Skip to main content

Advertisement

Log in

Between Candidate Genes and Whole Genomes: Time for Alternative Approaches in Blood Pressure Genetics

  • Pathogenesis of Hypertension: Genetic and Environmental Factors (DT O’Connor, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Blood pressure has a significant genetic component, but less than 3% of the observed variance has been attributed to genetic variants identified to date. Candidate gene studies of rare, monogenic hypertensive syndromes have conclusively implicated several genes altering renal sodium balance, and studies of essential hypertension have inconsistently implicated over 50 genes in pathways affecting renal sodium balance and other functions. Genome-wide linkage scans have replicated numerous quantitative trait loci throughout the genome, and over 50 single nucleotide polymorphisms (SNPs) have been replicated in multiple genome-wide association studies. These studies provide considerable evidence that epistasis and other interactions play a role in the genetic architecture of blood pressure regulation, but candidate gene studies have limited scope to test for epistasis, and genome-wide studies have low power for both main effects and interactions. This review summarizes the genetic findings to date for blood pressure, and it proposes focused, pathway-based approaches involving epistasis, gene-environment interactions, and next-generation sequencing to further the genetic dissection of blood pressure and hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. National Center for Health Statistics. Health, United States, 2010: with special feature on death and dying. Hyattsville, MD2011.

  2. Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983–92.

    Article  PubMed  Google Scholar 

  3. • Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12(1):17-25. This review of all BP GWAS through 2010 describes the significance and interpretation of the findings in these studies.

    Article  PubMed  Google Scholar 

  4. Platt R. The nature of essential hypertension. Lancet. 1959;2(7091):55–7.

    Article  PubMed  CAS  Google Scholar 

  5. Pickering G. High blood pressure. London: J & A. Churchill; 1955.

    Google Scholar 

  6. Milford DV. Investigation of hypertension and the recognition of monogenic hypertension. Arch Dis Child. 1999;81(5):452–5.

    Article  PubMed  CAS  Google Scholar 

  7. Marteau JB, Zaiou M, Siest G, Visvikis-Siest S. Genetic determinants of blood pressure regulation. J Hypertens. 2005;23(12):2127–43.

    Article  PubMed  CAS  Google Scholar 

  8. Charchar F, Zimmerli L, Tomaszewski M. The pressure of finding human hypertension genes: new tools, old dilemmas. J Hum Hypertens. 2008;22(12):821–8.

    Article  PubMed  CAS  Google Scholar 

  9. Pascoe L, Curnow KM, Slutsker L, Rosler A, White PC. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci U S A. 1992;89(11):4996–5000.

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Zhu H, Dong Y, Treiber FA, Snieder H. Effects of angiotensinogen and angiotensin II type I receptor genes on blood pressure and left ventricular mass trajectories in multiethnic youth. Twin Res Hum Genet. 2006;9(3):393–402.

    Article  PubMed  Google Scholar 

  11. Tsai CT, Fallin D, Chiang FT, Hwang JJ, Lai LP, Hsu KL, et al. Angiotensinogen gene haplotype and hypertension: interaction with ACE gene I allele. Hypertension. 2003;41(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu X, Bouzekri N, Southam L, Cooper RS, Adeyemo A, McKenzie CA, et al. Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet. 2001;68(5):1139–48.

    Article  PubMed  CAS  Google Scholar 

  13. Reich H, Duncan JA, Weinstein J, Cattran DC, Scholey JW, Miller JA. Interactions between gender and the angiotensin type 1 receptor gene polymorphism. Kidney Int. 2003;63(4):1443–9.

    Article  PubMed  CAS  Google Scholar 

  14. Williams SM, Ritchie MD, Phillips 3rd JA, Dawson E, Prince M, Dzhura E, et al. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered. 2004;57(1):28–38.

    Article  PubMed  Google Scholar 

  15. Wang JG, Staessen JA, Barlassina C, Fagard R, Kuznetsova T, Struijker-Boudier HA, et al. Association between hypertension and variation in the alpha- and beta-adducin genes in a white population. Kidney Int. 2002;62(6):2152–9.

    Article  PubMed  CAS  Google Scholar 

  16. Wang JG, Liu L, Zagato L, Xie J, Fagard R, Jin K, et al. Blood pressure in relation to three candidate genes in a Chinese population. J Hypertens. 2004;22(5):937–44.

    Article  PubMed  CAS  Google Scholar 

  17. Staessen JA, Wang JG, Brand E, Barlassina C, Birkenhager WH, Herrmann SM, et al. Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens. 2001;19(8):1349–58.

    Article  PubMed  CAS  Google Scholar 

  18. Baker EH, Dong YB, Sagnella GA, Rothwell M, Onipinla AK, Markandu ND, et al. Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet. 1998;351(9113):1388–92.

    Article  PubMed  CAS  Google Scholar 

  19. Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.

    Article  PubMed  CAS  Google Scholar 

  20. Tanira MO, Al Balushi KA. Genetic variations related to hypertension: a review. J Hum Hypertens. 2005;19(1):7–19.

    Article  PubMed  CAS  Google Scholar 

  21. Bianchi G. Genetic variations of tubular sodium reabsorption leading to “primary” hypertension: from gene polymorphism to clinical symptoms. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1536–49.

    Article  PubMed  CAS  Google Scholar 

  22. Citterio L, Lanzani C, Manunta P, Bianchi G. Genetics of primary hypertension: the clinical impact of adducin polymorphisms. Biochim Biophys Acta. 2010;1802(12):1285–98.

    PubMed  CAS  Google Scholar 

  23. Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399–403.

    PubMed  CAS  Google Scholar 

  24. Panoulas VF, Douglas KM, Smith JP, Stavropoulos-Kalinoglou A, Metsios GS, Nightingale P, et al. Transforming growth factor-beta1 869T/C, but not interleukin-6–174G/C, polymorphism associates with hypertension in rheumatoid arthritis. Rheumatology (Oxford). 2009;48(2):113–8.

