Skip to main content
Log in

Yes! Sex Matters: Sex, the Brain and Blood Pressure

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The role of the brain in hypertension between the sexes is known to be important especially with regards to the effects of circulating sex hormones. A number of different brain regions important for regulation of sympathetic outflow and blood pressure express estrogen receptors (ERα and ERβ). Estradiol, acting predominantly via the ERα, inhibits angiotensin II activation of the area postrema and subfornical organ neurons and inhibits reactive oxygen generation that is required for the development of Angiotensin II-induced neurogenic hypertension. Estradiol activation of ERβ within the paraventricular nucleus and the rostral ventral lateral medulla inhibits these neurons and inhibits angiotensin II, or aldosterone induced increases in sympathetic outflow and hypertension. Understanding the cellular and molecular mechanisms underlying ERα and ERβ actions within key brain regions regulating blood pressure will be essential for the development of “next generation” selective estrogen receptor modulators (SERMS) that can be used clinically for the treatment of neurogenic hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance

  1. Miller VM, Black DM, Brinton EA, Budoff MJ, Cedars MI, Hodis HN, et al. Using basic science to design a clinical trial: baseline characteristics of women enrolled in the Kronos Early Estrogen Prevention Study (KEEPS). J Cardiovasc Transl Res. 2009;2(3):228–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lima R, Wofford M, Reckelhoff JF. Hypertension in postmenopausal women. Curr Hypertens Rep. 2012;14(3):254–60.

    PubMed  PubMed Central  Google Scholar 

  3. Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;3(1):7. An excellent in depth review of a number of mechanims that are invovled in sex differences in hypertension.

    PubMed  PubMed Central  Google Scholar 

  4. Maranon R, Reckelhoff JF. Sex and gender differences in control of blood pressure. Clin Sci (Lond). 2013;125(7):311–8.

    Google Scholar 

  5. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008;52(5):818–27.

    CAS  PubMed  Google Scholar 

  6. Yanes LL, Romero DG, Iliescu R, Reckelhoff JF. A single pill to treat postmenopausal hypertension? Not yet. Curr Top Med Chem. 2011;11(13):1736–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ichikawa A, Sumino H, Ogawa T, Ichikawa S, Nitta K. Effects of long-term transdermal hormone replacement therapy on the renin-angiotensin- aldosterone system, plasma bradykinin levels and blood pressure in normotensive postmenopausal women. Geriatr Gerontol Int. 2008;8(4):259–64.

    PubMed  Google Scholar 

  8. Prelevic GM, Kocjan T, Markou A. Hormone replacement therapy in postmenopausal women. Minerva Endocrinol. 2005;30(1):27–36.

    CAS  PubMed  Google Scholar 

  9. Reckelhoff JF, Maric C. Sex and gender differences in cardiovascular-renal physiology and pathophysiology. Steroids. 2010;75(11):745–6.

    CAS  PubMed  Google Scholar 

  10. Crofton JT, Share L. Gonadal hormones modulate deoxycorticosterone-salt hypertension in male and female rats. Hypertension. 1997;29(1 Pt 2):494–9.

    CAS  PubMed  Google Scholar 

  11. Xue B, Pamidimukkala J, Hay M. Sex differences in the development of angiotensin II-induced hypertension in conscious mice. Am J Physiol Heart Circ Physiol. 2005;288(5):H2177–84.

    CAS  PubMed  Google Scholar 

  12. Ouchi Y, Share L, Crofton JT, Iitake K, Brooks DP. Sex difference in pressor responsiveness to vasopressin and baroreflex function in DOC-salt hypertensive rats. J Hypertens. 1988;6(5):381–7.

    CAS  PubMed  Google Scholar 

  13. Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998;31(1 Pt 2):435–9.

    CAS  PubMed  Google Scholar 

  14. Yanes LL, Sartori-Valinotti JC, Iliescu R, Romero DG, Racusen LC, Zhang H, et al. Testosterone-dependent hypertension and upregulation of intrarenal angiotensinogen in Dahl salt-sensitive rats. Am J Physiol Renal Physiol. 2009;296(4):F771–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K. Ovariectomy augments hypertension in aging female Dahl salt-sensitive rats. Hypertension. 2004;44(4):405–9.

