent model of polycystic kidney disease. Clin Exp Pharmacol Physiol. 2015;42(4):353–60. doi:10.1111/1440-1681.12372.

    CAS  PubMed  Google Scholar 

  42. Li Y-L. Cardiovascular autonomic dysfunction in diabetes as a complication: cellular and molecular mechanisms. In: Wagner D, editor. Type 1 diabetes complication. Rijeka: InTech; 2011.

    Google Scholar 

  43. Rubinger D, Backenroth R, Sapoznikov D. Restoration of baroreflex function in patients with end-stage renal disease after renal transplantation. Nephrol Dial Transplant. 2009;24(4):1305–13. doi:10.1093/ndt/gfn732.

    PubMed  Google Scholar 

  44. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122–31. doi:10.1016/j.ijcard.2009.09.543.

    PubMed  Google Scholar 

  45. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, et al. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20(5):933–9. This excellent review summarizes the deleterious effects of SNS hyperactivity in CKD, as well as its possible underlying mechanisms.

    PubMed  Google Scholar 

  46. Schohn D, Weidmann P, Jahn H, Beretta-Piccoli C. Norepinephrine-related mechanism in hypertension accompanying renal failure. Kidney Int. 1985;28(5):814–22.

    CAS  PubMed  Google Scholar 

  47. Levitan D, Massry SG, Romoff M, Campese VM. Plasma catecholamines and autonomic nervous system function in patients with early renal insufficiency and hypertension: effect of clonidine. Nephron. 1984;36(1):24–9.

    CAS  PubMed  Google Scholar 

  48. Phillips JK, Hopwood D, Loxley RA, Ghatora K, Coombes JD, Tan YS, et al. Temporal relationship between renal cyst development, hypertension and cardiac hypertrophy in a new rat model of autosomal recessive polycystic kidney disease. Kidney Blood Press Res. 2007;30(3):129–44.

    PubMed  Google Scholar 

  49. Ligtenberg G, Blankestijn PJ, Oey PL, Klein IH, Dijkhorst-Oei LT, Boomsma F, et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999;340(17):1321–8. This clinical study was one of the first to assess sympathetic baroreflex function in CKD patients.

    CAS  PubMed  Google Scholar 

  50. Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol (Bethesda, Md : 1985). 2008;105(6):1873–6. doi:10.1152/japplphysiol.90849.2008.

    Google Scholar 

  51. Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic regulation of vascular function in health and disease. Front Physiol. 2012;3:284. doi:10.3389/fphys.2012.00284.

    PubMed Central  PubMed  Google Scholar 

  52. Sahin M, Kayatas M, Urun Y, Sennaroglu E, Akdur S. Performing only one cardiovascular reflex test has a high positive predictive value for diagnosing autonomic neuropathy in patients with chronic renal failure on hemodialysis. Ren Fail. 2006;28(5):383–7. doi:10.1080/08860220600683722.

    PubMed  Google Scholar 

  53. Lewanski R, Chrzanowski W. Assessment of autonomic nervous system by spectral analysis of heart rate and blood pressure in hemodialysed patients. Pol Merkur Lekarski Org Polskiego Towarz Lekarskiego. 2003;15(88):391–3.

    Google Scholar 

  54. Badve SV, Roberts MA, Hawley CM, Cass A, Garg AX, Krum H, et al. Effects of beta-adrenergic antagonists in patients with chronic kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(11):1152–61. doi:10.1016/j.jacc.2011.04.041.

    CAS  PubMed  Google Scholar 

  55. Grassi G, Seravalle G, Ghiadoni L, Tripepi G, Bruno RM, Mancia G, et al. Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin J Am Soc Nephrol CJASN. 2011;6(11):2620–7. doi:10.2215/cjn.06970711.

    CAS  Google Scholar 

  56. Adamczak M, Zeier M, Dikow R, Ritz E. Kidney and hypertension. Kidney Int Suppl. 2002;80:62–7.

    PubMed  Google Scholar 

  57. Erami C, Zhang H, Ho JG, French DM, Faber JE. Alpha(1)-adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol Heart Circ Physiol. 2002;283(4):H1577–87. doi:10.1152/ajpheart.00218.2002.

    CAS  PubMed  Google Scholar 

  58. Zhang H, Faber JE. Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circ Res. 2001;89(9):815–22.

    CAS  PubMed  Google Scholar 

  59. Raizada V, Hillerson D, Amaram JS, Skipper B. Angiotensin II-mediated left ventricular abnormalities in chronic kidney disease. J Investig Med Off Publ Am Fed Clin Res. 2012;60(5):785–91. doi:10.231/JIM.0b013e318250b101.

    CAS  Google Scholar 

  60. Grisk O, Rettig R. Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovasc Res. 2004;61(2):238–46.

    CAS  PubMed  Google Scholar 

  61. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5. doi:10.1161/01.cir.0000081775.72651.b6.

    PubMed  Google Scholar 

  62. Guizar-Mendoza JM, Amador-Licona N, Lozada EE, Rodriguez L, Gutierrez-Navarro M, Dubey-Ortega LA, et al. Left ventricular mass and heart sympathetic activity after renal transplantation in children and young adults. Pediatr Nephrol. 2006;21(10):1413–8. doi:10.1007/s00467-006-0238-8.

    PubMed  Google Scholar 

  63. Mircoli L, Rivera R, Bonforte G, Fedele L, Genovesi S, Surian M, et al. Influence of left ventricular mass, uremia and hypertension on vagal tachycardic reserve. J Hypertens. 2003;21(8):1547–53. doi:10.1097/01.hjh.0000084720.53355.ad.

    CAS  PubMed  Google Scholar 

  64. Tory K, Horvath E, Suveges Z, Fekete A, Sallay P, Berta K, et al. Effect of propranolol on heart rate variability in patients with end-stage renal disease: a double-blind, placebo-controlled, randomized crossover pilot trial. Clin Nephrol. 2004;61(5):316–23.

