Skip to main content

Advertisement

Log in

Blockade of the Renin-Angiotensin System in Hypertensive Patients with Atherosclerotic Renal Artery Stenosis

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Renin angiotensin system (RAS) blockers are generally considered as contraindicated when an atheromatous renal artery stenosis (ARAS) is diagnosed. The main reason is the fear of inducing renal ischemia and, hence, accelerating renal fibrosis and the progression towards end stage renal disease, albeit RAS blocker have been shown to be highly effective in controlling blood pressure. Part of the solution came by the development of the revascularization. There is now growing evidence showing no superiority of angioplasty over medical treatment on cardiovascular events and mortality, renal function and blood pressure control. Hence, RAS blockers resurfaced based on their proven beneficial effects on blood pressure control and cardiovascular prevention in high risk atherosclerotic patients. Thus, RAS blockers belong today to the standard treatment of hypertensive patients with ARAS. However they were not systematically prescribed in trials focusing on ARAS. The ongoing CORAL trial will give us further information on the place of this class of antihypertensive drugs in patients with ARAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hansen KJ, Edwards MS, Craven TE, et al. Prevalence of renovascular disease in the elderly: a population–based study. J Vasc Surg. 2002;36:443–51.

    Article  PubMed  Google Scholar 

  2. Hansen KJMD. Prevalence of ischemic nephropathy in the atherosclerotic population. Am J Kidney Dis. 1994;24(4):615–21.

    PubMed  CAS  Google Scholar 

  3. Kalra PA, Guo H, Kausz AT, et al. Atherosclerotic renovascular disease in United States patients aged 67 years or older: risk factors, revascularization, and prognosis. Kidney Int. 2005;68:293–301.

    Article  PubMed  Google Scholar 

  4. Wright JR, Shurrab AE, Cooper A, et al. Left ventricular morphology and function in patients with atherosclerotic renovascular disease. J Am Soc Nephrol. 2005;16:2746–53.

    Article  PubMed  Google Scholar 

  5. Johansson M, Herlitz H, Jensen G, et al. Increased cardiovascular mortality in hypertensive patients with renal artery stenosis. Relation to sympathetic activation, renal function and treatment regimens. J Hypertens. 1999;17:1743–50.

    Article  PubMed  CAS  Google Scholar 

  6. Isles C, Main J, O’Connell J, et al. Survival associated with renovascular disease in Glasgow and Newcastle: a collaborative study. Scott Med J. 1990;35:70–3.

    PubMed  CAS  Google Scholar 

  7. Wright JR, Shurrab AE, Cheung C, et al. A prospective study of the determinants of renal functional outcome and mortality in atherosclerotic renovascular disease. Am J Kidney Dis. 2002;39:1153–61.

    Article  PubMed  Google Scholar 

  8. Derkx FH, Schalekamp MA. Renal artery stenosis and hypertension. Lancet. 1994;344:237–9.

    Article  PubMed  CAS  Google Scholar 

  9. Mui KW, Sleeswijk M, van den Hout H, et al. Incidental renal artery stenosis is an independent predictor of mortality in patients with peripheral vascular disease. J Am Soc Nephrol. 2006;17:2069–74.

    Article  PubMed  Google Scholar 

  10. Pillay WR, Kan YM, Crinnion JN, Wolfe JH. Prospective multicentre study of the natural history of atherosclerotic renal artery stenosis in patients with peripheral vascular disease. Br J Surg. 2002;89:737–40.

    Article  PubMed  CAS  Google Scholar 

  11. Conlon PJ, Little MA, Pieper K, Mark DB. Severity of renal vascular disease predicts mortality in patients undergoing coronary angiography. Kidney Int. 2001;60:1490–7.

    Article  PubMed  CAS  Google Scholar 

  12. Rocha-Singh KJ, Eisenhauer AC, Textor SC, et al. Atherosclerotic Peripheral Vascular Disease Symposium II: Intervention for renal artery disease.et al. Circulation. 2008;118:2873–8.

    Article  PubMed  Google Scholar 

  13. Textor SC. Atherosclerotic renal artery stenosis : overtreated but undertreated ? J Am Soc Nephrol. 2008;19:656–9.

    Article  PubMed  Google Scholar 

  14. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:145–53.

