Skip to main content

Advertisement

Log in

M-Atrial Natriuretic Peptide: A Novel Antihypertensive Protein Therapy

  • Vascular Mechanisms (FT Ruschitzka, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The natriuretic peptides, specifically atrial natriuretic peptide (ANP), are increasingly recognized to play a fundamental role in blood pressure (BP) regulation. This role in BP regulation reflects the pluripotent cardiorenal actions of ANP, which include diuresis, enhancement of renal blood flow and glomerular filtration rate, systemic vasodilatation, suppression of aldosterone, and inhibition of the sympathetic nervous system. These actions of ANP, in addition to recent human studies demonstrating an association of higher plasma ANP with lower risk of hypertension, support the development of an ANP-based therapy for hypertension. M-ANP is a novel ANP-based peptide that is resistant to proteolytic degradation and possesses greater BP-lowering, renal function–enhancing, and aldosterone-suppressing properties than native ANP. In an animal model of hypertension, M-ANP lowers BP via multiple mechanisms, including vasodilatation, diuresis, and inhibition of aldosterone. Importantly, M-ANP enhances both glomerular filtration rate and renal blood flow despite reductions in BP. The pluripotent BP-lowering actions and concomitant enhancement of renal function associated with M-ANP are highly attractive characteristics for an antihypertensive agent and underscore the therapeutic potential of M-ANP. M-ANP currently is heading into clinical testing, which may advance this novel strategy for human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease. Lancet. 2008;371(9623):1513–8.

    Article  PubMed  Google Scholar 

  2. Ong KL, Cheung BMY, Man YB, Lau CP, Lam KSL. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999-2004. Hypertension. 2007;49(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  3. Kaplan NM. Resistant hypertension. J Hypertens. 2005;23(8):1441–4.

    Article  PubMed  CAS  Google Scholar 

  4. Sarafidis PA, Bakris GL. Resistant hypertension: an overview of evaluation and treatment. J Am Coll Cardiol. 2008;52(22):1749–57.

    Article  PubMed  Google Scholar 

  5. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26.

    Article  PubMed  Google Scholar 

  6. de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science (New York, NY). 1985;230(4727):767–70.

    Article  Google Scholar 

  7. Hosoda K, Nakao K, Mukoyama M, Saito Y, Jougasaki M, Shirakami G, et al. Expression of brain natriuretic peptide gene in human heart. Production in the ventricle. Hypertension. 1991;17(6 Pt 2):1152–5.

    PubMed  CAS  Google Scholar 

  8. Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology. 1992;130(1):229–39.

    Article  PubMed  CAS  Google Scholar 

  9. Stingo AJ, Clavell A, Pitelkow M, Heubelin D, Burnett Jr JC. Presence of C-type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol. 1992;263(4 Pt 2):H1318–21.

    PubMed  CAS  Google Scholar 

  10. Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, et al. Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Invest. 1992;90(3):1145–9.

    Article  PubMed  CAS  Google Scholar 

  11. • Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 2009;(191):341-66. This well-written review provides an overview of the natriuretic peptides, the natriuretic peptide receptors, and the biologic actions of the natriuretic peptides.

  12. Burnett Jr JC, Granger JP, Opgenorth TF. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol. 1984;247:F863–6.

    PubMed  CAS  Google Scholar 

  13. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, et al. Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. J Clin Invest. 1986;78(5):1362–74.

    Article  PubMed  CAS  Google Scholar 

  14. Kasama S, Furuya M, Toyama T, Ichikawa S, Kurabayashi M. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction. Eur Heart J. 2008;29(12):1485–94.

    Article  PubMed  CAS  Google Scholar 

  15. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168(2):863–70.

    Article  PubMed  CAS  Google Scholar 

  16. Clavell A, Stingo A, Heublein D, Burnett JC Jr. C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol 1993:1104–6.

  17. Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M. NPR-C: a component of the natriuretic peptide familywith implications in human diseases. J Mol Med. 2010;88:889–97.

    Article  PubMed  CAS  Google Scholar 

  18. Anand-Srivastava MB. Natriuretic peptide receptor-C signalling and regulation. Peptides. 2005;26:1044–59.

    Article  PubMed  CAS  Google Scholar 

  19. Huntley BK, Sandberg SM, Noser JA, Cataliotti A, Redfield MM, Matsuda Jr Y, Burnett JC. BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. J Cell Physiol. 2006;209:943–9.

    Article  PubMed  CAS  Google Scholar 

  20. Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic peptide. Hypertension. 2011;57(2):201–7.

    Article  PubMed  CAS  Google Scholar 

  21. Field LJ, Veress AT, Steinhelper ME, Cochrane K, Sonnenberg H. Kidney function in ANF-transgenic mice: effect of blood volume expansion. Am J Physiol. 1991;260(1 Pt 2):R1–5.

    PubMed  CAS  Google Scholar 

  22. John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science (New York, NY). 1995;267(5198):679–81.

    Article  CAS  Google Scholar 

  23. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378(6552):65–8.