    CAS  PubMed  Google Scholar 

  65. Agarwal A, Anand IS, Sakhuja V, Chugh KS. Effect of dialysis and renal transplantation on autonomic dysfunction in chronic renal failure. Kidney Int. 1991;40(3):489–95.

    CAS  PubMed  Google Scholar 

  66. de Ferrari GM, Vanoli E, Stramba-Badiale M, Hull Jr SS, Foreman RD, Schwartz PJ. Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with healed myocardial infarction. Am J Physiol. 1991;261(1 Pt 2):H63–9.

    PubMed  Google Scholar 

  67. Di Rienzo M, Parati G, Castiglioni P, Tordi R, Mancia G, Pedotti A. Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. Am J Physiol Regul Integr Comp Physiol. 2001;280(3):R744–51.

    PubMed  Google Scholar 

  68. Johnson PL, Shekhar A. Panic-prone state induced in rats with GABA dysfunction in the dorsomedial hypothalamus is mediated by NMDA receptors. J Neurosci Off J Soc Neurosci. 2006;26(26):7093–104. doi:10.1523/jneurosci.0408-06.2006.

    CAS  Google Scholar 

  69. Lacy P, Carr SJ, O'Brien D, Fentum B, Williams B, Paul SK, et al. Reduced glomerular filtration rate in pre-dialysis non-diabetic chronic kidney disease patients is associated with impaired baroreceptor sensitivity and reduced vascular compliance. Clin Sci (London, England : 1979). 2006;110(1):101–8. doi:10.1042/cs20050192.

    Google Scholar 

  70. Studinger P, Lenard Z, Mersich B, Reusz GS, Kollai M. Determinants of baroreflex function in juvenile end-stage renal disease. Kidney Int. 2006;69(12):2236–42. doi:10.1038/sj.ki.5000307.

    CAS  PubMed  Google Scholar 

  71. Salman IM, Phillips JK, Ameer OZ, Hildreth CM. Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis polycystic kidney rats. J Hypertens. 2015. This was the first observational study to provide a mechanistic explanation for baroreflex dysfunction in a female rat model of CKD.

  72. Merrill DC, Segar JL, McWeeny OJ, Robillard JE. Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Physiol. 1999;277(4 Pt 2):H1311–6.

    CAS  PubMed  Google Scholar 

  73. Frank H, Heusser K, Hoffken B, Huber P, Schmieder RE, Schobel HP. Effect of erythropoietin on cardiovascular prognosis parameters in hemodialysis patients. Kidney Int. 2004;66(2):832–40. doi:10.1111/j.1523-1755.2004.00810.x.

    CAS  PubMed  Google Scholar 

  74. Grassi G, Parati G, Pomidossi G, Giannattasio C, Casadei R, Bolla GB, et al. Effects of haemodialysis and kidney transplantation on carotid and cardiopulmonary baroreflexes in uremic patients. J Hypertens. 1987;5 suppl 5:S367–9.

    Google Scholar 

  75. Hinojosa-Laborde C, Jones SY, DiBona GF. Hemodynamics and baroreflex function in rats with nephrotic syndrome. Am J Physiol. 1994;267(4 Pt 2):R953–64.

    CAS  PubMed  Google Scholar 

  76. Daugirdas JT. Pathophysiology of dialysis hypotension: an update. Am J Kidney Dis. 2001;38(4 Suppl 4):S11–7.

    CAS  PubMed  Google Scholar 

  77. Rassaf T, Westenfeld R, Balzer J, Lauer T, Merx M, Floege J, et al. Modulation of peripheral chemoreflex by neurohumoral adaptations after kidney transplantation. Eur J Med Res. 2010;15 Suppl 2:83–7.

    PubMed Central  PubMed  Google Scholar 

  78. Despas F, Detis N, Dumonteil N, Labrunee M, Bellon B, Franchitto N, et al. Excessive sympathetic activation in heart failure with chronic renal failure: role of chemoreflex activation. J Hypertens. 2009;27(9):1849–54. doi:10.1097/HJH.0b013e32832e8d0f.

    CAS  PubMed  Google Scholar 

  79. Kotanko P. Cause and consequences of sympathetic hyperactivity in chronic kidney disease. Blood Purif. 2006;24(1):95–9. doi:10.1159/000089444.

    PubMed  Google Scholar 

  80. Grassi G. Renin-angiotensin-sympathetic crosstalks in hypertension: reappraising the relevance of peripheral interactions. J Hypertens. 2001;19(10):1713–6.

    CAS  PubMed  Google Scholar 

  81. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262:E763–78.

    CAS  PubMed  Google Scholar 

  82. Gao L, Wang WZ, Wang W, Zucker IH. Imbalance of angiotensin type 1 receptor and angiotensin II type 2 receptor in the rostral ventrolateral medulla: potential mechanism for sympathetic overactivity in heart failure. Hypertension. 2008;52(4):708–14. doi:10.1161/hypertensionaha.108.116228.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Zucker IH. Novel mechanisms of sympathetic regulation in chronic heart failure. Hypertension. 2006;48(6):1005–11. doi:10.1161/01.hyp.0000246614.47231.25.

    CAS  PubMed  Google Scholar 

  84. Barajas L, Wang P. Myelinated nerves of the rat kidney. A light and electron microscopic autoradiographic study. J Ultrastruct Res. 1978;65(2):148–62.

    CAS  PubMed  Google Scholar 

  85. Recordati G, Moss NG, Genovesi S, Rogenes P. Renal chemoreceptors. J Auton Nerv Syst. 1981;3(2–4):237–51.

    CAS  PubMed  Google Scholar 

  86. Donovan MK, Wyss JM, Winternitz SR. Localization of renal sensory neurons using the fluorescent dye technique. Brain Res. 1983;259(1):119–22.

    CAS  PubMed  Google Scholar 

  87. Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 1997;753(1):102–19.

    CAS  PubMed  Google Scholar 

  88. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1(2):731–67. doi:10.1002/cphy.c100043.

