Skip to main content

Advertisement

Log in

Hypertension after Kidney Transplantation: A Pathophysiologic Approach

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Post-transplant hypertension is associated with decreased graft and patient survival and cardiovascular morbidity. Unfortunately, post-transplant hypertension is often poorly controlled. Important risk factors include immunosuppressive medications, complications of the transplant surgery, delayed graft function, rejection, and donor and recipient risk factors. The effects of immunosuppressive medications are multifactorial including increased vascular and sympathetic tone and salt and fluid retention. The immunosuppressive agents most commonly associated with hypertension are glucocorticoids and calcineurin inhibitors. Drug therapy for hypertension should be based on the comorbidities and pathophysiology. Evidence-based approaches to defining and treating hypertension in renal transplant recipients are predominantly extrapolated from large-scale studies performed in the general population. Thus, there continues to be a need for larger studies examining the pathophysiology, diagnosis and treatment of hypertension in renal transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Djamali A, Samaniego M, Muth B, Muehrer R, Hofmann RM, Pirsch J, et al. Medical care of kidney transplant recipients after the first posttransplant year. Clin J Am Soc Nephrol. 2006;1(4):623–40.

    Article  PubMed  Google Scholar 

  2. Meier-Kriesche HU, Schold JD, Srinivas TR, Reed A, Kaplan B. Kidney transplantation halts cardiovascular disease progression in patients with end-stage renal disease. Am J Transplant. 2004;4(10):1662–8.

    Article  PubMed  Google Scholar 

  3. Briggs JD. Causes of death after renal transplantation. Nephrol Dial Transplant. 2001;16(8):1545–9.

    Article  PubMed  CAS  Google Scholar 

  4. El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM, et al. Identifying specific causes of kidney allograft loss. Am J Transplant. 2009;9(3):527–35.

    Article  PubMed  CAS  Google Scholar 

  5. • Liefeldt L, Budde K. Risk factors for cardiovascular disease in renal transplant recipients and strategies to minimize risk. Transpl Int. 2010;23(12):1191–204. Immunosuppression as a risk factor for cardiovascular disease and how to minimize this effect in the transplant patient.

    Article  PubMed  Google Scholar 

  6. Sarnak MJ, Levey AS. Cardiovascular disease and chronic renal disease: a new paradigm. Am J Kidney Dis. 2000;35(4 Suppl 1):S117–31.

    Article  PubMed  CAS  Google Scholar 

  7. Curtis JJ, Luke RG, Diethelm AG, Whelchel JD, Jones P. Benefits of removal of native kidneys in hypertension after renal transplantation. Lancet. 1985;2(8458):739–42.

    Article  PubMed  CAS  Google Scholar 

  8. Kasiske BL, Anjum S, Shah R, Skogen J, Kandaswamy C, Danielson B, et al. Hypertension after kidney transplantation. Am J Kidney Dis. 2004;43(6):1071–81.

    Article  PubMed  Google Scholar 

  9. • Mangray M, Vella JP. Hypertension after kidney transplant. Am J Kidney Dis. 2011;57(2):331–41. Review of the HTN literature with a focus on the relationship of GFR with BP control and various immunosuppression strategies and the effect on BP.

    Article  PubMed  CAS  Google Scholar 

  10. Roullet JB, Xue H, McCarron DA, Holcomb S, Bennett WM. Vascular mechanisms of cyclosporin-induced hypertension in the rat. J Clin Invest. 1994;93(5):2244–50.

    Article  PubMed  CAS  Google Scholar 

  11. Gardiner SM, March JE, Kemp PA, Fallgren B, Bennett T. Regional haemodynamic effects of cyclosporine A, tacrolimus and sirolimus in conscious rats. Br J Pharmacol. 2004;141(4):634–43.

    Article  PubMed  CAS  Google Scholar 

  12. • Chatzikyrkou C, Menne J, Gwinner W, Schmidt BM, Lehner F, Blume C, et al. Pathogenesis and management of hypertension after kidney transplantation. J Hypertens. 2011;29(12):2283–94. Extensive review on HTN in transplant with focus the effects of immunosuppression on HTN and the goals of therapy.