    Article  CAS  Google Scholar 

  25. He F, Zhao D, Deng F, Zhong H, Shi X, Yang J, et al. Association of TGF-beta1 gene polymorphisms in exon1 and blood levels with essential hypertension. Blood Press. 2010;19(4):225–33.

    Article  PubMed  CAS  Google Scholar 

  26. Li XX, Bek M, Asico LD, Yang Z, Grandy DK, Goldstein DS, et al. Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension. 2001;38(3):303–8.

    PubMed  CAS  Google Scholar 

  27. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, et al. Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest. 1998;102:493–8.

    Article  PubMed  CAS  Google Scholar 

  28. Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, et al. Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice. Hypertension. 2006;47(2):288–95.

    Article  PubMed  CAS  Google Scholar 

  29. Ramirez-Lorca R, Grilo A, Martinez-Larrad MT, Manzano L, Serrano-Hernando FJ, Moron FJ, et al. Sex and body mass index specific regulation of blood pressure by CYP19A1 gene variants. Hypertension. 2007;50(5):884–90.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor JY, Sun YV, Hunt SC, Kardia SL. Gene-environment interaction for hypertension among African American women across generations. Biol Res Nurs. 2010;12(2):149–55.

    Article  PubMed  Google Scholar 

  31. Taylor J, Sun YV, Chu J, Mosley TH, Kardia SL. Interactions between metallopeptidase 3 polymorphism rs679620 and BMI in predicting blood pressure in African-American women with hypertension. J Hypertens. 2008;26(12):2312–8.

    Article  PubMed  CAS  Google Scholar 

  32. Pereira AC, Floriano MS, Mota GF, Cunha RS, Herkenhoff FL, Mill JG, et al. Beta2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension. 2003;42(4):685–92.

    Article  PubMed  CAS  Google Scholar 

  33. Pan X, Liu Y, Zhang Y, Zhang X, Xu Q, Tong W. Interaction of the C-344T polymorphism of CYP11b2 gene with body mass index and waist circumference affecting diastolic blood pressure in Chinese Mongolian population. Blood Press. 2010;19(6):373–9.

    Article  PubMed  CAS  Google Scholar 

  34. Fava C, Montagnana M, Almgren P, Rosberg L, Guidi GC, Berglund G, et al. Association between adducin-1 G460W variant and blood pressure in Swedes is dependent on interaction with body mass index and gender. Am J Hypertens. 2007;20(9):981–9.

    Article  PubMed  CAS  Google Scholar 

  35. Montasser ME, Gu D, Chen J, Shimmin LC, Gu C, Kelly TN, et al. Interactions of genetic variants with physical activity are associated with blood pressure in Chinese: The GenSalt Study. Am J Hypertens. 2011;24(9):1035–40.

    Article  PubMed  Google Scholar 

  36. Bowden DW, An SS, Palmer ND, Brown WM, Norris JM, Haffner SM, et al. Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet. 2010;19(20):4112–20.

    Article  PubMed  CAS  Google Scholar 

  37. •• Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-53. This review describes the state of complex trait genetics for several traits and discusses the possible sources of unexplained heritability.

    Article  PubMed  CAS  Google Scholar 

  38. Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22(3):176–84.

    Article  PubMed  Google Scholar 

  39. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, et al. Genome-wide mapping of human loci for essential hypertension. Lancet. 2003;361(9375):2118–23.

    Article  PubMed  CAS  Google Scholar 

  40. Munroe PB, Wallace C, Xue MZ, Marcano AC, Dobson RJ, Onipinla AK, et al. Increased support for linkage of a novel locus on chromosome 5q13 for essential hypertension in the British Genetics of Hypertension Study. Hypertension. 2006;48(1):105–11.

    Article  PubMed  CAS  Google Scholar 

  41. Rao DC, Province MA, Leppert MF, Oberman A, Heiss G, Ellison RC, et al. A genome-wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am J Hypertens. 2003;16(2):148–50.

    Article  PubMed  Google Scholar 

  42. Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS, et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens. 2003;16(2):144–7.

    Article  PubMed  Google Scholar 

  43. Chang YP, Liu X, Kim JD, Ikeda MA, Layton MR, Weder AB, et al. Multiple genes for essential-hypertension susceptibility on chromosome 1q. Am J Hum Genet. 2007;80(2):253–64.

    Article  PubMed  CAS  Google Scholar 

  44. Perola M, Kainulainen K, Pajukanta P, Terwilliger JD, Hiekkalinna T, Ellonen P, et al. Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens. 2000;18(11):1579–85.

    Article  PubMed  CAS  Google Scholar 

  45. Hunt SC, Ellison RC, Atwood LD, Pankow JS, Province MA, Leppert MF. Genome scans for blood pressure and hypertension: the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension. 2002;40(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  46. James K, Weitzel LR, Engelman CD, Zerbe G, Norris JM. Genome scan linkage results for longitudinal systolic blood pressure phenotypes in subjects from the Framingham Heart Study. BMC Genet. 2003;4 Suppl 1:S83.

    Article  PubMed  Google Scholar 

  47. DiPetrillo K, Tsaih SW, Sheehan S, Johns C, Kelmenson P, Gavras H, et al. Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics. 2004;17(2):215–20.

    Article  PubMed  CAS  Google Scholar 

  48. Puppala S, Coletta DK, Schneider J, Hu SL, Farook VS, Dyer TD, et al. Genome-wide linkage screen for systolic blood pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and confirmation of a major susceptibility locus on chromosome 6q14.1. Hum Hered. 2011;71(1):1–10.

    Article  PubMed  Google Scholar 

  49. Allayee H, de Bruin TW, Michelle Dominguez K, Cheng LS, Ipp E, Cantor RM, et al. Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension. 2001;38(4):773–8.