    PubMed  Google Scholar 

  89. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26(5):861–5.

    CAS  PubMed  Google Scholar 

  90. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9. This fascinating clinical study demonstrated increased SNA despite correction of uremia in renal transplant recipients with diseased native kidneys, indicating a possible role for renal afferents in triggering heightened efferent sympathetic discharge.

    PubMed  Google Scholar 

  91. Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51(3):722–7.

    CAS  PubMed  Google Scholar 

  92. Ye S, Gamburd M, Mozayeni P, Koss M, Campese VM. A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens. 1998;11(6 Pt 1):723–8.

    CAS  PubMed  Google Scholar 

  93. Katholi RE, Whitlow PL, Winternitz SR, Oparil S. Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension. 1982;4(3 Pt 2):166–74.

    CAS  PubMed  Google Scholar 

  94. Miyajima E, Yamada Y, Yoshida Y, Matsukawa T, Shionoiri H, Tochikubo O, et al. Muscle sympathetic nerve activity in renovascular hypertension and primary aldosteronism. Hypertension. 1991;17(6 Pt 2):1057–62.

    CAS  PubMed  Google Scholar 

  95. Fall PJ, Prisant LM. Polycystic kidney disease. J Clin Hypertens (Greenwich, Conn). 2005;7(10):617–9. 25.

    Google Scholar 

  96. Costa F, Diedrich A, Johnson B, Sulur P, Farley G, Biaggioni I. Adenosine, a metabolic trigger of the exercise pressor reflex in humans. Hypertension. 2001;37(3):917–22.

    CAS  PubMed  Google Scholar 

  97. Chesterton LJ, Sigrist MK, Bennett T, Taal MW, McIntyre CW. Reduced baroreflex sensitivity is associated with increased vascular calcification and arterial stiffness. Nephrol Dial Transplant. 2005;20(6):1140–7.

    PubMed  Google Scholar 

  98. Temmar M, Liabeuf S, Renard C, Czernichow S, Esper NE, Shahapuni I, et al. Pulse wave velocity and vascular calcification at different stages of chronic kidney disease. J Hypertens. 2010;28(1):163–9. doi:10.1097/HJH.0b013e328331b81e.

    CAS  PubMed  Google Scholar 

  99. Ng K, Hildreth CM, Phillips JK, Avolio AP. Aortic stiffness is associated with vascular calcification and remodeling in a chronic kidney disease rat model. Am J Physiol Renal Physiol. 2011;300(6):6.

    Google Scholar 

  100. Pai A, Leaf EM, El-Abbadi M, Giachelli CM. Elastin degradation and vascular smooth muscle cell phenotype change precede cell loss and arterial medial calcification in a uremic mouse model of chronic kidney disease. Am J Pathol. 2011;178(2):764–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chan CT, Jain V, Picton P, Pierratos A, Floras JS. Nocturnal hemodialysis increases arterial baroreflex sensitivity and compliance and normalizes blood pressure of hypertensive patients with end-stage renal disease. Kidney Int. 2005;68(1):338–44. doi:10.1111/j.1523-1755.2005.00411.x.

    PubMed  Google Scholar 

  102. Kosch M, Barenbrock M, Kisters K, Rahn KH, Hausberg M. Relationship between muscle sympathetic nerve activity and large artery mechanical vessel wall properties in renal transplant patients. J Hypertens. 2002;20(3):501–8.

    CAS  PubMed  Google Scholar 

  103. Diwan V, Gobe G, Brown L. Glibenclamide improves kidney and heart structure and function in the adenine-diet model of chronic kidney disease. Pharmacol Res Off J Ital Pharmacol Soc. 2014;79:104–10. doi:10.1016/j.phrs.2013.11.007.

    CAS  Google Scholar 

  104. Fedecostante M, Spannella F, Cola G, Espinosa E, Dessi-Fulgheri P, Sarzani R. Chronic kidney disease is characterized by “double trouble” higher pulse pressure plus night-time systolic blood pressure and more severe cardiac damage. PLoS One. 2014;9(1), e86155. doi:10.1371/journal.pone.0086155.

    PubMed Central  PubMed  Google Scholar 

  105. Wang AY, Li PK, Lui SF, Sanderson JE. Angiotensin converting enzyme inhibition for cardiac hypertrophy in patients with end-stage renal disease: what is the evidence? Nephrology (Carlton, Vic). 2004;9(4):190–7. doi:10.1111/j.1440-1797.2004.00260.x.

    CAS  Google Scholar 

  106. Edwards NC, Steeds RP, Stewart PM, Ferro CJ, Townend JN. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol. 2009;54(6):505–12. doi:10.1016/j.jacc.2009.03.066.

    CAS  PubMed  Google Scholar 

  107. Moody WE, Edwards NC, Chue CD, Ferro CJ, Townend JN. Arterial disease in chronic kidney disease. Heart. 2013;99(6):365–72. doi:10.1136/heartjnl-2012-302818.

    CAS  PubMed  Google Scholar 

  108. Grassi G, Giannattasio C, Cleroux J, Cuspidi C, Sampieri L, Bolla GB, et al. Cardiopulmonary reflex before and after regression of left ventricular hypertrophy in essential hypertension. Hypertension. 1988;12(3):227–37.

    CAS  PubMed  Google Scholar 

  109. Uggere TA, Abreu GR, Sampaio KN, Cabral AM, Bissoli NS. The cardiopulmonary reflexes of spontaneously hypertensive rats are normalized after regression of left ventricular hypertrophy and hypertension. Braz J Med Biol Res Rev Bras Pesqui Med Biol Soc Bras Biofisica [et al]. 2000;33(5):589–94.

    CAS  Google Scholar 

  110. Furchgott RF, Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels. 1991;28(1–3):52–61.

    CAS  PubMed  Google Scholar 

  111. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol. 2011;300(4):R818–26. doi:10.1152/ajpregu.00426.2010.

