Skip to main content

Advertisement

Log in

The Kidney in Obesity

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Body mass index has been found to be the second most important contributor to relative risk for developing end state renal disease (ESRD), after proteinuria. The impact of obesity on the kidney includes a wide spectrum, from characteristic pathologic lesions to increment in urinary albumin excretion (UAE) and proteinuria/or decrease in glomerular filtration rate (GFR). The cause of renal disease associated to obesity is not well understood, but two relevant elements emerge. The first is the presence of obesity-related glomerulopathy, and the second is the fat deposit in the kidney with impact on renal haemodynamics and intrarenal regulation. The mechanisms linking obesity and renal damage are complex and include haemodynamic changes, inflammation, oxidative stress, apoptosis, and finally renal scarring. The protection of kidney damage needs to combine weight reduction with the proper control of the cardiometabolic risk factors associated, hypertension, metabolic syndrome, diabetes and dyslipidaemia. The search for specific treatments merits future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prospective Studies Collaboration. Body-mass index and cause specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96. The relevance of BMI in mortality is collected based in a large number of prospective studies.

    Article  PubMed Central  Google Scholar 

  2. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9 · 1 million participants. Lancet. 2011;377:557–67.

    Article  PubMed  Google Scholar 

  3. Lapidus L, Bengtsson C, Larsson B, Pennert K, Rybo E, Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow-up of participants in the population study of women in Gothenburg Sweden. BMJ. 1984;289:1257–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ducimetière P, Richard J, Cambien F. The pattern of subcutaneous fat distribution in middle-aged men and the risk of coronary heart disease: the Paris prospective study. Int J Obes. 1986;10:229–40.

    PubMed  Google Scholar 

  5. Rimm EB, Stampfer MJ, Giovannucci E, Ascherio A, Spiegelman D, Colditz GA, et al. Body size and fat distribution as predictors of coronary heart disease among middle-aged and older men. Am J Epidemiol. 1995;141:1117–27.

    CAS  PubMed  Google Scholar 

  6. Rexrode KM, Hennekens CH, Willet WC, et al. A prospective study of body mass index, weight change, and risk of stroke in women. JAMA. 1997;277:1539–45.

    Article  CAS  PubMed  Google Scholar 

  7. Folsom AR, Stevens J, Schreiner PJ, McGovern PG. Body mass index, waist/hip ratio, and coronary heart disease incidence in African Americans and whites. Am J Epidemiol. 1998;148:1187–94.

    Article  CAS  PubMed  Google Scholar 

  8. Molarius A, Seidell JC, Sans S, Tuomilehto J, Kuulasmaa K. Waist and hip circumferences, and waist-hip ratio in 19 populations of the WHO MONICA project. Int J Obes. 1999;23:116–22.

    Article  CAS  Google Scholar 

  9. Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, Hong CP, et al. Associations of general and abdominal obesity with multiple health outcomes in older women. The Iowa women’s health study. Arch Intern Med. 2000;60:2117–28.

    Article  Google Scholar 

  10. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J. 2002;23:705–13.

    Article  Google Scholar 

  11. Kurth T, Gaziano JM, Berger K, Kase CS, Rexrode KM, Cook NR, et al. Body mass index and the risk of stroke in men. Arch Intern Med. 2002;162:2557–62.

    Article  PubMed  Google Scholar 

  12. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27, 000 participants from 52 countries: a case control study. Lancet. 2005;366:1640–9.

    Article  PubMed  Google Scholar 

  13. Gelber RP, Gaziano JM, Orav EJ, Manson JE, Buring JE, Kurth T. Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol. 2008;52:605–15.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, et al. The metabolic syndrome in hypertension: European society of hypertension position statement. J Hypertens. 2008;26:1891–900.

    Article  CAS  PubMed  Google Scholar 

  15. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalisation. N Engl J Med. 2004;351:1296–306.

    Article  CAS  PubMed  Google Scholar 

  16. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  Google Scholar 

  17. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–47.

    Article  CAS  PubMed  Google Scholar 

  18. Aitken GR, Roderick PJ, Fraser S, Mindell JS, O'Donoghue D, Day J, et al. Change in prevalence of chronic kidney disease in England over time: comparison of nationally representative cross-sectional surveys from 2003 to 2010. BMJ Open. 2014;4, e005480.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Komura H, Nomura I, Kitamura K, Kuwasako K, Kato J. Gender difference in relationship between body mass index and development of chronic kidney disease. BMC Res Notes. 2013;6:463.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.