    Article  PubMed  CAS  Google Scholar 

  13. • Weir MR, Salzberg DJ. Management of hypertension in the transplant patient. J Am Soc Hypertens. 2011;5(5):425–32. The American Society of Hypertension position paper on HTN in the transplant patient.

    Article  PubMed  Google Scholar 

  14. Paoletti E, Gherzi M, Amidone M, Massarino F, Cannella G. Association of arterial hypertension with renal target organ damage in kidney transplant recipients: the predictive role of ambulatory blood pressure monitoring. Transplantation. 2009;87(12):1864–9.

    Article  PubMed  Google Scholar 

  15. • Carpenter MA, Weir MR, Adey DB, House AA, Bostom AG, Kusek JW. Inadequacy of cardiovascular risk factor management in chronic kidney transplantation—evidence from the FAVORIT study. Clin Transplant. 2012;26(4):E438–46. The need for more adequate control of cardiac risk factors post-transplant, in particular HTN.

    Article  PubMed  Google Scholar 

  16. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  PubMed  CAS  Google Scholar 

  17. Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–S155.

    Google Scholar 

  18. • Taler SJ, Agarwal R, Bakris GL, Flynn JT, Nilsson PM, Rahman M, et al. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Management of Blood Pressure in CKD. Am J Kidney Dis 2013 May 15. The presentation of published goals of therapy in post-transplant HTN.

  19. • Angeli F, Verdecchia P, Reboldi G. Intensive blood pressure control in obese diabetic patients: clinical relevance of stroke prevention in the ACCORD trial. Expert Rev Cardiovasc Ther. 2012;10(12):1467–70. That lowering BP below 120/80 might not be beneficial.

    Article  PubMed  CAS  Google Scholar 

  20. • ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff Jr DC, Grimm Jr RH, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85. That lowering BP below 120/80 might not be beneficial.

    Article  PubMed  CAS  Google Scholar 

  21. • Banach M, Aronow WS. Blood pressure j-curve: current concepts. Curr Hypertens Rep. 2012;14(6):556–66. J-curve phenomenon of DBP <80 mmHg associated with higher cardiac morbidity and mortality.

    Article  PubMed  CAS  Google Scholar 

  22. • Reboldi G, Gentile G, Manfreda VM, Angeli F, Verdecchia P. Tight blood pressure control in diabetes: evidence-based review of treatment targets in patients with diabetes. Curr Cardiol Rep. 2012;14(1):89–96. Review of targets for BP in diabetic patients.

    Article  PubMed  Google Scholar 

  23. • Wadei HM, Textor SC. Hypertension in the kidney transplant recipient. Transplant Rev (Orlando). 2010;24(3):105–20. Review of HTN, mentions the importance of the relationship between goals of HTN therapy and time after transplant.

    Article  Google Scholar 

  24. Stenehjem AE, Gudmundsdottir H, Os I. Office blood pressure measurements overestimate blood pressure control in renal transplant patients. Blood Press Monit. 2006;11(3):125–33.

    Article  PubMed  Google Scholar 

  25. Prasad GV, Nash MM, Zaltzman JS. A prospective study of the physician effect on blood pressure in renal-transplant recipients. Nephrol Dial Transplant. 2003;18(5):996–1000.

    Article  PubMed  Google Scholar 

  26. Haydar AA, Covic A, Jayawardene S, Agharazii M, Smith E, Gordon I, et al. Insights from ambulatory blood pressure monitoring: diagnosis of hypertension and diurnal blood pressure in renal transplant recipients. Transplantation. 2004;77(6):849–53.

    Article  PubMed  Google Scholar 

  27. • Fernandez Fresnedo G, Franco Esteve A, Gomez Huertas E, Cabello Chaves V, Diz Gomez JM, Osorio Moratalla JM, et al. Ambulatory blood pressure monitoring in kidney transplant patients: RETENAL study. Transplant Proc. 2012;44(9):2601–2. The importance of BP control and use of 24 ABPM in the follow-up of patients.