    CAS  PubMed  Google Scholar 

  112. Nurminen ML, Ylikorkala A, Vapaatalo H. Central inhibition of nitric oxide synthesis increases blood pressure and heart rate in anesthetized rats. Methods Find Exp Clin Pharmacol. 1997;19(1):35–41.

    CAS  PubMed  Google Scholar 

  113. Sakuma I, Togashi H, Yoshioka M, Saito H, Yanagida M, Tamura M, et al. NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circ Res. 1992;70(3):607–11.

    CAS  PubMed  Google Scholar 

  114. Cunha RS, Cabral AM, Vasquez EC. Evidence that the autonomic nervous system plays a major role in the L-NAME-induced hypertension in conscious rats. Am J Hypertens. 1993;6(9):806–9.

    CAS  PubMed  Google Scholar 

  115. Sander M, Hansen PG, Victor RG. Sympathetically mediated hypertension caused by chronic inhibition of nitric oxide. Hypertension. 1995;26(4):691–5.

    CAS  PubMed  Google Scholar 

  116. Harada S, Tokunaga S, Momohara M, Masaki H, Tagawa T, Imaizumi T, et al. Inhibition of nitric oxide formation in the nucleus tractus solitarius increases renal sympathetic nerve activity in rabbits. Circ Res. 1993;72(3):511–6.

    CAS  PubMed  Google Scholar 

  117. Zanzinger J, Czachurski J, Seller H. Inhibition of basal and reflex-mediated sympathetic activity in the RVLM by nitric oxide. Am J Physiol. 1995;268(4 Pt 2):R958–62.

    CAS  PubMed  Google Scholar 

  118. Zhang K, Mayhan WG, Patel KP. Nitric oxide within the paraventricular nucleus mediates changes in renal sympathetic nerve activity. Am J Physiol. 1997;273(3 Pt 2):R864–72.

    CAS  PubMed  Google Scholar 

  119. Spieker LE, Corti R, Binggeli C, Luscher TF, Noll G. Baroreceptor dysfunction induced by nitric oxide synthase inhibition in humans. J Am Coll Cardiol. 2000;36(1):213–8.

    CAS  PubMed  Google Scholar 

  120. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol. 2004;15(8):1983–92. doi:10.1097/01.asn.0000132474.50966.da.

    CAS  PubMed  Google Scholar 

  121. Schmidt RJ, Baylis C. Total nitric oxide production is low in patients with chronic renal disease. Kidney Int. 2000;58(3):1261–6. doi:10.1046/j.1523-1755.2000.00281.x.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Shinohara K, Hirooka Y, Kishi T, Sunagawa K. Reduction of nitric oxide-mediated gamma-amino butyric acid release in rostral ventrolateral medulla is involved in superoxide-induced sympathoexcitation of hypertensive rats. Circ J. 2012;76(12):2814–21.

    CAS  PubMed  Google Scholar 

  123. Ye S, Nosrati S, Campese VM. Nitric oxide (NO) modulates the neurogenic control of blood pressure in rats with chronic renal failure (CRF). J Clin Investig. 1997;99(3):540–8. doi:10.1172/jci119191.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Montezano AC, Touyz RM. Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies. Ann Med. 2012;44 Suppl 1:S2–16. doi:10.3109/07853890.2011.653393.

    CAS  PubMed  Google Scholar 

  125. Matthews KA, Woodall KL, Allen MT. Cardiovascular reactivity to stress predicts future blood pressure status. Hypertension. 1993;22(4):479–85.

    CAS  PubMed  Google Scholar 

  126. Schuler JL, O'Brien WH. Cardiovascular recovery from stress and hypertension risk factors: a meta-analytic review. Psychophysiology. 1997;34(6):649–59.

    CAS  PubMed  Google Scholar 

  127. Chandola T, Britton A, Brunner E, Hemingway H, Malik M, Kumari M, et al. Work stress and coronary heart disease: what are the mechanisms? Eur Heart J. 2008;29(5):640–8. doi:10.1093/eurheartj/ehm584.

    PubMed  Google Scholar 

  128. Niebylski A, Boccolini A, Bensi N, Binotti S, Hansen C, Yaciuk R, et al. Neuroendocrine changes and natriuresis in response to social stress in rats. Stress Health J Int Soc Investig Stress. 2012;28(3):179–85. doi:10.1002/smi.1411.

    CAS  Google Scholar 

  129. Wallin BG, Esler M, Dorward P, Eisenhofer G, Ferrier C, Westerman R, et al. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol. 1992;453:45–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Black PH. Stress and the inflammatory response: a review of neurogenic inflammation. Brain Behav Immun. 2002;16(6):622–53.

    CAS  PubMed  Google Scholar 

  131. Kouidi E, Karagiannis V, Grekas D, Iakovides A, Kaprinis G, Tourkantonis A, et al. Depression, heart rate variability, and exercise training in dialysis patients. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol Work Groups Epidemiol Prev Card Rehabil Exerc Physiol. 2010;17(2):160–7. doi:10.1097/HJR.0b013e32833188c4.

    Google Scholar 

  132. Palkovits M, Sebekova K, Klenovics KS, Kebis A, Fazeli G, Bahner U, et al. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine. PLoS One. 2013;8(6), e66543. doi:10.1371/journal.pone.0066543.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Sit D, Kadiroglu AK, Kayabasi H, Yilmaz ME. The prevalence of insulin resistance in nondiabetic nonobese patients with chronic kidney disease. Adv Ther. 2006;23(6):988–98.

    CAS  PubMed  Google Scholar 

  134. Svensson M, Eriksson JW. Insulin resistance in diabetic nephropathy—cause or consequence? Diabetes Metab Res Rev. 2006;22(5):401–10. doi:10.1002/dmrr.648.

    CAS  PubMed  Google Scholar 

  135. Hall JE, Brands MW, Zappe DH, Alonso Galicia M. Insulin resistance, hyperinsulinemia, and hypertension: causes, consequences, or merely correlations? Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY). 1995;208(4):317–29.