    Article  PubMed  CAS  Google Scholar 

  50. Yang HC, Liang YJ, Wu YL, Chung CM, Chiang KM, Ho HY, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS One. 2009;4(5):e5459.

    Article  PubMed  CAS  Google Scholar 

  51. Cowley Jr AW. The genetic dissection of essential hypertension. Nat Rev Genet. 2006;7(11):829–40.

    Article  PubMed  CAS  Google Scholar 

  52. Hamet P, Merlo E, Seda O, Broeckel U, Tremblay J, Kaldunski M, et al. Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J Hum Genet. 2005;76(5):815–32.

    Article  PubMed  CAS  Google Scholar 

  53. Ciullo M, Bellenguez C, Colonna V, Nutile T, Calabria A, Pacente R, et al. New susceptibility locus for hypertension on chromosome 8q by efficient pedigree-breaking in an Italian isolate. Hum Mol Genet. 2006;15(10):1735–43.

    Article  PubMed  CAS  Google Scholar 

  54. Simino J, Shi G, Kume R, Schwander K, Province MA, Gu CC, et al. Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program. Am J Hypertens. 2011;24(3):347–54.

    Article  PubMed  Google Scholar 

  55. Bell JT, Wallace C, Dobson R, Wiltshire S, Mein C, Pembroke J, et al. Two-dimensional genome-scan identifies novel epistatic loci for essential hypertension. Hum Mol Genet. 2006;15(8):1365–74.

    Article  PubMed  CAS  Google Scholar 

  56. Fung MM, Zhang K, Zhang L, Rao F, O’Connor DT. Contemporary approaches to genetic influences on hypertension. Curr Opin Nephrol Hypertens. 2011;20(1):23–30.

    Article  PubMed  Google Scholar 

  57. Shi G, Gu CC, Kraja AT, Arnett DK, Myers RH, Pankow JS, et al. Genetic effect on blood pressure is modulated by age: the Hypertension Genetic Epidemiology Network Study. Hypertension. 2009;53(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  58. Vidan-Jeras B, Gregoric A, Jurca B, Jeras M, Bohinjec M. Possible influence of genes located on chromosome 6 within or near to the major histocompatibility complex on development of essential hypertension. Pflugers Arch. 2000;439(3 Suppl):R60–2.

    Article  PubMed  CAS  Google Scholar 

  59. Pausova Z, Deslauriers B, Gaudet D, Tremblay J, Kotchen TA, Larochelle P, et al. Role of tumor necrosis factor-alpha gene locus in obesity and obesity-associated hypertension in French Canadians. Hypertension. 2000;36(1):14–9.

    PubMed  CAS  Google Scholar 

  60. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5(7):e1000564.

    Article  PubMed  CAS  Google Scholar 

  61. Adeyemo A, Luke A, Wu X, Cooper RS, Kan D, Omotade O, et al. Genetic effects on blood pressure localized to chromosomes 6 and 7. J Hypertens. 2005;23(7):1367–73.

    Article  PubMed  CAS  Google Scholar 

  62. Nadar SK, Blann AD, Lip GY. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy. J Intern Med. 2004;256(4):331–7.

    Article  PubMed  CAS  Google Scholar 

  63. Jacobs KB, Gray-McGuire C, Cartier KC, Elston RC. Genome-wide linkage scan for genes affecting longitudinal trends in systolic blood pressure. BMC Genet. 2003;4 Suppl 1:S82.

    Article  PubMed  Google Scholar 

  64. Barbalic M, Narancic NS, Skaric-Juric T, Salihovic MP, Klaric IM, Lauc LB, et al. A quantitative trait locus for SBP maps near KCNB1 and PTGIS in a population isolate. Am J Hypertens. 2009;22(6):663–8.

    Article  PubMed  CAS  Google Scholar 

  65. Iwai N, Katsuya T, Ishikawa K, Mannami T, Ogata J, Higaki J, et al. Human prostacyclin synthase gene and hypertension: the Suita Study. Circulation. 1999;100(22):2231–6.

    PubMed  CAS  Google Scholar 

  66. Rutherford S, Cai G, Lopez-Alvarenga JC, Kent JW, Voruganti VS, Proffitt JM, et al. A chromosome 11q quantitative-trait locus influences change of blood-pressure measurements over time in Mexican Americans of the San Antonio Family Heart Study. Am J Hum Genet. 2007;81(4):744–55.

    Article  PubMed  CAS  Google Scholar 

  67. Xu X, Rogus JJ, Terwedow HA, Yang J, Wang Z, Chen C, et al. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet. 1999;64(6):1694–701.

    Article  PubMed  CAS  Google Scholar 

  68. Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, et al. Admixture mapping for hypertension loci with genome-scan markers. Nat Genet. 2005;37(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  69. Zhu X, Cooper RS. Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PLoS One. 2007;2(11):e1244.

    Article  PubMed  CAS  Google Scholar 

  70. Ding K, Feng D, de Andrade M, Mosley Jr TH, Turner ST, Boerwinkle E, et al. Genomic regions that influence plasma levels of inflammatory markers in hypertensive sibships. J Hum Hypertens. 2008;22(2):102–10.

    Article  PubMed  CAS  Google Scholar 

  71. Franceschini N, Reiner AP, Heiss G. Recent findings in the genetics of blood pressure and hypertension traits. Am J Hypertens. 2011;24(4):392–400.

    Article  PubMed  Google Scholar 

  72. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  CAS  Google Scholar 

  73. Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2(2):63–75.

    Article  PubMed  CAS  Google Scholar 

  74. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3.

    Article  PubMed  CAS  Google Scholar 

  75. Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18(12):2288–96.

    Article  PubMed  CAS  Google Scholar 

  76. Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet. 2007;39(7):813–5.

    Article  PubMed  CAS  Google Scholar 

  77. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.

    Article  PubMed  CAS  Google Scholar 

  78. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24(6):367–72.