    Article  PubMed  CAS  Google Scholar 

  28. • Kayrak M, Gul EE, Kaya C, Solak Y, Turkmen K, Yazici R, et al. Masked hypertension in renal transplant recipients. Blood Press 2013 May 31. Importance of diagnosing masked HTN in the transplant patient and outcomes.

  29. • Beltran S, Crespo J, Kanter J, Alemany B, Gavela E, Avila A, et al. Ambulatory blood pressure monitoring in renal transplant patients: should it be routinely performed? Transplant Proc. 2010;42(8):2868–70. Utility of 24 ABPM in the renal transplant patient.

    Article  PubMed  CAS  Google Scholar 

  30. Wadei HM, Amer H, Taler SJ, Cosio FG, Griffin MD, Grande JP, et al. Diurnal blood pressure changes one year after kidney transplantation: relationship to allograft function, histology, and resistive index. J Am Soc Nephrol. 2007;18(5):1607–15.

    Article  PubMed  Google Scholar 

  31. Hernandez D, Gonzalez A, Rufino M, Laynez I, de la Rosa A, Porrini E, et al. Time-dependent changes in cardiac growth after kidney transplantation: the impact of pre-dialysis ventricular mass. Nephrol Dial Transplant. 2007;22(9):2678–85.

    Article  PubMed  Google Scholar 

  32. Midtvedt K, Ihlen H, Hartmann A, Bryde P, Bjerkely BL, Foss A, et al. Reduction of left ventricular mass by lisinopril and nifedipine in hypertensive renal transplant recipients: a prospective randomized double-blind study. Transplantation. 2001;72(1):107–11.

    Article  PubMed  CAS  Google Scholar 

  33. • Strozecki P, Adamowicz A, Kozlowski M, Wlodarczyk Z, Manitius J. Progressive arterial stiffening in kidney transplant recipients. Ann Transplant. 2011;16(3):30–5. Worsening arterial stiffness profile as time goes on in transplant patients despite.

    PubMed  CAS  Google Scholar 

  34. Mitchell A, Opazo Saez A, Kos M, Witzke O, Kribben A, Nurnberger J. Pulse wave velocity predicts mortality in renal transplant patients. Eur J Med Res. 2010;15(10):452–5.

    Article  PubMed  CAS  Google Scholar 

  35. Bahous SA, Stephan A, Blacher J, Safar ME. Aortic stiffness, living donors, and renal transplantation. Hypertension. 2006;47(2):216–21.

    Article  PubMed  CAS  Google Scholar 

  36. Ford ML, Tomlinson LA, Chapman TP, Rajkumar C, Holt SG. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension. 2010;55(5):1110–5.

    Article  PubMed  CAS  Google Scholar 

  37. Townsend RR, Wimmer NJ, Chirinos JA, Parsa A, Weir M, Perumal K, et al. Aortic PWV in chronic kidney disease: a CRIC ancillary study. Am J Hypertens. 2010;23(3):282–9.

    Article  PubMed  Google Scholar 

  38. Ponticelli C, Cucchiari D, Graziani G. Hypertension in kidney transplant recipients. Transpl Int. 2011;24(6):523–33.

    Article  PubMed  Google Scholar 

  39. Zbroch E, Malyszko J, Mysliwiec M, Przybylowski P, Durlik M. Hypertension in solid organ transplant recipients. Ann Transplant. 2012;17(1):100–7.

    Article  PubMed  Google Scholar 

  40. Wlodarczyk Z, Glyda M, Koscianska L, Kolodziejczyk J, Sulikowska B, Manitius J. Prevalence of arterial hypertension following kidney transplantation–a multifactorial analysis. Ann Transplant. 2003;8(2):43–6.