    Article  PubMed  Google Scholar 

  21. Stengel B, Tarver-Carr ME, Powe NR, Eberhardt MS, Brancati FL. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology. 2003;14:479–87.

    PubMed  Google Scholar 

  22. Mohsen A, Brown R, Hoefield R, Kalra PA, O'Donoghue D, Middleton R, et al. Body mass index has no effect on rate of progression of chronic kidney disease in subjects with type 2 diabetes mellitus. J Nephrol. 2012;25:384–93.

    Article  PubMed  Google Scholar 

  23. Brown RN, Mohsen A, Green D, Hoefield RA, Summers LK, Middleton RJ, et al. Body mass index has no effect on rate of progression of chronic kidney disease in non-diabetic subjects. Nephrol Dial Transplant. 2012;27:2776–80.

    Article  PubMed  Google Scholar 

  24. França AK, Dos Santos AM, Salgado JV, Hortegal EV, da Silva AA, Salgado FN. Estimated visceral adipose tissue, but not body mass index, is associated with reductions in glomerular filtration rate based on cystatin C in the early stages of chronic kidney disease. Int J Nephrol. 2014;2014:574267.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Odagiri K, Mizuta I, Yamamoto M, Miyazaki Y, Watanabe H, Uehara A. Waist to height ratio is an independent predictor for the incidence of chronic kidney disease. PLoS One. 2014;9:e88873.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16:2134–40.

    Article  PubMed  Google Scholar 

  27. Thomas G, Sehgal AR, Kashyap SR, Srinivas TR, Kirwan JP, Navaneethan SD. Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2011;6:2364–73. Systematic review of the association between MetS, its components, and development of microalbuminuria or proteinuria and CKD in 30146 subjects. The study demonstrated the impact of metabolic síndrome in the development of microalbuminuria, proteinuria and CKD.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Song H, Wang X, Cai Q, Ding W, Huang S, Zhuo L. Association of metabolic syndrome with decreased glomerular filtration rate among 75,468 Chinese adults: a cross-sectional study. PLoS One. 2014;9, e113450.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nashar K, Egan BM. Relationship between chronic kidney disease and metabolic syndrome: current perspectives. Diabetes Metab Syndr Obes. 2014;7:421–35.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. 2009;169:342–50.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Vupputuri S, Fox CS, Coresh J, Woodward M, Muntner P. Differential estimation of CKD using creatinine- versus cystatin C-based estimating equations by category of body mass index. Am J Kidney Dis. 2009;53:993–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kambham N, Markowitz GS, Valeri AM, Lin J, D'Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509.

    Article  CAS  PubMed  Google Scholar 

  33. Serra A, Romero R, Lopez D, Navarro M, Esteve A, Perez N, et al. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 2008;73:947–55.

    Article  CAS  PubMed  Google Scholar 

  34. de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014;2:417–26. The study collects the evidence of the ectopic lipid accumulation in the kidney and its relationship with obesity related renal disease, including hemodynamic and structural changes.

    Article  PubMed  Google Scholar 

  35. Tang J, Yan H, Zhuang S. Inflammation and oxidative stress in obesity-related glomerulopathy. Int J Nephrol. 2012;2012:608397.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Alexander MP, Patel TV, Farag YM, Florez A, Rennke HG, Singh AK. Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am J Kidney Dis. 2009;53:751–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 2010;21:212–22.

    Article  CAS  PubMed  Google Scholar 

  38. Matsusaka T, Sandgren E, Shintani A, Kon V, Pastan I, Fogo AB, et al. Podocyte injury damages other podocytes. J Am Soc Nephrol. 2011;22:1275–85.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wagner R, Machann J, Lehmann R, Rittig K, Schick F, Lenhart J, et al. Exercise-induced albuminuria is associated with perivascular renal sinus fat in individuals at increased risk of type 2 diabetes. Diabetologia. 2012;55:2054–8.

    Article  CAS  PubMed  Google Scholar 

  40. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham heart study. Hypertension. 2011;58:784–90. In participants from the Framingham Heart Study underwent quantification of renal sinus fat area using computed tomography. With a prevalence of fatty kidney of 30 %, it was a risk for having hypertension independent of potential counfounding factors. Renal sinus fat may play a role in blood pressure regulation and chronic kidney disease.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Stefan N, Artunc F, Heyne N, Machann J, Schleicher ED, Häring HU. Obesity and renal disease: not all fat is created equal and not all obesity is harmful to the kidneys. Nephrol Dial Transplant. 2014. Apr 20.