    CAS  PubMed  Google Scholar 

  16. Xue B, Zhao Y, Johnson AK, Hay M. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol. 2008;295(3):H1025–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- induced hypertension. Braz J Med Biol Res. 2007;40(5):727–34.

    CAS  PubMed  Google Scholar 

  18. Maric C, Xu Q, Sandberg K, Hinojosa-Laborde C. Age-related renal disease in female Dahl salt-sensitive rats is attenuated with 17 beta-estradiol supplementation by modulating nitric oxide synthase expression. Gend Med. 2008;5(2):147–59.

    PubMed  PubMed Central  Google Scholar 

  19. Ji H, Zheng W, Wu X, Liu J, Ecelbarger CM, Watkins R, et al. Sex chromosome effects unmasked in angiotensin II-induced hypertension. Hypertension. 2010;55(5):1275–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue B, Pamidimukkala J, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol. 2007;292(4):H1770–6.

    CAS  PubMed  Google Scholar 

  21. Xue B, Badaue-Passos D, Guo F, Gomez-Sanchez CE, Hay M, Johnson AK. Sex differences and central protective effect of 17beta-estradiol in the development of aldosterone/NaCl-induced hypertension. Am J Physiol Heart Circ Physiol. 2009;296(5):H1577–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Guild SJ, McBryde FD, Malpas SC, Barrett CJ. High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension. 2012;59(3):614–20.

    CAS  PubMed  Google Scholar 

  23. Osborn JW, Fink GD. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol. 2010;95(1):61–8.

    CAS  PubMed  Google Scholar 

  24. Maranon RO, Lima R, Mathbout M, do Carmo JM, Hall JE, Roman RJ, et al. Postmenopausal hypertension: role of the sympathetic nervous system in an animal model. Am J Physiol Regul Integr Comp Physiol. 2014;306(4):R248–56. This study addresses the role of aging and the sympathetic nervous sytem in the development of hypertension in a female animal model. Results from this study suggest that with age, there is an increased role of the sympathetic nervous system in the development of hypertension in females yet the central mechanism responsible is distinct from that observed in older males.

    CAS  PubMed  Google Scholar 

  25. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ. Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension. 2009;53(3):571–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hart EC, Charkoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology (Bethesda). 2014;29(1):8–15.

    CAS  Google Scholar 

  27. Fisher JP, Kim A, Hartwich D, Fadel PJ. New insights into the effects of age and sex on arterial baroreflex function at rest and during dynamic exercise in humans. Auton Neurosci. 2012;172(1–2):13–22.

    PubMed  PubMed Central  Google Scholar 

  28. Kim A, Deo SH, Fisher JP, Fadel PJ. Effect of sex and ovarian hormones on carotid baroreflex resetting and function during dynamic exercise in humans. J Appl Physiol (1985). 2012;112(8):1361–71.

    CAS  Google Scholar 

  29. Hart EC, Joyner MJ, Wallin BG, Charkoudian N. Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors. J Physiol. 2012;590(Pt 9):2069–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pamidimukkala J, Xue B, Newton LG, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen facilitation of baroreflex heart rate responses in conscious mice. Am J Physiol Heart Circ Physiol. 2005;288(3):H1063–70.

    CAS  PubMed  Google Scholar 

  31. Caeiro XE, Mir FR, Vivas LM, Carrer HF, Cambiasso MJ. Sex chromosome complement contributes to sex differences in bradycardic baroreflex response. Hypertension. 2011;58(3):505–11. This study is the first to examine the role of the sex chromosomes in sex differences observed in baroreflex function. The results of this study found that the sexual dimorphism oberserved in Ang II-bradycardic baroreflex sexual dimorphism response may be ascribed to differences in sex chromosomes. Further, these authors show that pheylephrine induced baroreflex bradycardic response depends on the complex interaction between SCC and gonadal steroids.

    CAS  PubMed  Google Scholar 

  32. Kisley LR, Sakai RR, Fluharty SJ. Estrogen decreases hypothalamic angiotensin II AT1 receptor binding and mRNA in the female rat. Brain Res. 1999;844(1–2):34–42.

    CAS  PubMed  Google Scholar 

  33. Krishnamurthi K, Verbalis JG, Zheng W, Wu Z, Clerch LB, Sandberg K. Estrogen regulates angiotensin AT1 receptor expression via cytosolic proteins that bind to the 5′ leader sequence of the receptor mRNA. Endocrinology. 1999;140(11):5435–8.