    PubMed  CAS  Google Scholar 

  41. Guidi E, Menghetti D, Milani S, Montagnino G, Palazzi P, Bianchi G. Hypertension may be transplanted with the kidney in humans: a long-term historical prospective follow-up of recipients grafted with kidneys coming from donors with or without hypertension in their families. J Am Soc Nephrol. 1996;7(8):1131–8.

    PubMed  CAS  Google Scholar 

  42. • Freedman BI, Murea M. Target organ damage in African American hypertension: role of APOL1. Curr Hypertens Rep. 2012;14(1):21–8. Relevance of genotype and target organ damage in African American patients with HTN.

    Article  PubMed  CAS  Google Scholar 

  43. Grisk O, Steinbach AC, Ciecholewski S, Schluter T, Kloting I, Schmidt H, et al. Multidrug resistance-related protein 2 genotype of the donor affects kidney graft function. Pharmacogenet Genomics. 2009;19(4):276–88.

    Article  PubMed  CAS  Google Scholar 

  44. Hauser IA, Schaeffeler E, Gauer S, Scheuermann EH, Wegner B, Gossmann J, et al. ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J Am Soc Nephrol. 2005;16(5):1501–11.

    Article  PubMed  CAS  Google Scholar 

  45. Joy MS, Hogan SL, Thompson BD, Finn WF, Nickeleit V. Cytochrome P450 3A5 expression in the kidneys of patients with calcineurin inhibitor nephrotoxicity. Nephrol Dial Transplant. 2007;22(7):1963–8.

    Article  PubMed  CAS  Google Scholar 

  46. • Reeves-Daniel AM, DePalma JA, Bleyer AJ, Rocco MV, Murea M, Adams PL, et al. The APOL1 gene and allograft survival after kidney transplantation. Am J Transplant. 2011;11(5):1025–30. APOL1 genotype in donor puts recipient at risk for HTN and decreased allograft survival post-transplant.

    Article  PubMed  CAS  Google Scholar 

  47. • Lee BT, Kumar V, Williams TA, Abdi R, Bernhardy A, Dyer C, et al. The APOL1 genotype of African American kidney transplant recipients does not impact 5-year allograft survival. Am J Transplant. 2012;12(7):1924–8. APOL1 genotype in the recipient (not donor kidney) does not impact survival.

    Article  PubMed  CAS  Google Scholar 

  48. Brenner BM, Milford EL. Nephron underdosing: a programmed cause of chronic renal allograft failure. Am J Kidney Dis. 1993;21(5 Suppl 2):66–72.

    PubMed  CAS  Google Scholar 

  49. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002;346(12):913–23.

    Article  PubMed  CAS  Google Scholar 

  50. Mizuno M, Siddique K, Baum M, Smith SA. Prenatal programming of hypertension induces sympathetic overactivity in response to physical stress. Hypertension. 2013;61(1):180–6.

    Article  PubMed  CAS  Google Scholar 

  51. • Blanca L, Jimenez T, Cabello M, Sola E, Gutierrez C, Burgos D, et al. Cardiovascular risk in recipients with kidney transplants from expanded criteria donors. Transplant Proc. 2012;44(9):2579–81. Elevated cardiovascular risk in patients who receive ECD kidneys.

    Article  PubMed  CAS  Google Scholar 

  52. • Xia Y, Kellems RE. Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Rev Clin Immunol. 2011;7(5):659–74. Autoantibodies that activate receptors could have a role in HTN other than in preeclampsia.

    Article  PubMed  CAS  Google Scholar 

  53. Dragun D, Muller DN, Brasen JH, Fritsche L, Nieminen-Kelha M, Dechend R, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med. 2005;352(6):558–69.

    Article  PubMed  CAS  Google Scholar 

  54. • Wei F, Jia XJ, Yu SQ, Gu Y, Wang L, Guo XM, et al. Candesartan versus imidapril in hypertension: a randomised study to assess effects of anti-AT1 receptor autoantibodies. Heart. 2011;97(6):479–84. Effects of AMR on HTN and the usefulness of ARB and ACE inhibition.