  42. Felizardo RJ, da Silva MB, Aguiar CF, Câmara NO. Obesity in kidney disease: a heavyweight opponent. World J Nephrol. 2014;3:50–63. The review discussed the consequences of obesity in the context of renal injury.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Ribstein J, du Cailar G, Mimran A. Combined renal effects of overweight and hypertension. Hypertension. 1995;26:610–5.

    Article  CAS  PubMed  Google Scholar 

  44. Krikken JA, Lely AT, Bakker SJ, Navis G. The effect of a shift in sodium intake on renal hemodynamics is determined by body mass index in healthy young men. Kidney Int. 2007;71:260–5.

    Article  CAS  PubMed  Google Scholar 

  45. Chagnac A, Weinstein T, Herman M, Hirsh J, Gafter U, Ori Y. The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol. 2003;14:1480–6.

    Article  PubMed  Google Scholar 

  46. Ahmed SB, Fisher ND, Stevanovic R, Hollenberg NK. Body mass index and angiotensin-dependent control of the renal circulation in healthy humans. Hypertension. 2005;46:1316–20.

    Article  CAS  PubMed  Google Scholar 

  47. De Cosmo S, Menzaghi C, Prudente S, Trischitta V. Role of insulin resistance in kidney dysfunction: insights into the mechanism and epidemiological evidence. Nephrol Dial Transplant. 2013;28:29–36.

    Article  PubMed  Google Scholar 

  48. Chen S, Chen Y, Liu X, Li M, Wu B, Li Y, et al. Association of insulin resistance with chronic kidney disease in non-diabetic subjects with normal weight. PLoS One. 2013;8:e74058.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Manabe I. Chronic inflammation links cardiovascular, metabolic and renal diseases. Circ J. 2011;75:2739–48.

    Article  CAS  PubMed  Google Scholar 

  50. Nolan E, O'Meara YM, Godson C. Lipid mediators of inflammation in obesity-related glomerulopathy. Nephrol Dial Transplant. 2013;28(4):iv22–9.

    CAS  PubMed  Google Scholar 

  51. Wolf G, Chen S, Han DC, Ziyadeh FN. Leptin and renal disease. Am J Kidney Dis. 2002;39:1–11.

    Article  CAS  PubMed  Google Scholar 

  52. Nasrallah MP, Ziyadeh FN. Overview of the physiology and pathophysiology of leptin with special emphasis on its role in the kidney. Semin Nephrol. 2013;33:54–65.

    Article  CAS  PubMed  Google Scholar 

  53. Rutkowski JM, Wang ZV, Park AS, Zhang J, Zhang D, Hu MC, et al. Adiponectin promotes functional recovery after podocyte ablation. J Am Soc Nephrol. 2013;24:268–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Axelsson J, Bergsten A, Qureshi AR, Heimbürger O, Bárány P, Lönnqvist F, et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 2006;69:596–604.

    Article  CAS  PubMed  Google Scholar 

  55. Kang YS, Song HK, Lee MH, Ko GJ, Han JY, Han SY, et al. Visfatin is upregulated in type-2 dia- betic rats and targets renal cells. Kidney Int. 2010;78:170–81.

    Article  CAS  PubMed  Google Scholar 

  56. Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol. 2010;21:406–12.

    Article  CAS  PubMed  Google Scholar 

  57. Nishiyama A, Abe Y. Molecular mechanisms and therapeu- tic strategies of chronic renal injury: renoprotective effects of aldosterone blockade. J Pharmacol Sci. 2006;100:9–16.

    Article  CAS  PubMed  Google Scholar 

  58. Sharma K. Obesity, oxidative stress, and fibrosis in chronic kidney disease. Kidney Int Suppl. 2014;4(4):113–7.

    Article  CAS  Google Scholar 

  59. Declèves AE, Zolkipli Z, Satriano J, Wang L, Nakayama T, Rogac M, et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury. Kidney Int. 2014;85:611–23. The role of AMP-activated protein kinase, a critical pathway in regulating renal lipid accumulation is reviewed.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123:4888–99.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Chen B, Yang D, Chen Y, Xu W, Ye B, Ni Z. The prevalence of microalbuminuria and its relationships with the components of metabolic syndrome in the general population of China. Clin Chim Acta. 2010;411:705–9.