    Article  PubMed  CAS  Google Scholar 

  79. Hiura Y, Tabara Y, Kokubo Y, Okamura T, Miki T, Tomoike H, et al. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J. 2010;74(11):2353–9.

    Article  PubMed  Google Scholar 

  80. Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106(1):226–31.

    Article  PubMed  CAS  Google Scholar 

  81. Torkamani A, Topol EJ, Schork NJ. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. 2008;92(5):265–72.

    Article  PubMed  CAS  Google Scholar 

  82. Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet. 2011;20(11):2273–84.

    Article  PubMed  CAS  Google Scholar 

  83. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  84. Gu CC, Chang YP, Hunt SC, Schwander K, Arnett D, Djousse L, et al. Haplotype association analysis of AGT variants with hypertension-related traits: the HyperGEN study. Hum Hered. 2005;60(3):164–76.

    Article  PubMed  CAS  Google Scholar 

  85. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.

    Article  PubMed  CAS  Google Scholar 

  86. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.

    Article  PubMed  CAS  Google Scholar 

  87. Ho JE, Levy D, Rose L, Johnson AD, Ridker PM, Chasman DI. Discovery and replication of novel blood pressure genetic loci in the Women’s Genome Health Study. J Hypertens. 2011;29(1):62–9.

    Article  PubMed  CAS  Google Scholar 

  88. Hong KW, Jin HS, Lim JE, Kim S, Go MJ, Oh B. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J Hum Genet. 2010;55(6):336–41.

    Article  PubMed  CAS  Google Scholar 

  89. Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121(21):2302–9.

    Article  PubMed  Google Scholar 

  90. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8.

    Article  PubMed  CAS  Google Scholar 

  91. • Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103-9. This account of a meta-GWAS for blood pressure with 200,000 subjects in the replication sample reported several novel loci and replicated them, as well as replicating several known blood pressure loci.

    Article  PubMed  CAS  Google Scholar 

  92. • Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005-11. This meta-GWAS for pulse pressure and mean arterial pressure had 48,000 subjects in the replication sample.

    Article  PubMed  CAS  Google Scholar 

  93. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10):e1001177.

    Article  PubMed  CAS  Google Scholar 

  94. Wang X, Snieder H. Genome-wide association studies and beyond: what’s next in blood pressure genetics? Hypertension. 2010;56(6):1035–7.

    Article  PubMed  CAS  Google Scholar 

  95. •• Harrap SB. Blood pressure genetics: time to focus. J Am Soc Hypertens. 2009;3(4):231-7. This is a review of the 2007 meta-GWAS findings (CHARGE and GlobalBPgen). The author argues for a focused approach to determine the precise DNA variants and their mechanisms for known BP loci, rather than expanding GWAS for even smaller effects.

    Article  PubMed  Google Scholar 

  96. Deng AY. Genetic basis of polygenic hypertension. Hum Mol Genet. 2007;16(Spec No. 2):R195–202.

    Article  PubMed  CAS  Google Scholar 

  97. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69(1):124–37.

    Article  PubMed  CAS  Google Scholar 

  98. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061-73.

  99. Staessen JA, Kuznetsova T, Zhang H, Maillard M, Bochud M, Hasenkamp S, et al. Blood pressure and renal sodium handling in relation to genetic variation in the DRD1 promoter and GRK4. Hypertension. 2008;51(6):1643–50.

    Article  PubMed  CAS  Google Scholar 

  100. Yeh TK, Yeh TC, Weng CF, Shih BF, Tsao HJ, Hsiao CH, et al. Association of polymorphisms in genes involved in the dopaminergic pathway with blood pressure and uric acid levels in Chinese females. J Neural Transm. 2010;117(12):1371–6.

    Article  PubMed  CAS  Google Scholar 

  101. Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, et al. SNP-based pathway enrichment analysis for genome-wide association studies. BMC Bioinformatics. 2011;12:99.

    Article  PubMed  Google Scholar 

  102. Zuo Y, Kang G. A mixed two-stage method for detecting interactions in genomewide association studies. J Theor Biol. 2010;262(4):576–83.

    Article  PubMed  CAS  Google Scholar 

  103. Shi G, Simino J, Rao DC. Enriching rare variants using family-specific linkage information. GAW 17 . BMC Proceedings. 2011.

  104. Shi G, Rao DC. Optimum designs for next-generation sequencing to discover rare variants for common complex disease. Genet Epidemiol. 2011;35(6):572–9.

    PubMed  Google Scholar 

  105. Gloyn AL, McCarthy MI. Variation across the allele frequency spectrum. Nat Genet. 2010;42(8):648–50.

    Article  PubMed  CAS  Google Scholar 

  106. Zeggini E. Next-generation association studies for complex traits. Nat Genet. 2011;43(4):287–8.

    Article  PubMed  CAS  Google Scholar 

  107. Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT, Zanon C, et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet. 2011;43(4):316–20.

    Article  PubMed  CAS  Google Scholar 

  108. Tobin MD, Raleigh SM, Newhouse S, Braund P, Bodycote C, Ogleby J, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation. 2005;112(22):3423–9.

    Article  PubMed  CAS  Google Scholar 

  109. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–13.

    Article  PubMed  CAS  Google Scholar 

  110. Campion J, Milagro F, Martinez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291–347.

    Article  PubMed  CAS  Google Scholar 

  111. Mathers JC, Mckay JA. Diet induced epigenetic changes and their implications for health. Acta Physiologica. 2011;202(2):103–18.

    Article  PubMed  CAS  Google Scholar 

  112. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.

    Article  PubMed  CAS  Google Scholar 

  113. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.

    Article  PubMed  CAS  Google Scholar 

  114. Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172→Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988;85(5):1600–4.

    Article  PubMed  CAS  Google Scholar 

  115. Funder J, Pearce P, Smith R, Smith A. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1987;242:583–5.

    Article  Google Scholar 

  116. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, Rauh W, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49(5):757–64.