    CAS  Google Scholar 

  136. Ryan JP, Sheu LK, Verstynen TD, Onyewuenyi IC, Gianaros PJ. Cerebral blood flow links insulin resistance and baroreflex sensitivity. PLoS One. 2013;8(12), e83288. doi:10.1371/journal.pone.0083288.

    PubMed Central  PubMed  Google Scholar 

  137. Schneider MP, Mann JF. Endothelin antagonism for patients with chronic kidney disease: still a hope for the future. Nephrol Dial Transplant. 2014;29 Suppl 1:i69–73. doi:10.1093/ndt/gft339.

    PubMed  Google Scholar 

  138. Shichiri M, Hirata Y, Ando K, Emori T, Ohta K, Kimoto S, et al. Plasma endothelin levels in hypertension and chronic renal failure. Hypertension. 1990;15(5):493–6.

    CAS  PubMed  Google Scholar 

  139. Gulati A, Rebello S, Kumar A. Role of sympathetic nervous system in cardiovascular effects of centrally administered endothelin-1 in rats. Am J Physiol. 1997;273(3 Pt 2):H1177–86.

    CAS  PubMed  Google Scholar 

  140. Nakamura K, Sasaki S, Moriguchi J, Morimoto S, Miki S, Kawa T, et al. Central effects of endothelin and its antagonists on sympathetic and cardiovascular regulation in SHR-SP. J Cardiovasc Pharmacol. 1999;33(6):876–82.

    CAS  PubMed  Google Scholar 

  141. Mortensen LH. Endothelin and the central and peripheral nervous systems: a decade of endothelin research. Clin Exp Pharmacol Physiol. 1999;26(12):980–4.

    CAS  PubMed  Google Scholar 

  142. Smirnov AV, Petrishchev NN, Panina I, Mnuskina MM, Achkasova VV, Rumiantsev A, et al. The level of endothelin-1 and reactivity of skin microvessels in patients with early stages of chronic kidney disease. Ter Arkh. 2011;83(6):13–8.

    CAS  PubMed  Google Scholar 

  143. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, et al. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest. 2005;115(5):1275–80. doi:10.1172/jci24066.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Desir GV, Peixoto AJ. Renalase in hypertension and kidney disease. Nephrol Dial Transplant. 2014;29(1):22–8. doi:10.1093/ndt/gft083.

    CAS  PubMed  Google Scholar 

  145. Li G, Xu J, Wang P, Velazquez H, Li Y, Wu Y, et al. Catecholamines regulate the activity, secretion, and synthesis of renalase. Circulation. 2008;117(10):1277–82. doi:10.1161/circulationaha.107.732032.

    CAS  PubMed  Google Scholar 

  146. Gu R, Lu W, Xie J, Bai J, Xu B. Renalase deficiency in heart failure model of rats—a potential mechanism underlying circulating norepinephrine accumulation. PLoS One. 2011;6(1), e14633. doi:10.1371/journal.pone.0014633.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Brooks VL, Haywood JR, Johnson AK. Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin Exp Pharmacol Physiol. 2005;32(5–6):426–32. doi:10.1111/j.1440-1681.2005.04206.x.

    CAS  PubMed  Google Scholar 

  148. Mailloux LU. The overlooked role of salt restriction in dialysis patients. Semin Dial. 2000;13(3):150–1.

    CAS  PubMed  Google Scholar 

  149. Meng L, Fu B, Zhang T, Han Z, Yang M. Salt sensitivity of blood pressure in non-dialysis patients with chronic kidney disease. Ren Fail. 2014;36(3):345–50. doi:10.3109/0886022x.2013.866008.

    CAS  PubMed  Google Scholar 

  150. Campese VM, Mozayeni P, Ye S, Gumbard M. High salt intake inhibits nitric oxide synthase expression and aggravates hypertension in rats with chronic renal failure. J Nephrol. 2002;15(4):407–13.

    CAS  PubMed  Google Scholar 

  151. Fujita M, Ando K, Kawarazaki H, Kawarasaki C, Muraoka K, Ohtsu H, et al. Sympathoexcitation by brain oxidative stress mediates arterial pressure elevation in salt-induced chronic kidney disease. Hypertension. 2012;59(1):105–12. doi:10.1161/hypertensionaha.111.182923.

    CAS  PubMed  Google Scholar 

  152. Wambach G, Gotz S, Suckau G, Bonner G, Kaufmann W. Plasma levels of atrial natriuretic peptide are raised in essential hypertension during low and high sodium intake. Klin Wochenschr. 1987;65(5):232–7.

    CAS  PubMed  Google Scholar 

  153. Akiba T, Tachibana K, Togashi K, Hiroe M, Marumo F. Plasma human brain natriuretic peptide in chronic renal failure. Clin Nephrol. 1995;44 Suppl 1:S61–4.

    CAS  PubMed  Google Scholar 

  154. Peng N, Oparil S, Meng QC, Wyss JM. Atrial natriuretic peptide regulation of noradrenaline release in the anterior hypothalamic area of spontaneously hypertensive rats. J Clin Investig. 1996;98(9):2060–5. doi:10.1172/jci119011.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Vatta MS, Papouchado ML, Bianciotti LG, Fernandez BE. Atrial natriuretic factor inhibits noradrenaline release in the presence of angiotensin II and III in the rat hypothalamus. Comp Biochem Physiol C Comp Pharmacol Toxicol. 1993;106(2):545–8.

    CAS  Google Scholar 

  156. Toader E, McAllen RM, Cividjian A, Woods RL, Quintin L. Effect of systemic B-type natriuretic peptide on cardiac vagal motoneuron activity. Am J Physiol Heart Circ Physiol. 2007;293(6):H3465–70. doi:10.1152/ajpheart.00528.2007.

    CAS  PubMed  Google Scholar 

  157. Woods RL, Courneya CA, Head GA. Nonuniform enhancement of baroreflex sensitivity by atrial natriuretic peptide in conscious rats and dogs. Am J Physiol. 1994;267(3 Pt 2):R678–86.