    Article  PubMed  CAS  Google Scholar 

  24. Holtwick R, Gotthardt M, Skryabin B, et al. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci U S A. 2002;99:7142–7.

    Article  PubMed  CAS  Google Scholar 

  25. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.

    Article  PubMed  CAS  Google Scholar 

  26. • Newton-Cheh C, Larson MG, Vasan RS, Levy D, Bloch KD, Surti A, et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet 2009;41(3):348–53. This original research article describes how common genetic variants at the NPPA-NPPB locus, found to be associated with circulating natriuretic peptide concentrations, contribute to interindividual variation in blood pressure and hypertension.

    Article  PubMed  CAS  Google Scholar 

  27. Cannone V, Boerrigter G, Cataliotti A, Costello-Boerrigter LC, Olson TM, McKie PM, Heublein DM, Lahr BD, Bailey KR, Averna M, Redfield MM, Rodeheffer RJ, Burnett Jr JC. A genetic variant of the atrial natriuretic peptide gene is associated with cardiometabolic protection in the general community. J Am Coll Cardiol. 2011;58:629–36.

    Article  PubMed  CAS  Google Scholar 

  28. Sengenes C, Bouloumie A, Hauner H, et al. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem. 2003;278:48617–26.

    Article  PubMed  CAS  Google Scholar 

  29. Tsukamoto O, Fujita M, Kato M, et al. Natriuretic peptides enhance the production of adiponectin in human adipocytes and in patients with chronic heart failure. J Am Coll Cardiol. 2009;53:2070–7.

    Article  PubMed  CAS  Google Scholar 

  30. Moro C, Pillard F, de Glisezinski I, et al. Atrial natriuretic peptide contribution to lipid mobilization and utilization during head-down bed rest in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293:R612–7.

    Article  PubMed  CAS  Google Scholar 

  31. Cataliotti A, Macharet F, McKie PM, Rodeheffer RJ, Malatino LS, Bailey KR, et al. Early stages of hypertension are characterized by a deficiency of the cardioprotective hormone BNP. Eur Heart J. 2010;31:244.

    Google Scholar 

  32. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A. 2000;97(8):4239–44. doi:10.1073/pnas.070371497.

    Article  PubMed  CAS  Google Scholar 

  33. Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett Jr JC. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol. 2008;52:60–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lee CY, Chen HH, Lisy O, Swan S, Cannon C, Lieu HD, Burnett Jr JC. Pharmacodynamics of a novel designer natriuretic peptide, CD-NP, in a first-in-human clinical trial in healthy subjects. J Clin Pharmacol. 2009;49(6):668–73.

    Article  PubMed  CAS  Google Scholar 

  35. Hodgson-Zingman DM, Karst ML, Zingman LV, Heublein DM, Darbar D, Herron KJ, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359(2):158–65.

    Article  PubMed  CAS  Google Scholar 

  36. Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J. 1993;291(Pt 1):83–8.

    PubMed  CAS  Google Scholar 

  37. Lafferty HM, Gunning M, Silva P, Zimmerman MB, Brenner BM, Anderson S. Enkephalinase inhibition increases plasma atrial natriuretic peptide levels, glomerular filtration rate, and urinary sodium excretion in rats with reduced renal mass. Circ Res. 1989;65(3):640–6.

    PubMed  CAS  Google Scholar 

  38. Dickey J, Potter L. Dendroaspis natriuretic peptide and the designer natriuretic peptide, CD-NP, are resistant to proteolytic inactivation. J Mol Cell Cardiol. 2011;51:67–71.

    Article  PubMed  CAS  Google Scholar 

  39. Chen HH, Lainchbury JG, Burnett Jr JC. Natriuretic peptide receptors and neutral endopeptidase in mediating the renal actions of a new therapeutic synthetic natriuretic peptide dendroaspis natriuretic peptide. J Am Coll Cardiol. 2002;40(6):1186–91.

    Article  PubMed  CAS  Google Scholar 

  40. • McKie PM, Cataliotti A, Huntley BK, Martin FL, Olson TM, Burnett JC Jr. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J Am Coll Cardiol 2009;54(11):1024–32. This original research compares the in vitro and in vivo cardiorenal and neurohumoral actions of M-ANP and ANP in normal canines.

    Article  PubMed  CAS  Google Scholar 

  41. • Dickey DM, Yoder AR, Potter LR. A familial mutation renders atrial natriuretic peptide resistant to proteolytic degradation. J Biol Chem 2009;284(29):19196–202. This in vitro study measured the ability of M-ANP to interact with natriuretic peptide receptors and to be proteolytically degraded by neutral endopeptidase.

    Article  PubMed  CAS  Google Scholar 

  42. Ralat L, Guo Q, Ren M, Funke T, Dickey D, Potter L, Tang WJ. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J Biol Chem. 2011;286:4670–9.

    Article  PubMed  CAS  Google Scholar 

  43. • McKie PM, Cataliotti A, Boerrigter G, Chen HH, Sangaralingham SJ, Martin FL, et al. A novel atrial natriuretic peptide based therapeutic in experimental angiotensin II mediated acute hypertension. Hypertension 2010;56(6):1152–9. This in vivo study describes the cardiorenal actions of M-ANP compared with BNP in a model of acute hypertension.