    Article  PubMed  CAS  Google Scholar 

  117. Hurley DM, Accili D, Stratakis CA, Karl M, Vamvakopoulos N, Rorer E, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991;87(2):680–6.

    Article  PubMed  CAS  Google Scholar 

  118. White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rosler A. A mutation in CYP11B1 (Arg-448→His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991;87(5):1664–7.

    Article  PubMed  CAS  Google Scholar 

  119. Kagimoto M, Winter JS, Kagimoto K, Simpson ER, Waterman MR. Structural characterization of normal and mutant human steroid 17 alpha-hydroxylase genes: molecular basis of one example of combined 17 alpha-hydroxylase/17,20 lyase deficiency. Mol Endocrinol. 1988;2(6):564–70.

    Article  PubMed  CAS  Google Scholar 

  120. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119–23.

    Article  PubMed  CAS  Google Scholar 

  121. Hanukoglu A, Type I. pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab. 1991;73(5):936–44.

    Article  PubMed  CAS  Google Scholar 

  122. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.

    Article  PubMed  CAS  Google Scholar 

  123. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996;13(2):248–50.

    Article  PubMed  CAS  Google Scholar 

  124. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.

    Article  PubMed  CAS  Google Scholar 

  125. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79(3):407–14.

    Article  PubMed  CAS  Google Scholar 

  126. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  127. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30.

    Article  PubMed  CAS  Google Scholar 

  128. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  129. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+channel, ROMK. Nat Genet. 1996;14(2):152–6.

    Article  PubMed  CAS  Google Scholar 

  130. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17(2):171–8.

    Article  PubMed  CAS  Google Scholar 

  131. Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.

    PubMed  CAS  Google Scholar 

  132. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4.

    Article  PubMed  CAS  Google Scholar 

  133. Hasimu B, Nakayama T, Mizutani Y, Izumi Y, Asai S, Soma M, et al. Haplotype analysis of the human renin gene and essential hypertension. Hypertension. 2003;41(2):308–12.

    Article  PubMed  CAS  Google Scholar 

  134. Ahmad U, Saleheen D, Bokhari A, Frossard PM. Strong association of a renin intronic dimorphism with essential hypertension. Hypertens Res. 2005;28(4):339–44.

    Article  PubMed  CAS  Google Scholar 

  135. Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57(5):903–10.

    Article  PubMed  CAS  Google Scholar 

  136. Jeunemaitre X, Rigat B, Charru A, Houot AM, Soubrier F, Corvol P. Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet. 1992;88(3):301–6.

    Article  PubMed  CAS  Google Scholar 

  137. Fu Y, Katsuya T, Asai T, Fukuda M, Inamoto N, Iwashima Y, et al. Lack of correlation between Mbo I restriction fragment length polymorphism of renin gene and essential hypertension in Japanese. Hypertens Res. 2001;24(3):295–8.

    Article  PubMed  CAS  Google Scholar 

  138. Sethi AA, Nordestgaard BG, Tybjaerg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol. 2003;23(7):1269–75.

    Article  PubMed  CAS  Google Scholar 

  139. Province MA, Boerwinkle E, Chakravarti A, Cooper R, Fornage M, Leppert M, et al. Lack of association of the angiotensinogen-6 polymorphism with blood pressure levels in the comprehensive NHLBI Family Blood Pressure Program. National Heart, Lung and Blood Institute. J Hypertens. 2000;18(7):867–76.

    Article  PubMed  CAS  Google Scholar 

  140. van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens. 2007;25(3):565–70.

    Article  PubMed  CAS  Google Scholar 

  141. Arfa I, Nouira S, Abid A, Bouafif-Ben Alaya N, Zorgati MM, Malouche D, et al. Lack of association between renin-angiotensin system (RAS) polymorphisms and hypertension in Tunisian type 2 diabetics. Tunis Med. 2010;88(1):38–41.

    PubMed  Google Scholar 

  142. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation. 1998;97(18):1773–9.

    PubMed  CAS  Google Scholar 

  143. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Sorensen TI, Jensen G, Tybjaerg-Hansen A. ACE gene polymorphism: ischemic heart disease and longevity in 10,150 individuals. A case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation. 1997;95(10):2358–67.

    PubMed  CAS  Google Scholar 

  144. Staessen JA, Wang J, Ginocchio G, Petrov V, Saavedra AP, Soubrier F, et al. The deletion/insertion polymorphism of the angiotensin converting-enzyme and cardiovascular-renal risk. J Hypertens. 1997;15:1579–92.

    Article  PubMed  CAS  Google Scholar 

  145. Matsubara M, Suzuki M, Fujiwara T, Kikuya M, Metoki H, Michimata M, et al. Angiotensin-converting enzyme I/D polymorphism and hypertension: the Ohasama study. J Hypertens. 2002;20(6):1121–6.

    Article  PubMed  CAS  Google Scholar 

  146. Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994;24(1):63–9.

    PubMed  CAS  Google Scholar 

  147. Miyamoto Y, Yoshimasa T, Itoh H, Igaki T, Harda M, Yamashita J, et al. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension in Japanese. J Hypertens. 1996;14:S29.

    Google Scholar 

  148. Wang WY, Zee RY, Morris BJ. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin Genet. 1997;51(1):31–4.

    Article  PubMed  CAS  Google Scholar 

  149. Castellano M, Muiesan ML, Beschi M, Rizzoni D, Cinelli A, Salvetti M, et al. Angiotensin II type 1 receptor A/C1166 polymorphism. Relationships with blood pressure and cardiovascular structure. Hypertension. 1996;28(6):1076–80.