    CAS  PubMed  Google Scholar 

  158. Hood SG, Woods RL. Vagal reflex actions of atrial natriuretic peptide survive physiological but not pathological cardiac hypertrophy in rat. Exp Physiol. 2004;89(4):445–54. doi:10.1113/expphysiol.2004.027557.

    CAS  PubMed  Google Scholar 

  159. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the third national health and nutrition examination survey, 1988–1991. Hypertension. 1995;25(3):305–13.

    CAS  PubMed  Google Scholar 

  160. Maric C. Sex differences in cardiovascular disease and hypertension: involvement of the renin-angiotensin system. Hypertension. 2005;46(3):475–6. doi:10.1161/01.HYP.0000178600.88820.b2.

    CAS  PubMed  Google Scholar 

  161. Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001;37(5):1199–208.

    CAS  PubMed  Google Scholar 

  162. Hogarth AJ, Mackintosh AF, Mary DA. Gender-related differences in the sympathetic vasoconstrictor drive of normal subjects. Clin Sci. 2007;112(6):353–61.

    PubMed  Google Scholar 

  163. Kim A, Deo SH, Vianna LC, Balanos GM, Hartwich D, Fisher JP, et al. Sex differences in carotid baroreflex control of arterial blood pressure in humans: relative contribution of cardiac output and total vascular conductance. Am J Physiol Heart Circ Physiol. 2011;301(6):H2454–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Shoemaker JK, Hogeman CS, Khan M, Kimmerly DS, Sinoway LI. Gender affects sympathetic and hemodynamic response to postural stress. Am J Physiol Heart Circ Physiol. 2001;281(5):H2028–35.

    CAS  PubMed  Google Scholar 

  165. Tank J, Diedrich A, Szczech E, Luft FC, Jordan J. Baroreflex regulation of heart rate and sympathetic vasomotor tone in women and men. Hypertension. 2005;45(6):1159–64.

    CAS  PubMed  Google Scholar 

  166. Brooks VL, Cassaglia PA, Zhao D, Goldman RK. Baroreflex function in females: changes with the reproductive cycle and pregnancy. Gend Med. 2012;9(2):61–7.

    PubMed Central  PubMed  Google Scholar 

  167. Abdel-Rahman AR, Merrill RH, Wooles WR. Gender-related differences in the baroreceptor reflex control of heart rate in normotensive humans. J Appl Physiol (Bethesda, Md : 1985). 1994;77(2):606–13.

    CAS  Google Scholar 

  168. Frey MA, Tomaselli CM, Hoffler WG. Cardiovascular responses to postural changes: differences with age for women and men. J Clin Pharmacol. 1994;34(5):394–402.

    CAS  PubMed  Google Scholar 

  169. Convertino VA. Gender differences in autonomic functions associated with blood pressure regulation. Am J Physiol. 1998;275(6 Pt 2):R1909–20.

    CAS  PubMed  Google Scholar 

  170. Scislo TJ, DiCarlo SE. Gender difference in cardiopulmonary reflex inhibition of sympathetic nerve activity. Am J Physiol. 1994;267(4 Pt 2):H1537–43.

    CAS  PubMed  Google Scholar 

  171. Hunt BE, Taylor JA, Hamner JW, Gagnon M, Lipsitz LA. Estrogen replacement therapy improves baroreflex regulation of vascular sympathetic outflow in postmenopausal women. Circulation. 2001;103(24):2909–14.

    CAS  PubMed  Google Scholar 

  172. Fadel PJ, Zhao W, Thomas GD. Impaired vasomodulation is associated with reduced neuronal nitric oxide synthase in skeletal muscle of ovariectomized rats. J Physiol. 2003;549(Pt 1):243–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Mohamed MK, El-Mas MM, Abdel-Rahman AA. Estrogen enhancement of baroreflex sensitivity is centrally mediated. Am J Physiol. 1999;276(4 Pt 2):R1030–7.

    CAS  PubMed  Google Scholar 

  174. Saleh TM, Connell BJ. 17beta-estradiol modulates baroreflex sensitivity and autonomic tone of female rats. J Auton Nerv Syst. 2000;80(3):148–61.

    CAS  PubMed  Google Scholar 

  175. Du XJ, Dart AM, Riemersma RA. Sex differences in the parasympathetic nerve control of rat heart. Clin Exp Pharmacol Physiol. 1994;21(6):485–93.

    CAS  PubMed  Google Scholar 

  176. Schroeder C, Adams F, Boschmann M, Tank J, Haertter S, Diedrich A, et al. Phenotypical evidence for a gender difference in cardiac norepinephrine transporter function. Am J Physiol Regul Integr Comp Physiol. 2004;286(5):R851–6.

    CAS  PubMed  Google Scholar 

  177. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990;70(4):963–85.

    CAS  PubMed  Google Scholar 

  178. Reckelhoff JF, Zhang H, Srivastava K. Gender differences in development of hypertension in spontaneously hypertensive rats: role of the renin-angiotensin system. Hypertension. 2000;35(1 Pt 2):480–3.

    CAS  PubMed  Google Scholar 

  179. Crofton JT, Ota M, Share L. Role of vasopressin, the renin-angiotensin system and sex in Dahl salt-sensitive hypertension. J Hypertens. 1993;11(10):1031–8.

    CAS  PubMed  Google Scholar 

  180. Haywood JR, Hinojosa-Laborde C. Sexual dimorphism of sodium-sensitive renal-wrap hypertension. Hypertension. 1997;30(3 Pt 2):667–71.

    CAS  PubMed  Google Scholar 

  181. Xue B, Pamidimukkala J, Hay M. Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol. 2005;288(5):H2177–84. doi:10.1152/ajpheart.00969.2004.

    CAS  PubMed  Google Scholar 

  182. Hogarth AJ, Mackintosh AF, Mary DA. The effect of gender on the sympathetic nerve hyperactivity of essential hypertension. J Hum Hypertens. 2007;21(3):239–45. doi:10.1038/sj.jhh.1002132.