    Article  PubMed  Google Scholar 

  55. Hricik DE. Antihypertensive and renal effects of enalapril in post-transplant hypertension. Clin Nephrol. 1987;27(5):250–9.

    PubMed  CAS  Google Scholar 

  56. • Barbari A. Posttransplant hypertension: multipathogenic disease process. Exp Clin Transplant. 2013;11(2):99–108. Focuses on various factors affecting the graft function, HTN and cardiovascular outcomes in transplantation; these factors include recipient, donor, surgical and post-transplant factors.

    Article  PubMed  Google Scholar 

  57. • Posadas MA, Yang V, Ho B, Omer M, Batlle D. Acute renal failure and severe hypertension from a Page kidney post-transplant biopsy. Sci World J. 2010;10:1539–42. Review of Page kidney, diagnosis and management including mentioning signs of acute HTN.

    Article  Google Scholar 

  58. Akbar SA, Jafri SZ, Amendola MA, Madrazo BL, Salem R, Bis KG. Complications of renal transplantation. Radiographics. 2005;25(5):1335–56.

    Article  PubMed  Google Scholar 

  59. Molnar MZ, Szentkiralyi A, Lindner A, Czira ME, Szabo A, Mucsi I, et al. High prevalence of patients with a high risk for obstructive sleep apnoea syndrome after kidney transplantation–association with declining renal function. Nephrol Dial Transplant. 2007;22(9):2686–92.

    Article  PubMed  Google Scholar 

  60. Dolgos S, Hartmann A, Jenssen T, Isaksen GA, Pfeffer P, Bollerslev J. Determinants of short-term changes in body composition following renal transplantation. Scand J Urol Nephrol. 2009;43(1):76–83.

    Article  PubMed  Google Scholar 

  61. • Molnar MZ, Lazar AS, Lindner A, Fornadi K, Czira ME, Dunai A, et al. Sleep apnea is associated with cardiovascular risk factors among kidney transplant patients. Clin J Am Soc Nephrol. 2010;5(1):125–32. Association of OSA and increased morbidity and mortality.

    Article  PubMed  Google Scholar 

  62. Hricik DE, Lautman J, Bartucci MR, Moir EJ, Mayes JT, Schulak JA. Variable effects of steroid withdrawal on blood pressure reduction in cyclosporine-treated renal transplant recipients. Transplantation. 1992;53(6):1232–5.

    Article  PubMed  CAS  Google Scholar 

  63. Veenstra DL, Best JH, Hornberger J, Sullivan SD, Hricik DE. Incidence and long-term cost of steroid-related side effects after renal transplantation. Am J Kidney Dis. 1999;33(5):829–39.

    Article  PubMed  CAS  Google Scholar 

  64. Ratcliffe PJ, Dudley CR, Higgins RM, Firth JD, Smith B, Morris PJ. Randomised controlled trial of steroid withdrawal in renal transplant recipients receiving triple immunosuppression. Lancet. 1996;348(9028):643–8.

    Article  PubMed  CAS  Google Scholar 

  65. Taler SJ, Textor SC, Canzanello VJ, Schwartz L, Porayko M, Wiesner RH, et al. Role of steroid dose in hypertension early after liver transplantation with tacrolimus (FK506) and cyclosporine. Transplantation. 1996;62(11):1588–92.

    Article  PubMed  CAS  Google Scholar 

  66. Goodwin JE, Zhang J, Geller DS. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J Am Soc Nephrol. 2008;19(7):1291–9.

    Article  PubMed  CAS  Google Scholar 

  67. Vincenti F, Schena FP, Paraskevas S, Hauser IA, Walker RG, Grinyo J, et al. A randomized, multicenter study of steroid avoidance, early steroid withdrawal or standard steroid therapy in kidney transplant recipients. Am J Transplant. 2008;8(2):307–16.