    PubMed  CAS  Google Scholar 

  150. Takami S, Katsuya T, Rakugi H, Sato N, Nakata Y, Kamitani A, et al. Angiotensin II type 1 receptor gene polymorphism is associated with increase of left ventricular mass but not with hypertension. Am J Hypertens. 1998;11(3 Pt 1):316–21.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang X, Erdmann J, Regitz-Zagrosek V, Kurzinger S, Hense HW, Schunkert H. Evaluation of three polymorphisms in the promoter region of the angiotensin II type I receptor gene. J Hypertens. 2000;18(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  152. Melander O, Orho-Melander M, Bengtsson K, Lindblad U, Rastam L, Groop L, et al. Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension. 2000;36(3):389–94.

    PubMed  CAS  Google Scholar 

  153. Song Y, Herrera VL, Filigheddu F, Troffa C, Lopez LV, Glorioso N, et al. Non-association of the thiazide-sensitive Na, Cl-cotransporter gene with polygenic hypertension in both rats and humans. J Hypertens. 2001;19(9):1547–51.

    Article  PubMed  CAS  Google Scholar 

  154. Kokubo Y, Kamide K, Inamoto N, Tanaka C, Banno M, Takiuchi S, et al. Identification of 108 SNPs in TSC, WNK1, and WNK4 and their association with hypertension in a Japanese general population. J Hum Genet. 2004;49(9):507–15.

    Article  PubMed  CAS  Google Scholar 

  155. Chang PY, Zhang XG, Su XL. Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia. Genet Mol Res. 2011;10(2):948–54.

    Article  PubMed  CAS  Google Scholar 

  156. Glorioso N, Filigheddu F, Troffa C, Soro A, Parpaglia PP, Tsikoudakis A, et al. Interaction of alpha(1)-Na, K-ATPase and Na, K,2Cl-cotransporter genes in human essential hypertension. Hypertension. 2001;38(2):204–9.

    PubMed  CAS  Google Scholar 

  157. Iwai N, Tago N, Yasui N, Kokubo Y, Inamoto N, Tomoike H, et al. Genetic analysis of 22 candidate genes for hypertension in the Japanese population. J Hypertens. 2004;22(6):1119–26.

    Article  PubMed  CAS  Google Scholar 

  158. Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, et al. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension. 2008;51(6):1658–64.

    Article  PubMed  CAS  Google Scholar 

  159. Iwai N, Kajimoto K, Kokubo Y, Tomoike H. Extensive genetic analysis of 10 candidate genes for hypertension in Japanese. Hypertension. 2006;48(5):901–7.

    Article  PubMed  CAS  Google Scholar 

  160. Han Y, Fan X, Sun K, Wang X, Wang Y, Chen J, et al. Hypertension associated polymorphisms in WNK1/WNK4 are not associated with hydrochlorothiazide response. Clin Biochem. 2011;44(13):1045–9.

    Article  PubMed  CAS  Google Scholar 

  161. Putku M, Kepp K, Org E, Sober S, Comas D, Viigimaa M, et al. Novel polymorphic AluYb8 insertion in the WNK1 gene is associated with blood pressure variation in Europeans. Hum Mutat. 2011;32(7):806–14.

    Article  PubMed  CAS  Google Scholar 

  162. Padmanabhan S, Menni C, Lee WK, Laing S, Brambilla P, Sega R, et al. The effects of sex and method of blood pressure measurement on genetic associations with blood pressure in the PAMELA study. J Hypertens. 2010;28(3):465–77.

    Article  PubMed  CAS  Google Scholar 

  163. Benjafield AV, Katyk K, Morris BJ. Association of EDNRA, but not WNK4 or FKBP1B, polymorphisms with essential hypertension. Clin Genet. 2003;64(5):433–8.

    Article  PubMed  CAS  Google Scholar 

  164. Speirs HJ, Morris BJ. WNK4 intron 10 polymorphism is not associated with hypertension. Hypertension. 2004;43(4):766–8.

    Article  PubMed  CAS  Google Scholar 

  165. Busjahn A, Aydin A, Uhlmann R, Krasko C, Bahring S, Szelestei T, et al. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension. 2002;40(3):256–60.

    Article  PubMed  CAS  Google Scholar 

  166. von Wowern F, Berglund G, Carlson J, Mansson H, Hedblad B, Melander O. Genetic variance of SGK-1 is associated with blood pressure, blood pressure change over time and strength of the insulin-diastolic blood pressure relationship. Kidney Int. 2005;68(5):2164–72.

    Article  Google Scholar 

  167. Lang F, Huang DY, Vallon V. SGK, renal function and hypertension. J Nephrol. 2010;23 Suppl 16:S124–9.

    PubMed  Google Scholar 

  168. Trochen N, Ganapathipillai S, Ferrari P, Frey BM, Frey FJ. Low prevalence of nonconservative mutations of serum and glucocorticoid-regulated kinase (SGK1) gene in hypertensive and renal patients. Nephrol Dial Transplant. 2004;19(10):2499–504.

    Article  PubMed  CAS  Google Scholar 

  169. Jin HS, Hong KW, Lim JE, Hwang SY, Lee SH, Shin C, et al. Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press Res. 2010;33(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  170. Jones ES, Owen EP, Davidson JS, Van Der Merwe L, Rayner BL. The R563Q mutation of the epithelial sodium channel beta-subunit is associated with hypertension. Cardiovasc J Afr. 2010;21:1–4.

    Google Scholar 

  171. Zhao Q, Gu D, Hixson JE, Liu DP, Rao DC, Jaquish CE, et al. Common variants in epithelial sodium channel genes contribute to salt sensitivity of blood pressure: the gensalt study. Circ Cardiovasc Genet. 2011;4(4):375–80.

    Article  PubMed  CAS  Google Scholar 

  172. Munroe PB, Strautnieks SS, Farrall M, Daniel HI, Lawson M, DeFreitas P, et al. Absence of linkage of the epithelial sodium channel to hypertension in black Caribbeans. Am J Hypertens. 1998;11(8 Pt 1):942–5.

    Article  PubMed  CAS  Google Scholar 

  173. Wang XF, Lu XM, Lin RY, Wang SZ, Zhang LP, Qian J, et al. Lack of association of functional variants in alpha-ENaC gene and essential hypertension in two ethnic groups in China. Kidney Blood Press Res. 2008;31(4):268–73.