    CAS  PubMed  Google Scholar 

  183. Pavithran P, Madanmohan T, Nandeesha H. Sex differences in short-term heart rate variability in patients with newly diagnosed essential hypertension. J Clin Hypertens. 2008;10(12):904–10.

    Google Scholar 

  184. Johnson MS, DeMarco VG, Heesch CM, Whaley-Connell AT, Schneider RI, Rehmer NT, et al. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am J Physiol Heart Circ Physiol. 2011;301(4):H1540–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Eriksen BO, Ingebretsen OC. The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int. 2006;69(2):375–82. doi:10.1038/sj.ki.5000058.

    CAS  PubMed  Google Scholar 

  186. Jafar TH, Schmid CH, Stark PC, Toto R, Remuzzi G, Ruggenenti P, et al. The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis. Nephrol Dial Transplant. 2003;18(10):2047–53. doi:10.1093/ndt/gfg317.

    PubMed  Google Scholar 

  187. Carrero JJ. Gender differences in chronic kidney disease: underpinnings and therapeutic implications. Kidney Blood Press Res. 2010;33(5):383–92. doi:10.1159/000320389.

    CAS  PubMed  Google Scholar 

  188. Vink EE, de Jager RL, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathophysiology and (new) treatment options. Curr Hypertens Rep. 2013;15(2):95–101. doi:10.1007/s11906-013-0328-5.

    CAS  PubMed  Google Scholar 

  189. Weir MR. The renoprotective effects of RAS inhibition: focus on prevention and treatment of chronic kidney disease. Postgrad Med. 2009;121(1):96–103. doi:10.3810/pgm.2009.01.1958.

    PubMed  Google Scholar 

  190. Weir MR. Effects of renin-angiotensin system inhibition on end-organ protection: can we do better? Clin Ther. 2007;29(9):1803–24. doi:10.1016/j.clinthera.2007.09.019.

    CAS  PubMed  Google Scholar 

  191. Sato R, Mizuno M, Miura T, Kato Y, Watanabe S, Fuwa D, et al. Angiotensin receptor blockers regulate the synchronization of circadian rhythms in heart rate and blood pressure. J Hypertens. 2013;31(6):1233–8. doi:10.1097/HJH.0b013e32836043c9.

    CAS  PubMed  Google Scholar 

  192. Ondocin PT, Narsipur SS. Influence of angiotensin converting enzyme inhibitor treatment on cardiac autonomic modulation in patients receiving haemodialysis. Nephrology (Carlton, Vic). 2006;11(6):497–501. doi:10.1111/j.1440-1797.2006.00680.x.

    CAS  Google Scholar 

  193. Neumann J, Ligtenberg G, Oey L, Koomans HA, Blankestijn PJ. Moxonidine normalizes sympathetic hyperactivity in patients with eprosartan-treated chronic renal failure. J Am Soc Nephrol. 2004;15(11):2902–7. doi:10.1097/01.asn.0000143471.10750.8c. This clinical study showed that normalized sympathetic nerve discharge in CKD patients can be achieved only with combination therapy comprising a central sympatholytic agent and an ARB.

    CAS  PubMed  Google Scholar 

  194. Siddiqi L, Oey PL, Blankestijn PJ. Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant. 2011;26(9):2930–4. doi:10.1093/ndt/gfq857.

    CAS  PubMed  Google Scholar 

  195. Narsipur SS, Srinivasan B, Singh B. Effect of simvastatin use on autonomic function in patients with end stage renal disease. Cardiovasc Hematol Disord Drug Targets. 2011;11(1):53–7.

    PubMed  Google Scholar 

  196. Suzuki H, Moriwaki K, Kanno Y, Nakamoto H, Okada H, Chen XM. Comparison of the effects of an ACE inhibitor and alphabeta blocker on the progression of renal failure with left ventricular hypertrophy: preliminary report. Hypertens Res Off J Jpn Soc Hypertens. 2001;24(2):153–8.

    CAS  Google Scholar 

  197. Vonend O, Marsalek P, Russ H, Wulkow R, Oberhauser V, Rump LC. Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21(9):1709–17. doi:10.1097/01.hjh.0000084733.53355.c3.

    CAS  PubMed  Google Scholar 

  198. Amann K, Koch A, Hofstetter J, Gross ML, Haas C, Orth SR, et al. Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers. Kidney Int. 2001;60(4):1309–23. doi:10.1046/j.1523-1755.2001.00936.x.

    CAS  PubMed  Google Scholar 

  199. Amann K, Rump LC, Simonaviciene A, Oberhauser V, Wessels S, Orth SR, et al. Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats. J Am Soc Nephrol. 2000;11(8):1469–78.

    CAS  PubMed  Google Scholar 

  200. Bakris GL, Hart P, Ritz E. Beta blockers in the management of chronic kidney disease. Kidney Int. 2006;70(11):1905–13. doi:10.1038/sj.ki.5001835.

    CAS  PubMed  Google Scholar 

  201. Cice G, Ferrara L, D'Andrea A, D'Isa S, Di Benedetto A, Cittadini A, et al. Carvedilol increases two-year survivalin dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J Am Coll Cardiol. 2003;41(9):1438–44.

    CAS  PubMed  Google Scholar 

  202. Hausberg M, Tokmak F, Pavenstadt H, Kramer BK, Rump LC. Effects of moxonidine on sympathetic nerve activity in patients with end-stage renal disease. J Hypertens. 2010;28(9):1920–7. doi:10.1097/HJH.0b013e32833c2100.

    CAS  PubMed  Google Scholar 

  203. Wallin BG, Sundlof G, Stromgren E, Aberg H. Sympathetic outflow to muscles during treatment of hypertension with metoprolol. Hypertension. 1984;6(4):557–62.