    Article  PubMed  CAS  Google Scholar 

  44. Pidgeon GB, Richards AM, Nicholls MG, Espiner EA, Yandle TG, Frampton C. Differing metabolism and bioactivity of atrial and brain natriuretic peptides in essential hypertension. Hypertension. 1996;27(4):906–13.

    PubMed  CAS  Google Scholar 

  45. Chen HH, Cataliotti A, Schirger JA, Martin FL, Burnett Jr JC. Equimolar doses of atrial and brain natriuretic peptides and urodilatin have differential renal actions in overt experimental heart failure. Am J Physiol. 2005;288(5):R1093–7.

    CAS  Google Scholar 

  46. Cataliotti A, Schirger JA, Martin FL, Chen HH, McKie PM, Boerrigter G, et al. Oral human brain natriuretic peptide activates cyclic guanosine 3′,5′-monophosphate and decreases mean arterial pressure. Circulation. 2005;112(6):836–40.

    Article  PubMed  CAS  Google Scholar 

  47. Chen HH, Grantham JA, Schirger JA, Jougasaki M, Redfield MM, Burnett Jr JC. Subcutaneous administration of brain natriuretic peptide in experimental heart failure. J Am Coll Card. 2000;36(5):1706–12.

    Article  CAS  Google Scholar 

  48. Chen HH, Huntley BK, Schirger JA, Cataliotti A, Burnett Jr JC. Maximizing the renal cyclic 3′-5′-guanosine monophosphate system with type V phosphodiesterase inhibition and exogenous natriuretic peptide: a novel strategy to improve renal function in experimental overt heart failure. J Am Soc Nephrol. 2006;17(10):2742–7.

    Article  PubMed  CAS  Google Scholar 

  49. Chen HH, Lainchbury JG, Harty GJ, Burnett Jr JC. Maximizing the natriuretic peptide system in experimental heart failure: subcutaneous brain natriuretic peptide and acute vasopeptidase inhibition. Circulation. 2002;105(8):999–1003.

    Article  PubMed  CAS  Google Scholar 

  50. Chen HH, Redfield MM, Nordstrom LJ, Horton DP, Burnett Jr JC. Subcutaneous administration of the cardiac hormone BNP in symptomatic human heart failure. J Card Fail. 2004;10(2):115–9.

    Article  PubMed  CAS  Google Scholar 

  51. Chen HH, Schirger JA, Cataliotti A, Burnett Jr JC. Intact acute cardiorenal and humoral responsiveness following chronic subcutaneous administration of the cardiac peptide BNP in experimental heart failure. Eur J Card. 2006;8(7):681–6.

    CAS  Google Scholar 

  52. Leader B, Baca Q, Golan D. Protein therapeutics: a summary and pharmacological classification. Nature Reviews: Drug Disc. 2008;7:28–41.

    Google Scholar 

  53. Ozdemir V, Williams Jones B, Glatt S, Tsuang M, Lohr J, Reist C. Theragnostics: Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol 2006;8:242-250.

    Google Scholar 

  54. Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J. 2008;72(11):1787–93.

    Article  PubMed  CAS  Google Scholar 

  55. Hayashi M, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Tsutsui T, et al. Intravenous atrial natriuretic peptide prevents left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol. 2001;37(7):1820–6.

    Article  PubMed  CAS  Google Scholar 

  56. Morikawa S, Sone T, Tsuboi H, Mukawa H, Morishima I, Uesugi M, et al. Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol. 2009;53(12):1040–6.

    Article  PubMed  CAS  Google Scholar 

  57. de Bold AJ. Cardiac natriuretic peptides: gaining further insights into structure-function relationships. J Am Coll Cardiol. 2009;54(11):1033–4.

    Article  PubMed  Google Scholar 

  58. Kitiyakara C, Guzman NJ. Malignant hypertension and hypertensive emergencies. Journal of the American Society of Nephrology: JASN. 1998;9(1):133–42.

    PubMed  CAS  Google Scholar 

  59. Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med. 2002;347(16):1256–61.

    Article  PubMed  Google Scholar 

  60. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341(8):577–85.

    Article  PubMed  CAS  Google Scholar 

  61. • Szczech LA, Granger CB, Dasta JF, Amin A, Peacock WF, McCullough PA, et al. Acute kidney injury and cardiovascular outcomes in acute severe hypertension. Circulation 2010;121(20):2183–91. This study measured the association between baseline chronic kidney disease, acute kidney injury, and outcome in patients hospitalized with acute severe hypertension. The results demonstrate that any degree of acute kidney injury is associated with a greater risk of morbidity and mortality.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. McKie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKie, P.M., Ichiki, T. & Burnett, J.C. M-Atrial Natriuretic Peptide: A Novel Antihypertensive Protein Therapy. Curr Hypertens Rep 14, 62–69 (2012). https://doi.org/10.1007/s11906-011-0244-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0244-5

Keywords

Navigation