    CAS  PubMed  Google Scholar 

  34. Ciriello J, Roder S. 17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Res. 2013;1526:54–64. This electrophysiolgoical study shows that estradiol replacement can directly modulate the neuronal activity of SFO neurons and their responsiveness to both Ang II and NaCl. These important data indicate that estradiol actions in the brain functions to regulate neurohypophyseal function in response to circulating ANG II and plasma hypernatremia.

    CAS  PubMed  Google Scholar 

  35. Seltzer A, Pinto JE, Viglione PN, Correa FM, Libertun C, Tsutsumi K, et al. Estrogens regulate angiotensin-converting enzyme and angiotensin receptors in female rat anterior pituitary. Neuroendocrinology. 1992;55(4):460–7.

    CAS  PubMed  Google Scholar 

  36. Laflamme N, Nappi RE, Drolet G, Labrie C, Rivest S. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. J Neurobiol. 1998;36(3):357–78.

    CAS  PubMed  Google Scholar 

  37. Spary EJ, Maqbool A, Batten TF. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat. 2009;38(3):185–96.

    CAS  PubMed  Google Scholar 

  38. Bishop VS, Hay M. Involvement of the area postrema in the regulation of sympathetic outflow to the cardiovascular system. Front Neuroendocrinol. 1993;14(2):57–75.

    CAS  PubMed  Google Scholar 

  39. Hasser EM, Cunningham JT, Sullivan MJ, Curtis KS, Blaine EH, Hay M. Area postrema and sympathetic nervous system effects of vasopressin and angiotensin II. Clin Exp Pharmacol Physiol. 2000;27(5–6):432–6.

    CAS  PubMed  Google Scholar 

  40. Hay M, Bishop VS. Effects of area postrema stimulation on neurons of the nucleus of the solitary tract. Am J Physiol. 1991;260(4 Pt 2):H1359–64.

    CAS  PubMed  Google Scholar 

  41. Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, et al. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res. 2002;91(11):1038–45.

    CAS  PubMed  Google Scholar 

  42. Pamidimukkala J, Hay M. 17 beta-estradiol inhibits angiotensin II activation of area postrema neurons. Am J Physiol Heart Circ Physiol. 2003;285(4):H1515–20.

    CAS  PubMed  Google Scholar 

  43. Li Z, Hay M. 17-beta-estradiol modulation of area postrema potassium currents. J Neurophysiol. 2000;84(3):1385–91.

    CAS  PubMed  Google Scholar 

  44. Vanderhorst VG, Gustafsson JA, Ulfhake B. Estrogen receptor-alpha and -beta immunoreactive neurons in the brainstem and spinal cord of male and female mice: relationships to monoaminergic, cholinergic, and spinal projection systems. J Comp Neurol. 2005;488(2):152–79.

    PubMed  Google Scholar 

  45. Spary EJ, Maqbool A, Batten TF. Changes in oestrogen receptor alpha expression in the nucleus of the solitary tract of the rat over the oestrous cycle and following ovariectomy. J Neuroendocrinol. 2010;22(6):492–502.

    CAS  PubMed  Google Scholar 

  46. Saleh MC, Connell BJ, Saleh TM. Medullary and intrathecal injections of 17beta-estradiol in male rats. Brain Res. 2000;867(1–2):200–9.

    CAS  PubMed  Google Scholar 

  47. Xue B, Hay M. 17beta-estradiol inhibits excitatory amino acid-induced activity of neurons of the nucleus tractus solitarius. Brain Res. 2003;976(1):41–52.

    CAS  PubMed  Google Scholar 

  48. Saleh TM, Connell BJ. Role of oestrogen in the central regulation of autonomic function. Clin Exp Pharmacol Physiol. 2007;34(9):827–32.