    Article  CAS  PubMed  Google Scholar 

  62. Thoenes M, Reil JC, Khan BV, Bramlage P, Volpe M, Kirch W, et al. Abdominal obesity is associated with microalbuminuria and an elevated cardiovascular risk profile in patients with hypertension. Vasc Health Risk Manag. 2009;55:577–85.

    Google Scholar 

  63. Chandie Shaw PK, Berger SP, Mallat M, Frölich M, Dekker FW, Rabelink TJ. Central obesity is an independent risk factor for albuminuria in nondiabetic south Asian subjects. Diabetes Care. 2007;30:1840–4.

    Article  PubMed  Google Scholar 

  64. Du N, Peng H, Chao X, Zhang Q, Tian H, Li H. Interaction of obesity and central obesity on elevated urinary albumin-to-creatinine ratio. PLoS One. 2014;9:e98926.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Goknar N, Oktem F, Ozgen IT, Torun E, Kuçukkoc M, Demir AD, et al. Determination of early urinary renal injury markers in obese children. Pediatr Nephrol. 2015;30:139–44.

    Article  PubMed  Google Scholar 

  66. Xiao N, Jenkins TM, Nehus E, Inge TH, Michalsky MP, Harmon CM, et al. Kidney function in severely obese adolescents undergoing bariatric surgery. Obesity. 2014;22:2319–25.

    Article  CAS  PubMed  Google Scholar 

  67. Lurbe E, Torro MI, Alvarez J, Aguilar F, Fernandez-Formoso JA, Redon J. Prevalence and factors related to urinary albumin excretion in obese youths. J Hypertens. 2013;31:2230–6.

    Article  CAS  PubMed  Google Scholar 

  68. Adelman RD, Restaino IG, Alon US, Blowey DL. Proteinuria and focal segmental glomerulosclerosis in severely obese adolescents. J Pediatr. 2001;138:481–5.

    Article  CAS  PubMed  Google Scholar 

  69. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community- based population. JAMA. 2004;291:844–50.

    Article  CAS  PubMed  Google Scholar 

  70. Ejerblad E, Fored CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006;17:1695–702.

    Article  CAS  PubMed  Google Scholar 

  71. Tozawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y, Takishita S. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002;62:956–62.

    Article  PubMed  Google Scholar 

  72. Franceschini N, Gouskova NA, Reiner AP, Bostom A, Howard BV, Pettinger M, Umans JG, Brookhart MA, Winkelmayer WC, Eaton CB, Heiss G, Fine JP. Adiposity patterns and the risk for ESRD in postmenopausal women. Clin J Am Soc Nephrol. 2014; Dec 1.

  73. Hashimoto Y, Tanaka M, Okada H, Senmaru T, Hamaguchi M, Asano M, Yamazaki M, Oda Y, Hasegawa G, Toda H, Nakamura N, Fukui M. Metabolically healthy obesity and risk of incident CKD. Clin J Am Soc Nephrol. 2015; Jan 29.

  74. Song YM, Sung J, Lee K. Longitudinal relationships of metabolic syndrome and obesity with kidney function: healthy twin study. Clin Exp Nephrol. 2015; Jan 30.

  75. Panwar B, Hanks LJ, Tanner RM, Muntner P, Kramer H, McClellan WM, Warnock DG, Judd SE, Gutiérrez OM. Obesity, metabolic health, and the risk of end-stage renal disease. Kidney Int. 2014; Dec 17.

  76. Chen S, Zhou S, Wu B, Zhao Y, Liu X, Liang Y, et al. Association between metabolically unhealthy overweight/obesity and chronic kidney disease: the role of inflammation. Diabetes Metab. 2014;40:423–30.

    Article  CAS  PubMed  Google Scholar 

  77. Hoogeveen EK, Halbesma N, Rothman KJ, Stijnen T, van Dijk S, Dekker FW, et al. Obesity and mortality risk among younger dialysis patients. Clin J Am Soc Nephrol. 2012;7:280–8.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hoogeveen EK, Aalten J, Rothman KJ, Roodnat JI, Mallat MJ, Borm G, et al. Effect of obesity on the outcome of kidney transplantation: a 20-year follow-up. Transplantation. 2011;91:869–74.