    Article  PubMed  CAS  Google Scholar 

  174. Kokubo Y, Tomoike H, Tanaka C, Banno M, Okuda T, Inamoto N, et al. Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res. 2006;29(8):611–9.

    Article  PubMed  CAS  Google Scholar 

  175. Jung J, Sun B, Kwon D, Koller DL, Foroud TM. Allelic-based gene-gene interaction associated with quantitative traits. Genet Epidemiol. 2009;33(4):332–43.

    Article  PubMed  Google Scholar 

  176. Fava C, Montagnana M, Almgren P, Rosberg L, Guidi GC, Berglund G, et al. The functional variant of the CLC-Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J Hypertens. 2007;25(1):111–6.

    Article  PubMed  CAS  Google Scholar 

  177. Cwynar M, Staessen JA, Ticha M, Nawrot T, Citterio L, Kuznetsova T, et al. Epistatic interaction between alpha- and gamma-adducin influences peripheral and central pulse pressures in white Europeans. J Hypertens. 2005;23(5):961–9.

    Article  PubMed  CAS  Google Scholar 

  178. Busch CP, Harris SB, Hanley AJ, Zinman B, Hegele RA. The ADD1 G460W polymorphism is not associated with variation in blood pressure in Canadian Oji-Cree. J Hum Genet. 1999;44(4):225–9.

    Article  PubMed  CAS  Google Scholar 

  179. Shin MH, Chung EK, Kim HN, Park KS, Nam HS, Kweon SS, et al. Alpha-adducin Gly460Trp polymorphism and essential hypertension in Korea. J Korean Med Sci. 2004;19(6):812–4.

    Article  PubMed  CAS  Google Scholar 

  180. Niu WQ, Zhang Y, Ji KD, Gao PJ, Zhu DL. Lack of association between alpha-adducin G460W polymorphism and hypertension: evidence from a case-control study and a meta-analysis. J Hum Hypertens. 2010;24(7):467–74.

    Article  PubMed  CAS  Google Scholar 

  181. Tikhonoff V, Kuznetsova T, Stolarz K, Bianchi G, Casiglia E, Kawecka-Jaszcz K, et al. beta-Adducin polymorphisms, blood pressure, and sodium excretion in three European populations. Am J Hypertens. 2003;16(10):840–6.

    Article  PubMed  CAS  Google Scholar 

  182. Kato N, Miyata T, Tabara Y, Katsuya T, Yanai K, Hanada H, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum Mol Genet. 2008;17(4):617–27.

    Article  PubMed  CAS  Google Scholar 

  183. Sharma P, Hingorani A, Jia H, Ashby M, Hopper R, Clayton D, et al. Positive association of tyrosine hydroxylase microsatellite marker to essential hypertension. Hypertension. 1998;32(4):676–82.

    PubMed  CAS  Google Scholar 

  184. Jindra A, Jachymova M, Horky K, Peleska J, Umnerova V, Bultas J, et al. Association analysis of two tyrosine hydroxylase gene polymorphisms in normotensive offspring from hypertensive families. Blood Press. 2000;9(5):250–4.

    Article  PubMed  CAS  Google Scholar 

  185. Sato M, Soma M, Nakayama T, Kanmatsuse K. Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension. 2000;36(2):183–6.

    PubMed  CAS  Google Scholar 

  186. Lu Y, Zhu H, Wang X, Snieder H, Huang Y, Harshfield GA, et al. Effects of dopamine receptor type 1 and Gs protein alpha subunit gene polymorphisms on blood pressure at rest and in response to stress. Am J Hypertens. 2006;19(8):832–6.

    Article  PubMed  CAS  Google Scholar 

  187. Beige J, Bellmann A, Sharma AM, Gessner R. Ethnic origin determines the impact of genetic variants in dopamine receptor gene (DRD1) concerning essential hypertension. Am J Hypertens. 2004;17(12 Pt 1):1184–7.

    Article  PubMed  CAS  Google Scholar 

  188. Orun O, Nacar C, Cabadak H, Tiber PM, Dogan Y, Guneysel O, et al. Investigation of the association between dopamine D1 receptor gene polymorphisms and essential hypertension in a group of turkish subjects. Clin Exp Hypertens. 2011;33(6):418–21.

    Article  PubMed  CAS  Google Scholar 

  189. Thomas GN, Critchley JA, Tomlinson B, Cockram CS, Chan JC. Relationships between the taq1 polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects. Clin Endocrinol. 2001;55:605–11.

    Article  CAS  Google Scholar 

  190. Chi Htun N, Miyaki K, Song Y, Ikeda S, Shimbo T, Muramatsu M. Association of the Catechol-O-Methyl Transferase Gene Val158Met Polymorphism With Blood Pressure and Prevalence of Hypertension: Interaction With Dietary Energy Intake. Am J Hypertens. 2011;24(9):1022–6.

    Article  CAS  Google Scholar 

  191. Abe M, Wu Z, Yamamoto M, Jin JJ, Tabara Y, Mogi M, et al. Association of dopamine beta-hydroxylase polymorphism with hypertension through interaction with fasting plasma glucose in Japanese. Hypertens Res. 2005;28(3):215–21.

    Article  PubMed  CAS  Google Scholar 

  192. Martinez Cantarin MP, Ertel A, Deloach S, Fortina P, Scott K, Burns TL, et al. Variants in genes involved in functional pathways associated with hypertension in African Americans. Clin Transl Sci. 2010;3(6):279–86.

    Article  PubMed  Google Scholar 

  193. Lou Y, Liu J, Huang Y, Wang Z, Liu Y, Li Z, et al. A46G and C79G polymorphisms in the beta2-adrenergic receptor gene (ADRB2) and essential hypertension risk: a meta-analysis. Hypertens Res. 2010;33(11):1114–23.