    CAS  PubMed  Google Scholar 

  49. Milner TA, Drake CT, Lessard A, Waters EM, Torres-Reveron A, Graustein B, et al. Angiotensin II-induced hypertension differentially affects estrogen and progestin receptors in central autonomic regulatory areas of female rats. Exp Neurol. 2008;212(2):393–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue B, Zhang Z, Beltz TG, Johnson RF, Guo F, Hay M, et al. Estrogen receptor-β in the paraventricular nucleus and rostroventrolateral medulla plays an essential protective role in aldosterone/salt-induced hypertension in female rats. Hypertension. 2013;61(6):1255–62. This work, using site-specific siRNA knockdown of estrogen receptors, clearly demonstrates a differential role for ERbeta witihn the PVN and the RVLM in the regulation of sex differences in hypetension.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang G, Drake CT, Rozenblit M, Zhou P, Alves SE, Herrick SP, et al. Evidence that estrogen directly and indirectly modulates C1 adrenergic bulbospinal neurons in the rostral ventrolateral medulla. Brain Res. 2006;1094(1):163–78.

    CAS  PubMed  Google Scholar 

  52. Wu KL, Chen CH, Shih CD. Nontranscriptional activation of PI3K/Akt signaling mediates hypotensive effect following activation of estrogen receptor β in the rostral ventrolateral medulla of rats. J Biomed Sci. 2012;19(1):76.

    PubMed  PubMed Central  Google Scholar 

  53. Ferguson AV. Angiotensinergic regulation of autonomic and neuroendocrine outputs: critical roles for the subfornical organ and paraventricular nucleus. Neuroendocrinology. 2009;89(4):370–6.

    CAS  Google Scholar 

  54. Ciriello J. Afferent renal inputs onto subfornical organ neurons responsive to angiotensin II. Am J Physiol. 1997;272(5 Pt 2):R1684–9.

    CAS  PubMed  Google Scholar 

  55. Rosas-Arellano MP, Solano-Flores LP, Ciriello J. Co-localization of estrogen and angiotensin receptors within subfornical organ neurons. Brain Res. 1999;837(1–2):254–62.

    CAS  PubMed  Google Scholar 

  56. Lob HE, Schultz D, Marvar PJ, Davisson RL, Harrison DG. Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension. Hypertension. 2012.

  57. Chung WC, Pak TR, Suzuki S, Pouliot WA, Andersen ME, Handa RJ. Detection and localization of an estrogen receptor beta splice variant protein (ERbeta2) in the adult female rat forebrain and midbrain regions. J Comp Neurol. 2007;505(3):249–67.

    CAS  PubMed  Google Scholar 

  58. Bingham B, Williamson M, Viau V. Androgen and estrogen receptor-beta distribution within spinal-projecting and neurosecretory neurons in the paraventricular nucleus of the male rat. J Comp Neurol. 2006;499(6):911–23.

    CAS  PubMed  Google Scholar 

  59. Sharma NM, Zheng H, Mehta PP, Li YF, Patel KP. Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: role for CAPON and Ang II. Cardiovasc Res. 2011;92(2):348–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zucker IH, Schultz HD, Patel KP, Wang W, Gao L. Regulation of central angiotensin type 1 receptors and sympathetic outflow in heart failure. Am J Physiol Heart Circ Physiol. 2009;297(5):H1557–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gingerich S, Krukoff TL. Estrogen in the paraventricular nucleus attenuates L-glutamate-induced increases in mean arterial pressure through estrogen receptor beta and NO. Hypertension. 2006;48(6):1130–6.

    CAS  PubMed  Google Scholar 

  62. Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol. 2009;297(5):H1638–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Marques-Lopes J, Van Kempen T, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor beta-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol. 2014. This elegant study utilized transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells to test the effects of age and Ang II hypertension in NMDA receptor trafficking in the PVN. These authors were the first to report that NMDA receptor density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, older females and in young males and aged females, the NMDA receptor density is increased in these same cells ultimately contributing to the neurohumoral dysfunction and hypertension.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith Hay.

Ethics declarations

Conflict of Interest Meredith Hay has received a National Institutes of Health RO1 grant HL-98207.

Baojian Xue and Alan Kim Johnson have received National Institutes of Health grants HL-14388, HL-98207, and MH-80241.

Human and Animal Rights and Informed Consent This article does not contain any human studies performed by the authors. All animal studies performed by the authors were approved by institutional IACUC.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hay, M., Xue, B. & Johnson, A.K. Yes! Sex Matters: Sex, the Brain and Blood Pressure. Curr Hypertens Rep 16, 458 (2014). https://doi.org/10.1007/s11906-014-0458-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0458-4

Keywords

Navigation