    Article  PubMed  CAS  Google Scholar 

  15. •• Cooper CJ, Murphy TP, Matsumoto A, et al. Stent revascularization for the prevention of cardiovascular and renal events among patients with renal artery stenosis and systolic hypertension: rationale and design of the CORAL trial. Am Heart J. 2006;152:59–66. CORAL is a randomized clinical trial contrasting optimum medical therapy alone including a rennin angiotensin system blocker to stenting with optimum medical therapy on a composite cardiovascular and renal end point: cardiovascular or renal death, myocardial infarction, hospitalization for congestive heart failure, stroke, doubling of serum creatinine, and need for renal replacement therapy. This study will clearly test the need of a RAS blocker in these patients and will test PTRA on top.

    Article  PubMed  Google Scholar 

  16. Alcazar JM, Marin R, Gomez-Campdera F, et al. Clinical characteristics of ischaemic renal disease. Nephrol Dial Transplant. 2001;16:74–7.

    Article  PubMed  Google Scholar 

  17. Rigatelli G, Rigatelli G. Predictors of renal artery stenosis in patients with normal renal function undergoing coronary angiography. Minerva Cardioangiol. 2006;54:145–9.

    PubMed  CAS  Google Scholar 

  18. Edwards MS, Craven TE, Burke GL, et al. Renovascular disease and the risk of adverse coronary events in the elderly: a prospective, population-based study. Arch Intern Med. 2005;165:207–13.

    Article  PubMed  Google Scholar 

  19. Losito A, Fagugli RM, Zampi I, et al. Comparison of target organ damage in renovascular and essential hypertension. Am J Hypertens. 1996;9:1062–7.

    Article  PubMed  CAS  Google Scholar 

  20. Davis BA, Crook JE, Vestal RE, Oates JA. Prevalence of renovascular hypertension in patients with grade III or IV hypertensive retinopathy. N Engl J Med. 1979;301:1273–6.

    Article  PubMed  CAS  Google Scholar 

  21. Iantorno M, Pola R, Schinzari F, et al. Association between altered circadian blood pressure profile and cardiac end-organ damage in patients with renovascular hypertension. Cardiology. 2003;100:114–9.

    Article  PubMed  Google Scholar 

  22. Conlon PJ, Athirakul K, Kovalik E, et al. Survival in renal vascular disease. J Am Soc Nephrol. 1998;9:252–6.

    PubMed  CAS  Google Scholar 

  23. Breyer JA, Jacobson HR. Ischemic nephropathy. Curr Opin Nephrol Hypertens. 1993;2:216–24.

    Article  PubMed  CAS  Google Scholar 

  24. Chade AR, Rodriguez-Porcel M, Grande JP, et al. Distinct renal injury in early atherosclerosis and renovascular disease. Circulation. 2002;106:1165–71.

    Article  PubMed  Google Scholar 

  25. Heyman SN, Roger G, Evans RG, et al. Cellular adaptive changes in AKI: mitigating renal hypoxic injury. Nephrol Dial Transplant. 2012;27:1721–8.

    Article  PubMed  CAS  Google Scholar 

  26. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996;94:3271–5.

    Article  PubMed  CAS  Google Scholar 

  27. Pruijm M, Hofmann L, Vogt B, et al. Renal tissue oxygenation in essential hypertension and chronic kidney disease. Int J Hypertens. 2013;2013:696598.

    PubMed  Google Scholar 

  28. • Textor SC, Glockner JF, Lerman LO, et al. The use of magnetic resonance to evaluate tissue oxygenation in renal artery stenosis. J Am Soc Nephrol. 2008;19:780–8. BOLD-MRI detects changes in tissue deoxyhemoglobin during maneuvers that affect oxygen consumption, therefore, this technique was used to diagnose renal artery stenosis in 50 kidneys from 25 subjects. BOLD-MRI studies suggest that renal tissue oxygenation is maintained over a wide range of renal artery stenosis.

    Article  PubMed  Google Scholar 

  29. • Gloviczki ML, Glockner JF, Crane JA, et al. Blood oxygen level-dependent magnetic resonance imaging identifies cortical hypoxia in severe renovascular disease. Hypertension. 2011;58:1066–72. BOLD-MRI may provide a marker for identification of hypoxic parenchymal injury that is particularly important for long term management of renovascular disease. This study demonstrates decreased cortical tissue oxygenation measured by BOLD MRI in progressively more severe renovascular occlusive disease. Oxygenation in both the cortex and medulla was preserved in “moderate” ARAS, despite measurable loss of kidney volume and blood flow. It highlights that compensation for impaired blood flow is limited and that the most severe renal arterial occlusive lesions produce loss of function with cortical hypoxia detectable by BOLD MRI.