    CAS  PubMed  Google Scholar 

  204. Burns J, Mary DA, Mackintosh AF, Ball SG, Greenwood JP. Arterial pressure lowering effect of chronic atenolol therapy in hypertension and vasoconstrictor sympathetic drive. Hypertension. 2004;44(4):454–8. doi:10.1161/01.HYP.0000141411.94596.0f.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.

    CAS  PubMed  Google Scholar 

  206. Ravera M, Re M, Deferrari L, Vettoretti S, Deferrari G. Importance of blood pressure control in chronic kidney disease. J Am Soc Nephrol. 2006;17(4 Suppl 2):S98–103. doi:10.1681/asn.2005121319.

    PubMed  Google Scholar 

  207. Kiuchi MG, Maia GL, de Queiroz Carreira MA, Kiuchi T, Chen S, Andrea BR, et al. Effects of renal denervation with a standard irrigated cardiac ablation catheter on blood pressure and renal function in patients with chronic kidney disease and resistant hypertension. Eur Heart J. 2013;34(28):2114–21. doi:10.1093/eurheartj/eht200.

    PubMed  Google Scholar 

  208. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–64. doi:10.1161/hypertensionaha.111.00194.

    CAS  PubMed  Google Scholar 

  209. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60(6):1485–90. doi:10.1161/hypertensionaha.112.201186.

    CAS  PubMed  Google Scholar 

  210. Hart EC, McBryde FD, Burchell AE, Ratcliffe LE, Stewart LQ, Baumbach A, et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;62(3):533–41. doi:10.1161/hypertensionaha.113.01261.

    CAS  PubMed  Google Scholar 

  211. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. doi:10.1056/NEJMoa1402670.

    CAS  PubMed  Google Scholar 

  212. Jin Y, Persu A, Staessen JA. Renal denervation in the management of resistant hypertension: current evidence and perspectives. Curr Opin Nephrol Hypertens. 2013;22(5):511–8. doi:10.1097/MNH.0b013e3283640024.

    PubMed  Google Scholar 

  213. Grassi G, Bertoli S, Seravalle G. Sympathetic nervous system: role in hypertension and in chronic kidney disease. Curr Opin Nephrol Hypertens. 2012;21(1):46–51. doi:10.1097/MNH.0b013e32834db45d.

    CAS  PubMed  Google Scholar 

  214. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. doi:10.1161/hypertensionaha.109.140665.

    CAS  PubMed  Google Scholar 

  215. Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA. Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol. 2010;299(2):H402–9. doi:10.1152/ajpheart.00372.2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Goddard J, Turner AN. Kidney and urinary tract disease. In: Walker BR, Colledge NR, Ralston SH, Penman ID, editors. Davidson's principles and practice of medicine. 22nd ed. Philadelphia: Churchill Livingstone Elsevier; 2014.

    Google Scholar 

  217. Chesterton LJ, Selby NM, Burton JO, Fialova J, Chan C, McIntyre CW. Categorization of the hemodynamic response to hemodialysis: the importance of baroreflex sensitivity. Hemodial Int Int Symp Home Hemodial. 2010;14(1):18–28. doi:10.1111/j.1542-4758.2009.00403.x.

    Google Scholar 

  218. Giordano M, Manzella D, Paolisso G, Caliendo A, Varricchio M, Giordano C. Differences in heart rate variability parameters during the post-dialytic period in type II diabetic and non-diabetic ESRD patients. Nephrol Dial Transplant. 2001;16(3):566–73.

    CAS  PubMed  Google Scholar 

  219. Mylonopoulou M, Tentolouris N, Antonopoulos S, Mikros S, Katsaros K, Melidonis A, et al. Heart rate variability in advanced chronic kidney disease with or without diabetes: midterm effects of the initiation of chronic haemodialysis therapy. Nephrol Dial Transplant. 2010;25(11):3749–54. doi:10.1093/ndt/gfq226.

    PubMed  Google Scholar 

  220. Chan CT, Chertow GM, Daugirdas JT, Greene TH, Kotanko P, Larive B, et al. Effects of daily hemodialysis on heart rate variability: results from the Frequent Hemodialysis Network (FHN) daily trial. Nephrol Dial Transplant. 2014;29(1):168–78. doi:10.1093/ndt/gft212.

    PubMed Central  PubMed  Google Scholar 

  221. Zilch O, Vos PF, Oey PL, Cramer MJ, Ligtenberg G, Koomans HA, et al. Sympathetic hyperactivity in haemodialysis patients is reduced by short daily haemodialysis. J Hypertens. 2007;25(6):1285–9. doi:10.1097/HJH.0b013e3280f9df85.

    CAS  PubMed  Google Scholar 

  222. Korejwo G, Hermann A, Zdrojewski Z, Debska-Slizien A, Rutkowski B. Improved autonomic function after kidney transplantation. Transplant Proc. 2002;34(2):601–3.

    CAS  PubMed  Google Scholar 

  223. Yang YW, Wu CH, Tsai MK, Kuo TB, Yang CC, Lee PH. Heart rate variability during hemodialysis and following renal transplantation. Transplant Proc. 2010;42(5):1637–40. doi:10.1016/j.transproceed.2010.01.062.

    PubMed  Google Scholar 

  224. Heidbreder E, Schafferhans K, Heidland A. Disturbances of peripheral and autonomic nervous system in chronic renal failure: effects of hemodialysis and transplantation. Clin Nephrol. 1985;23(5):222–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges constructive feedback on the manuscript provided by Professor Jacqueline Phillips, Dr Cara Hildreth (Macquarie University, Australia), Dr Clive May (University of Melbourne, Australia), Dr Virginia Brooks (Oregon Health and Science University, USA), and Dr Ann Schreihofer (University of North Texas Health Science Center, USA).

Compliance with Ethics Guidelines

Conflict of Interest

Ibrahim M. Salman declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. Salman.

Additional information

This article is part of the Topical Collection on Hypertension and the Kidney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, I.M. Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: a Comprehensive Review. Curr Hypertens Rep 17, 59 (2015). https://doi.org/10.1007/s11906-015-0571-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0571-z

Keywords

Navigation