    Article  PubMed  CAS  Google Scholar 

  194. Gjesing AP, Sparso T, Borch-Johnsen K, Jorgensen T, Pedersen O, Hansen T, et al. No consistent effect of ADRB2 haplotypes on obesity, hypertension and quantitative traits of body fatness and blood pressure among 6,514 adult Danes. PLoS One. 2009;4(9):e7206.

    Article  PubMed  CAS  Google Scholar 

  195. Gu D, Ge D, Snieder H, He J, Chen S, Huang J, et al. Association of alpha1A adrenergic receptor gene variants on chromosome 8p21 with human stage 2 hypertension. J Hypertens. 2006;24(6):1049–56.

    Article  PubMed  CAS  Google Scholar 

  196. Freitas SR, Pereira AC, Floriano MS, Mill JG, Krieger JE. Association of alpha1a-adrenergic receptor polymorphism and blood pressure phenotypes in the Brazilian population. BMC Cardiovasc Disord. 2008;8:40.

    Article  PubMed  CAS  Google Scholar 

  197. Xie HG, Kim RB, Stein CM, Gainer JV, Brown NJ, Wood AJ. Alpha1A-adrenergic receptor polymorphism: association with ethnicity but not essential hypertension. Pharmacogenetics. 1999;9(5):651–6.

    Article  PubMed  CAS  Google Scholar 

  198. Peng Y, Xue H, Luo L, Yao W, Li R. Polymorphisms of the beta1-adrenergic receptor gene are associated with essential hypertension in Chinese. Clin Chem Lab Med. 2009;47(10):1227–31.

    Article  PubMed  CAS  Google Scholar 

  199. Gjesing AP, Andersen G, Albrechtsen A, Glumer C, Borch-Johnsen K, Jorgensen T, et al. Studies of associations between the Arg389Gly polymorphism of the beta1-adrenergic receptor gene (ADRB1) and hypertension and obesity in 7677 Danish white subjects. Diabet Med. 2007;24(4):392–7.

    Article  PubMed  CAS  Google Scholar 

  200. Ringel J, Kreutz R, Distler A, Sharma AM. The Trp64Arg polymorphism of the beta3-adrenergic receptor gene is associated with hypertension in men with type 2 diabetes mellitus. Am J Hypertens. 2000;13(9):1027–31.

    Article  PubMed  CAS  Google Scholar 

  201. Kitsios GD, Zintzaras E. Synopsis and data synthesis of genetic association studies in hypertension for the adrenergic receptor family genes: the CUMAGAS-HYPERT database. Am J Hypertens. 2010;23(3):305–13.

    Article  PubMed  CAS  Google Scholar 

  202. Jemaa R, Kallel A, Sediri Y, Omar S, Feki M, Elasmi M, et al. Association between -786TC polymorphism in the endothelial nitric oxide synthase gene and hypertension in the Tunisian population. Exp Mol Pathol. 2011;90(2):210–4.

    Article  PubMed  CAS  Google Scholar 

  203. Kato N, Sugiyama T, Morita H, Nabika T, Kurihara H, Yamori Y, et al. Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension. Hypertension. 1999;33(4):933–6.

    PubMed  CAS  Google Scholar 

  204. Barath A, Endreffy E, Bereczki C, Gellen B, Szucs B, Nemeth I, et al. Endothelin-1 gene and endothelial nitric oxide synthase gene polymorphisms in adolescents with juvenile and obesity-associated hypertension. Acta Physiol Hung. 2007;94(1–2):49–66.

    Article  PubMed  CAS  Google Scholar 

  205. Banno M, Hanada H, Kamide K, Kokubo Y, Kada A, Yang J, et al. Association of genetic polymorphisms of endothelin-converting enzyme-1 gene with hypertension in a Japanese population and rare missense mutation in preproendothelin-1 in Japanese hypertensives. Hypertens Res. 2007;30(6):513–20.

    Article  PubMed  CAS  Google Scholar 

  206. Panoulas VF, Douglas KM, Smith JP, Taffe P, Stavropoulos-Kalinoglou A, Toms TE, et al. Polymorphisms of the endothelin-1 gene associate with hypertension in patients with rheumatoid arthritis. Endothelium. 2008;15(4):203–12.

    Article  PubMed  CAS  Google Scholar 

  207. Wiltshire S, Powell BL, Jennens M, McCaskie PA, Carter KW, Palmer LJ, et al. Investigating the association between K198N coding polymorphism in EDN1 and hypertension, lipoprotein levels, the metabolic syndrome and cardiovascular disease. Hum Genet. 2008;123(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  208. Rahman T, Baker M, Hall DH, Avery PJ, Keavney B. Common genetic variation in the type A endothelin-1 receptor is associated with ambulatory blood pressure: a family study. J Hum Hypertens. 2008;22(4):282–8.

    Article  PubMed  CAS  Google Scholar 

  209. Teh LK, Zahri MK, Zakaria ZA, Ismail R, Salleh MZ. Mutational analysis of CYP2C8 in hypertensive patients using denaturing high performance liquid chromatography. J Clin Pharm Ther. 2010;35(6):723–8.

    Article  PubMed  CAS  Google Scholar 

  210. Dreisbach AW, Japa S, Sigel A, Parenti MB, Hess AE, Srinouanprachanh SL, et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am J Hypertens. 2005;18(10):1276–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants R01 HL55673, U01 HL054473, U01 HL72507, R01 HL086694, and T32 HL083822 from the National Heart, Lung, and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Helpful comments by Dr. Daniel O’Connor are greatly appreciated.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basson, J., Simino, J. & Rao, D.C. Between Candidate Genes and Whole Genomes: Time for Alternative Approaches in Blood Pressure Genetics. Curr Hypertens Rep 14, 46–61 (2012). https://doi.org/10.1007/s11906-011-0241-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0241-8

Keywords

Navigation