    Article  PubMed  CAS  Google Scholar 

  30. Juillard L, Lerman LO, Kruger DG, et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int. 2004;65:944–50.

    Article  PubMed  Google Scholar 

  31. Textor SC, Misra S, Oderich GS. Percutaneous revascularization for ischemic nephropathy: the past, present, and future. Kidney Int. 2013;83:28–40.

    Article  PubMed  CAS  Google Scholar 

  32. Plouin PF, Chatellier G, Darne B, et al. Blood pressure outcome of angioplasty in atherosclerotic renal artery stenosis: a randomized trial. Essai Multicentrique Medicaments vs. Angioplastie (EMMA) Study Group. Hypertension. 1998;31:823–9.

    Article  PubMed  CAS  Google Scholar 

  33. Webster J, Marshall F, Abdalla M, et al. Randomised comparison of percutaneous angioplasty vs. continued medical therapy for hypertensive patients with atheromatous renal artery stenosis. Scottish and Newcastle Renal Artery Stenosis Collaborative Group. J Hum Hypertens. 1998;12:329–35.

    Article  PubMed  CAS  Google Scholar 

  34. van Jaarsveld BC, Krijnen P, Pieterman H, et al. The effect of balloon angioplasty on hypertension in atherosclerotic renal-artery stenosis. N Engl J Med. 2000;342:1007–14.

    Article  PubMed  Google Scholar 

  35. Nordmann AJ, Woo K, Parkes R, Logan AG. Balloon angioplasty or medical therapy for hypertensive patients with atherosclerotic renal artery stenosis? A meta-analysis of randomized controlled trials. Am J Med. 2003;114:44–50.

    Article  PubMed  Google Scholar 

  36. La Batide-Alanore A, Azizi M, Froissart M, et al. Split renal function outcome after renal angioplasty in patients with unilateral renal artery stenosis. J Am Soc Nephrol. 2001;12:1235–41.

    PubMed  Google Scholar 

  37. • The ASTRAL Investigators. Revascularization versus medical therapy for renal-artery stenosis. N Engl J Med. 2009;361:1953–62. This is a multicenter, prospective randomized study comparing renal stenting with medical therapy to medical therapy alone. In contrast to other studies, in addition to having RAS of > 50 %, treating clinicians had to be uncertain as to whether the potential subjects would benefit from revascularization. These data emphasize the success and stability of medical therapy alone for many patients with ARAS for several years. More than 40 % of the patients were in the category of 50 % to 70 % stenosis, which likely diluted the power of this trial.

    Article  Google Scholar 

  38. Bax L, Woittiez AJ, Kouwenberg HJ, et al. Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function. Ann Intern Med. 2009;150:840–8.

    Article  PubMed  Google Scholar 

  39. Marcantoni C, Zanoli L, Rastelli S, et al. Effect of renal artery stenting on left ventricular mass: a randomized clinical trial. Am J Kidney Dis. 2012;60:39–46.

    Article  PubMed  Google Scholar 

  40. Rossi GP, Seccia TM, Miotto D, et al. The Medical and Endovascular Treatment of Atherosclerotic Renal Artery Stenosis (METRAS) study: rationale and study design. J Hum Hypertens. 2012;26:507–16.

    Article  PubMed  CAS  Google Scholar 

  41. •• Kumbhani DJ, Bavry AA, Harvey JE, et al. Clinical outcomes after percutaneous revascularization versus medical management in patients with significant renal artery stenosis: a meta-analysis of randomized controlled trials. Am Heart J. 2011;161:622–30. This meta-analysis includes six randomized controlled trials and accounts for 1208 patients and compares PTRA revascularization in addition to medical therapy vs. medical management alone in patients with ARAS. At a mean follow-up of 29 months, there was no benefit of PTRA compared with the medical management arm on blood pressure, all-cause mortality, congestive heart failure, stroke, or worsening renal function.