    Article  PubMed  CAS  Google Scholar 

  68. Woodle ES, First MR, Pirsch J, Shihab F, Gaber AO, Van Veldhuisen P, et al. A prospective, randomized, double-blind, placebo-controlled multicenter trial comparing early (7 day) corticosteroid cessation versus long-term, low-dose corticosteroid therapy. Ann Surg. 2008;248(4):564–77.

    PubMed  Google Scholar 

  69. • Rush D. The impact of calcineurin inhibitors on graft survival. Transplant Rev (Orlando) 2013 Jun 3. The importance of CNI and their role in graft survival and preventing rejection.

  70. Campistol JM, Romero R, Paul J, Gutierrez-Dalmau A. Epidemiology of arterial hypertension in renal transplant patients: changes over the last decade. Nephrol Dial Transplant. 2004;19 Suppl 3:iii62–6.

    Article  PubMed  Google Scholar 

  71. Vincenti F, Jensik SC, Filo RS, Miller J, Pirsch J. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. Transplantation. 2002;73(5):775–82.

    Article  PubMed  CAS  Google Scholar 

  72. • Robert N, Wong GW, Wright JM. Effect of cyclosporine on blood pressure. Cochrane Database Syst Rev 2010;(1):CD007893. Large database collection of the effect of cyclosporine on BP looking at trials from 1980 − 2008 showing cyclosporine significantly increases BP.

  73. Koomans HA, Ligtenberg G. Mechanisms and consequences of arterial hypertension after renal transplantation. Transplantation. 2001;72(6 Suppl):S9–S12.

    Article  PubMed  CAS  Google Scholar 

  74. Curtis JJ. Cyclosporine and posttransplant hypertension. J Am Soc Nephrol. 1992;2(12 Suppl):S243–5.

    PubMed  CAS  Google Scholar 

  75. Murray BM, Paller MS, Ferris TF. Effect of cyclosporine administration on renal hemodynamics in conscious rats. Kidney Int. 1985;28(5):767–74.

    Article  PubMed  CAS  Google Scholar 

  76. Morris ST, McMurray JJ, Rodger RS, Farmer R, Jardine AG. Endothelial dysfunction in renal transplant recipients maintained on cyclosporine. Kidney Int. 2000;57(3):1100–6.

    Article  PubMed  CAS  Google Scholar 

  77. Cavarape A, Endlich K, Feletto F, Parekh N, Bartoli E, Steinhausen M. Contribution of endothelin receptors in renal microvessels in acute cyclosporine-mediated vasoconstriction in rats. Kidney Int. 1998;53(4):963–9.

    Article  PubMed  CAS  Google Scholar 

  78. • Hoorn EJ, Walsh SB, McCormick JA, Zietse R, Unwin RJ, Ellison DH. Pathogenesis of calcineurin inhibitor-induced hypertension. J Nephrol. 2012;25(3):269–75. Review of the pathophysiology of CNI-induced HTN with recent scientific findings in particular mentioning increased activity of particular channels in the renal tubules.

    Article  PubMed  CAS  Google Scholar 

  79. • Wadei HM, Textor SC. The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol. 2012;8(10):602–9. Review of physiology of the kidney and its role in BP control.

    Article  PubMed  CAS  Google Scholar 

  80. • Hoorn EJ, Walsh SB, McCormick JA, Furstenberg A, Yang CL, Roeschel T, et al. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension. Nat Med. 2011;17(10):1304–9. A study of the effects of CNI on the NaCl co-transporter in mice and causing HTN.

    Article  PubMed  CAS  Google Scholar 

  81. • Klein IH, Abrahams AC, van Ede T, Oey PL, Ligtenberg G, Blankestijn PJ. Differential effects of acute and sustained cyclosporine and tacrolimus on sympathetic nerve activity. J Hypertens. 2010;28(9):1928–34. Sympathetic tone was increased for a short time after exposure to cyclosporine and then returned to pre-cyclosporine levels, no significant increase seen in sympathetic tone when exposed to tacrolimus.