    Article  PubMed  Google Scholar 

  79. Meier-Kriesche HU, Arndorfer JA, Kaplan B. The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. Transplantation. 2002;73:70–4.

    Article  PubMed  Google Scholar 

  80. Sharma D, Hawkins M, Abramowitz MK. Association of sarcopenia with eGFR and misclassification of obesity in adults with CKD in the United States. Clin J Am Soc Nephrol. 2014;9:2079–88.

    Article  CAS  PubMed  Google Scholar 

  81. Hanly PJ, Ahmed SB. Sleep apnea and the kidney: is sleep apnea a risk factor for chronic kidney disease? Chest. 2014;146:1114–22.

    Article  PubMed  Google Scholar 

  82. Musso G, Gambino R, Tabibian JH, Ekstedt M, Kechagias S, Hamaguchi M, et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis. PLoS Med. 2014;11:e1001680.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Praga M, Hernández E, Herrero JC, Morales E, Revilla Y, Díaz-González R, et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int. 2000;58:2111–8.

    Article  CAS  PubMed  Google Scholar 

  84. Morales E, Valero MA, Leo NM, Hernandez E, Praga M. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003;41:319–27.

    Article  PubMed  Google Scholar 

  85. Saiki A, Nagayama D, Ohhira M, Endoh K, Ohtsuka M, Koide N, et al. Effect of weight loss using formula diet on renal function in obese patients with diabetic nephropathy. Int J Obes. 2005;29:1115–20.

    Article  CAS  Google Scholar 

  86. Afshinnia F, Wilt TJ, Duval S, Esmaeili A, Ibrahim HN. Weight loss and proteinuria: systematic review of clinical trials and comparative cohorts. Nephrol Dial Transplant. 2010;25:1173–83.

    Article  PubMed  Google Scholar 

  87. Navaneethan S, Yehnert H, Moustarah F, Screiber M, Schauer P, Beddhu S. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;10:1565–74.

    Article  Google Scholar 

  88. Pohl MA, Blumenthal S, Cordonnier DJ, De Alvaro F, Deferrari G, Eisner G, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16:3027–37.

    Article  CAS  PubMed  Google Scholar 

  89. Pascual JM, Rodilla E, Costa JA, Garcia-Escrich M, Gonzalez C, Redon J. Prognostic value of microalbuminuria during antihypertensive treatment in essential hypertension. Hypertension. 2014;64:1228–34.

    Article  CAS  PubMed  Google Scholar 

  90. Pierine DT, Navarro ME, Minatel IO, Luvizotto RA, Nascimento AF, Ferreira AL, et al. Lycopene supplementation reduces TNF-α via RAGE in the kidney of obese rats. Nutr Diabetes. 2014;4, e142.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Stacchiotti A, Favero G, Giugno L, Lavazza A, Reiter RJ, Rodella LF, et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: protective role of melatonin. PLoS One. 2014;9(10):e111141.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Wang C, Wu M, Arvapalli R, Dai X, Mahmood M, Driscoll H, et al. Acetaminophen attenuates obesity-related renal injury through ER-mediated stress mechanisms. Cell Physiol Biochem. 2014;33:1139–48.

    Article  CAS  PubMed  Google Scholar 

  93. Yoshida S, Ishizawa K, Ayuzawa N, Ueda K, Takeuchi M, Kawarazaki W, et al. Local mineralocorticoid receptor activation and the role of Rac1 in obesity-related diabetic kidney disease. Nephron Exp Nephrol. 2014;126:16–24.

    Article  CAS  PubMed  Google Scholar 

  94. Imig JD, Walsh KA, Hye Khan MA, Nagasawa T, Cherian-Shaw M, Shaw SM, et al. Soluble epoxide hydrolase inhibition and peroxisome proliferator activate receptor γ agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med (Maywood). 2012;237:1402–12.

    Article  CAS  Google Scholar 

  95. Abou-Mrad RM, Abu-Alfa AK, Ziyadeh FN. Effects of weight reduction regimens and bariatric surgery on chronic kidney disease in obese patients. Am J Physiol Renal Physiol. 2013;305:F613–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Josep Redon and Empar Lurbe declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Redon.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redon, J., Lurbe, E. The Kidney in Obesity. Curr Hypertens Rep 17, 43 (2015). https://doi.org/10.1007/s11906-015-0555-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0555-z

Keywords

Navigation