    Article  PubMed  Google Scholar 

  42. • Wilensky R, Gertz Z. Study of Percutaneous Renal Artery Intervention for Patient With Heart Failure (STRETCH). ClinicalTrials.gov Web site. http://clinicaltrials.gov/ct2/show/NCT01403714?term=NCT01403714&rank=1. Accessed May 1, 2013. This study will address the role of percutaneous renal intervention for a hemodynamically significant renal artery stenosis in patients with heart failure exacerbations not attributable to declining left ventricular function, valvular disease, acute coronary syndrome, or heart transplant rejection. This randomized trial will enroll about 200 patients and with hemodynamically significant renal artery stenoses will be randomized to stent implantation or medical therapy.

  43. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension : I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

    Article  PubMed  CAS  Google Scholar 

  44. Wiesel P, Mazzolai L, Nussberger J, Pedrazzini T. Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension. 1997;29:1025–30.

    Article  PubMed  CAS  Google Scholar 

  45. Safian RD, Textor SC. Renal-artery stenosis. N Engl J Med. 2001;344:431–42.

    Article  PubMed  CAS  Google Scholar 

  46. Postma CT, van der Steen PH, Hoefnagels WH. The captopril test in the detection of renovascular disease in hypertensive patients. Arch Intern Med. 1990;150(3):625–8.

    Article  PubMed  CAS  Google Scholar 

  47. Postma CT, van Oijen AH, Barentsz JO, et al. The value of tests predicting renovascular hypertension in patients with renal artery stenosis treated by angioplasty. Arch Intern Med. 1991;151:1531–5.

    Article  PubMed  CAS  Google Scholar 

  48. Roubidoux MA, Dunnick NR, Klotman PE, et al. Renal vein renins: inability to predict response to revascularization in patients with hypertension. Radiology. 1991;178:819–22.

    PubMed  CAS  Google Scholar 

  49. Simon G, Coleman CC. Captopril-stimulated renal vein renin measurements in the diagnosis of atherosclerotic renovascular hypertension. Am J Hypertens. 1994;7:1–6.

    PubMed  CAS  Google Scholar 

  50. Strong CG, Hunt JC, Sheps SG, et al. Renal venous renin activity. Enhancement of sensitivity of lateralization by sodium depletion. Am J Cardiol. 1971;27:602–11.

    Article  PubMed  CAS  Google Scholar 

  51. De Bruyne B, Manoharan G, Pijls NH, et al. Assessment of renal artery stenosis severity by pressure gradient measurements. J Am Coll Cardiol. 2006;48:1851–5.

    Article  PubMed  Google Scholar 

  52. Tanemoto M, Suzuki T, Abe M, et al. Hemodynamic index of atheromatous renal artery stenosis for angioplasty. Clin J Am Soc Nephrol. 2009;4:651–5.

    Article  PubMed  CAS  Google Scholar 

  53. Brown JJ, Davies DL, Morton JJ, et al. Mechanism of renal hypertension. Lancet. 1976;1(7971):1219–21.

    Article  PubMed  CAS  Google Scholar 

  54. Petch CP. Hypertension and nephrectomy. Br Med J. 1947;2(4527):574.

    Article  PubMed  CAS  Google Scholar 

  55. Horovitz ZP, Antonaccio MJ, Rubin B, Panasevich RE. Influence of various antihypertensive agents on lifespan of renal hypertensive rats. Br J Clin Pharmacol. 1979;7 suppl 2:243S–8.

    Article  PubMed  CAS  Google Scholar 

  56. Rubin B, Antonaccio MJ, Goldberg ME, et al. Chronic antihypertensive effects of captopril (SQ 14,225), an orally active angiotensin I-converting enzyme inhibitor, in conscious 2-kidney renal hypertensive rats. Eur J Pharmacol. 1978;51:377–88.

    Article  PubMed  CAS  Google Scholar 

  57. Hackam DG, Spence JD, Garg AX, Textor SC. Role of rennin-angiotensin system blockade in atherosclerotic renal artery stenosis and renovascular hypertension. Hypertension. 2007;50:998–1003.

    Article  PubMed  CAS  Google Scholar 

  58. Dussaule JC, Michel JB, Auzan C, et al. Effect of antihypertensive treatment on the left ventricular isomyosin profile in one-clip, two kidney hypertensive rats. J Pharmacol Exp Ther. 1986;236:512–8.

    PubMed  CAS  Google Scholar 

  59. Matsubara BB, Matsubara LS, Franco M, et al. The effect of non-antihypertensive doses of angiotensin converting enzyme inhibitor on myocardial necrosis and hypertrophy in young rats with renovascular hypertension. Int J Exp Pathol. 1999;80:97–104.