    Article  PubMed  CAS  Google Scholar 

  82. Ciresi DL, Lloyd MA, Sandberg SM, Heublein DM, Edwards BS. The sodium retaining effects of cyclosporine. Kidney Int. 1992;41(6):1599–605.

    Article  PubMed  CAS  Google Scholar 

  83. Curtis JJ. Posttransplant hypertension. Transplant Proc. 1998;30(5):2009–11.

    Article  PubMed  CAS  Google Scholar 

  84. Nishiyama A, Kobori H, Fukui T, Zhang GX, Yao L, Rahman M, et al. Role of angiotensin II and reactive oxygen species in cyclosporine A-dependent hypertension. Hypertension. 2003;42(4):754–60.

    Article  PubMed  CAS  Google Scholar 

  85. Paul LC. Chronic allograft nephropathy: an update. Kidney Int. 1999;56(3):783–93.

    Article  PubMed  CAS  Google Scholar 

  86. Meier-Kriesche HU, Schold JD, Srinivas TR, Howard RJ, Fujita S, Kaplan B. Sirolimus in combination with tacrolimus is associated with worse renal allograft survival compared to mycophenolate mofetil combined with tacrolimus. Am J Transplant. 2005;5(9):2273–80.

    Article  PubMed  CAS  Google Scholar 

  87. • Vincenti F, Blancho G, Durrbach A, Friend P, Grinyo J, Halloran PF, et al. Five-year safety and efficacy of belatacept in renal transplantation. J Am Soc Nephrol. 2010;21(9):1587–96. Belatacept safety profile was followed over 5 years and the incidence of patients being treated for HTN was similar to the CNI group.

    Article  PubMed  Google Scholar 

  88. Quiroz Y, Pons H, Gordon KL, Rincon J, Chavez M, Parra G, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am J Physiol Renal Physiol. 2001;281(1):F38–47.

    PubMed  CAS  Google Scholar 

  89. Rodriguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincon J, Chavez M, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int. 2001;59(6):2222–32.

    PubMed  CAS  Google Scholar 

  90. Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol. 2006;17(12 Suppl 3):S218–25.

    Article  PubMed  CAS  Google Scholar 

  91. • Dunn BL, Teusink AC, Taber DJ, Hemstreet BA, Uber LA, Weimert NA. Management of hypertension in renal transplant patients: a comprehensive review of nonpharmacologic and pharmacologic treatment strategies. Ann Pharmacother. 2010;44(7-8):1259–70. Review from our center focused on HTN management in the transplant population.

    Article  PubMed  CAS  Google Scholar 

  92. • Fourtounas C. Management of hypertension after kidney transplantation: a possible role for spironolactone? J Hypertens. 2012;30(4):830–1. author reply 831-2. Anecdotal clinical data on use of spironolactone in the hypertensive transplant patient.

    Article  PubMed  CAS  Google Scholar 

  93. Cross NB, Webster AC, Masson P, O'connell PJ, Craig JC. Antihypertensives for kidney transplant recipients: systematic review and meta-analysis of randomized controlled trials. Transplantation. 2009;88(1):7–18.

    Article  PubMed  CAS  Google Scholar 

  94. Sennesael JJ, Lamote JG, Violet I, Tasse S, Verbeelen DL. Divergent effects of calcium channel and angiotensin converting enzyme blockade on glomerulotubular function in cyclosporine-treated renal allograft recipients. Am J Kidney Dis. 1996;27(5):701–8.

    Article  PubMed  CAS  Google Scholar 

  95. Ojo AO. Cardiovascular complications after renal transplantation and their prevention. Transplantation. 2006;82(5):603–11.

    Article  PubMed  Google Scholar 

  96. Heinze G, Mitterbauer C, Regele H, Kramar R, Winkelmayer WC, Curhan GC, et al. Angiotensin-converting enzyme inhibitor or angiotensin II type 1 receptor antagonist therapy is associated with prolonged patient and graft survival after renal transplantation. J Am Soc Nephrol. 2006;17(3):889–99.