    Article  PubMed  CAS  Google Scholar 

  60. Jalil JE, Janicki JS, Pick R, Weber KT. Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension. Response to captopril. Am J Hypertens. 1991;4:51–5.

    PubMed  CAS  Google Scholar 

  61. Hilgers KF, Hartner A, Porst M, et al. Angiotensin II type1 receptor blockade prevents lethal malignant hypertension: relation to kidney inflammation. Circulation. 2001;104:1436–40.

    Article  PubMed  CAS  Google Scholar 

  62. Schwietzer G, Oelkers W. The antihypertensive effect of captopril in severe essential, renovascular, renal and transplant renovascular hypertension. Klin Wochenschr. 1982;60:839–46.

    Article  PubMed  CAS  Google Scholar 

  63. Hodsman GP, Brown JJ, Cumming AM, et al. Enalapril (MK421) in the treatment of hypertension with renal artery stenosis. Br Med J. 1983;287:1413–7.

    Article  CAS  Google Scholar 

  64. Textor SC, Tarazi RC, Novick AC, et al. Regulation of renal hemodynamics and glomerular filtration in patients with renovascular hypertension during converting enzyme inhibition with captopril. Am J Med. 1984;76(5B):29–37.

    Article  PubMed  CAS  Google Scholar 

  65. Reams GP, Bauer JH. Enalapril versus triple-drug therapy in the treatment of renovascular hypertension. Drugs. 1985;30 suppl 1:59–69.

    Article  PubMed  Google Scholar 

  66. Franklin SS, Smith RD. A comparison of enalapril plus hydrochlorothiazide with standard triple therapy in renovascular hypertension. Nephron. 1986;44 suppl 1:73–82.

    Article  PubMed  Google Scholar 

  67. Tullis MJ, Caps MT, Zierler RE, et al. Blood pressure, antihypertensive medication, and atherosclerotic renal artery stenosis. Am J Kidney Dis. 1999;33:675–81.

    Article  PubMed  CAS  Google Scholar 

  68. Losito A, Errico R, Santirosi P, et al. Long-term follow-up of atherosclerotic renovascular disease. Beneficial effect of ACE inhibition. Nephrol Dial Transplant. 2005;20:1604–9.

    Article  PubMed  CAS  Google Scholar 

  69. •• Hackam DG, Duong-Hua ML, Mamdani M, et al. Angiotensin inhibition in renovascular disease: a population-based cohort study. Am Heart J. 2008;156:549–55. A population-based cohort comprising 3,570 patients with renovascular disease, where 53 % were prescribed angiotensin inhibitors. This study emphasized the high vascular risk of renal vascular disease and suggesedt that angiotensin inhibitors may improve cardiovascular and renal prognosis in this setting at the expense of acute renal toxicity, stressing renal function parameters that should be assiduously followed.

    Article  PubMed  CAS  Google Scholar 

  70. •• Gloviczki ML, Glockner JF, Lerman LO, et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension. 2010;55:961–6. This study compared stenotic and contralateral kidneys regarding volume, tissue perfusion; blood flow measured by multidetector computed tomography, and BOLD- magnetic resonance values in the cortex and medulla in 14 patients with unilateral stenosis and in 14 essential hypertensive patients. It indicates that, although stenosis reduced blood flow and volume, cortical and medullary oxygenation were preserved under these conditions; however, stenosis is not severe in this study (mean 71 ± 5.5%).

    Article  PubMed  CAS  Google Scholar 

  71. Lerman LO, Chade AR. Angiogenesis in the kidney: a new therapeutic target? Curr Opin Nephrol Hypertens. 2009;18:160–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Menno Pruijm and Michel Burnier are supported by a grant from the Swiss National Science Foundation (FN 32003B-132913).

Compliance with Ethics Guidelines

Conflict of Interest

Faical Jarraya, Menno Pruijm, Gregoire Wuerzner, and Michel Burnier declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faical Jarraya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarraya, F., Pruijm, M., Wuerzner, G. et al. Blockade of the Renin-Angiotensin System in Hypertensive Patients with Atherosclerotic Renal Artery Stenosis. Curr Hypertens Rep 15, 497–505 (2013). https://doi.org/10.1007/s11906-013-0376-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0376-x

Keywords

Navigation