    Article  PubMed  CAS  Google Scholar 

  97. • Paoletti E, Bellino D, Marsano L, Cassottana P, Rolla D, Ratto E. Effects of ACE inhibitors on long-term outcome of renal transplant recipients: a randomized controlled trial. Transplantation. 2013;95(6):889–95. This study showed improved cardiac outcomes for renal transplant patients on ACE inhibitors over the course of 10 years.

    Article  PubMed  CAS  Google Scholar 

  98. Burdmann EA, Andoh TF, Nast CC, Evan A, Connors BA, Coffman TM, et al. Prevention of experimental cyclosporin-induced interstitial fibrosis by losartan and enalapril. Am J Physiol. 1995;269(4 Pt 2):F491–9.

    PubMed  CAS  Google Scholar 

  99. • Ibrahim HN, Jackson S, Connaire J, Matas A, Ney A, Najafian B, et al. Angiotensin II blockade in kidney transplant recipients. J Am Soc Nephrol. 2013;24(2):320–7. Study reviewing the effects of angiotensin II blockade on transplanted kidneys in regards to fibrosis and survival.

    Article  PubMed  CAS  Google Scholar 

  100. • Townsend RR, Weir MR. Angiotensin II blockade after kidney transplantation. J Am Soc Nephrol. 2013;24(2):167–8. Editorial calling for studies involving larger groups of patients in studies looking at the transplant population, also looked at the Ibrahim et al. study on angiotensin blockade and suggested that the trends for patients on ARB was significant as GFR and fibrosis scores were more favorable in the ARB-treated group.

    Article  PubMed  CAS  Google Scholar 

  101. Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch Intern Med. 2000;160(5):685–93.

    Article  PubMed  CAS  Google Scholar 

  102. • Ramesh Prasad GV. Ambulatory blood pressure monitoring in solid organ transplantation. Clin Transplant. 2012;26(2):185–91. The importance of 24 ABMP in the transplant population including screening for masked HTN, white-coat HTN and non-dipping.

    Article  PubMed  CAS  Google Scholar 

  103. Andersen MJ, Khawandi W, Agarwal R. Home blood pressure monitoring in CKD. Am J Kidney Dis. 2005;45(6):994–1001.

    Article  PubMed  Google Scholar 

  104. Opelz G, Dohler B, Collaborative Transplant Study. Improved long-term outcomes after renal transplantation associated with blood pressure control. Am J Transplant. 2005;5(11):2725–31.

    Article  PubMed  Google Scholar 

  105. Mange KC, Cizman B, Joffe M, Feldman HI. Arterial hypertension and renal allograft survival. JAMA. 2000;283(5):633–8.

    Article  PubMed  CAS  Google Scholar 

  106. • Wystrychowski G, Kolonko A, Chudek J, Zukowska-Szczechowska E, Wiecek A, Grzeszczak W. Systemic vascular hemodynamics and transplanted kidney survival. Transplant Proc. 2011;43(8):2922–5. Studied various vascular parameters and their relationship with IF/TA, these parameters included SBP, DBP, mean BP, pulse rate, systemic vascular resistance and impedance.

    Article  PubMed  CAS  Google Scholar 

  107. • Fernandez-Fresnedo G, Gago-Fraile M, Gomez-Alamillo C, Sanz de Castro S, Arias-Rodriguez M. Risk of cardiovascular disease associated with refractory hypertension in renal transplant recipients. Transplant Proc. 2010;42(8):2908–9. This study looked at the incidence and risk of cardiovascular disease in patients with refractory HTN.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Beje Thomas declares that he has no conflict of interest.

David J. Taber has received research support from Astellas Pharma and Novartis.

Titte R. Srinivas declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titte R. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B., Taber, D.J. & Srinivas, T.R. Hypertension after Kidney Transplantation: A Pathophysiologic Approach. Curr Hypertens Rep 15, 458–469 (2013). https://doi.org/10.1007/s11906-013-0381-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0381-0

Keywords

Navigation