Current Hypertension Reports

, Volume 14, Issue 1, pp 46–61 | Cite as

Between Candidate Genes and Whole Genomes: Time for Alternative Approaches in Blood Pressure Genetics

Pathogenesis of Hypertension: Genetic and Environmental Factors (DT O’Connor, Section Editor)


Blood pressure has a significant genetic component, but less than 3% of the observed variance has been attributed to genetic variants identified to date. Candidate gene studies of rare, monogenic hypertensive syndromes have conclusively implicated several genes altering renal sodium balance, and studies of essential hypertension have inconsistently implicated over 50 genes in pathways affecting renal sodium balance and other functions. Genome-wide linkage scans have replicated numerous quantitative trait loci throughout the genome, and over 50 single nucleotide polymorphisms (SNPs) have been replicated in multiple genome-wide association studies. These studies provide considerable evidence that epistasis and other interactions play a role in the genetic architecture of blood pressure regulation, but candidate gene studies have limited scope to test for epistasis, and genome-wide studies have low power for both main effects and interactions. This review summarizes the genetic findings to date for blood pressure, and it proposes focused, pathway-based approaches involving epistasis, gene-environment interactions, and next-generation sequencing to further the genetic dissection of blood pressure and hypertension.


Blood pressure Hypertension Candidate gene Genome-wide association study GWAS Genome-wide linkage scan Epistasis Pathway Meta-analysis Genetics 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    National Center for Health Statistics. Health, United States, 2010: with special feature on death and dying. Hyattsville, MD2011.Google Scholar
  2. 2.
    Whitworth JA. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens. 2003;21(11):1983–92.PubMedCrossRefGoogle Scholar
  3. 3.
    • Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12(1):17-25. This review of all BP GWAS through 2010 describes the significance and interpretation of the findings in these studies. PubMedCrossRefGoogle Scholar
  4. 4.
    Platt R. The nature of essential hypertension. Lancet. 1959;2(7091):55–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Pickering G. High blood pressure. London: J & A. Churchill; 1955.Google Scholar
  6. 6.
    Milford DV. Investigation of hypertension and the recognition of monogenic hypertension. Arch Dis Child. 1999;81(5):452–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Marteau JB, Zaiou M, Siest G, Visvikis-Siest S. Genetic determinants of blood pressure regulation. J Hypertens. 2005;23(12):2127–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Charchar F, Zimmerli L, Tomaszewski M. The pressure of finding human hypertension genes: new tools, old dilemmas. J Hum Hypertens. 2008;22(12):821–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Pascoe L, Curnow KM, Slutsker L, Rosler A, White PC. Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci U S A. 1992;89(11):4996–5000.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang X, Zhu H, Dong Y, Treiber FA, Snieder H. Effects of angiotensinogen and angiotensin II type I receptor genes on blood pressure and left ventricular mass trajectories in multiethnic youth. Twin Res Hum Genet. 2006;9(3):393–402.PubMedCrossRefGoogle Scholar
  11. 11.
    Tsai CT, Fallin D, Chiang FT, Hwang JJ, Lai LP, Hsu KL, et al. Angiotensinogen gene haplotype and hypertension: interaction with ACE gene I allele. Hypertension. 2003;41(1):9–15.PubMedCrossRefGoogle Scholar
  12. 12.
    Zhu X, Bouzekri N, Southam L, Cooper RS, Adeyemo A, McKenzie CA, et al. Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet. 2001;68(5):1139–48.PubMedCrossRefGoogle Scholar
  13. 13.
    Reich H, Duncan JA, Weinstein J, Cattran DC, Scholey JW, Miller JA. Interactions between gender and the angiotensin type 1 receptor gene polymorphism. Kidney Int. 2003;63(4):1443–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Williams SM, Ritchie MD, Phillips 3rd JA, Dawson E, Prince M, Dzhura E, et al. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered. 2004;57(1):28–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang JG, Staessen JA, Barlassina C, Fagard R, Kuznetsova T, Struijker-Boudier HA, et al. Association between hypertension and variation in the alpha- and beta-adducin genes in a white population. Kidney Int. 2002;62(6):2152–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Wang JG, Liu L, Zagato L, Xie J, Fagard R, Jin K, et al. Blood pressure in relation to three candidate genes in a Chinese population. J Hypertens. 2004;22(5):937–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Staessen JA, Wang JG, Brand E, Barlassina C, Birkenhager WH, Herrmann SM, et al. Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens. 2001;19(8):1349–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Baker EH, Dong YB, Sagnella GA, Rothwell M, Onipinla AK, Markandu ND, et al. Association of hypertension with T594M mutation in beta subunit of epithelial sodium channels in black people resident in London. Lancet. 1998;351(9113):1388–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Ji W, Foo JN, O’Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40(5):592–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Tanira MO, Al Balushi KA. Genetic variations related to hypertension: a review. J Hum Hypertens. 2005;19(1):7–19.PubMedCrossRefGoogle Scholar
  21. 21.
    Bianchi G. Genetic variations of tubular sodium reabsorption leading to “primary” hypertension: from gene polymorphism to clinical symptoms. Am J Physiol Regul Integr Comp Physiol. 2005;289(6):R1536–49.PubMedCrossRefGoogle Scholar
  22. 22.
    Citterio L, Lanzani C, Manunta P, Bianchi G. Genetics of primary hypertension: the clinical impact of adducin polymorphisms. Biochim Biophys Acta. 2010;1802(12):1285–98.PubMedGoogle Scholar
  23. 23.
    Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399–403.PubMedGoogle Scholar
  24. 24.
    Panoulas VF, Douglas KM, Smith JP, Stavropoulos-Kalinoglou A, Metsios GS, Nightingale P, et al. Transforming growth factor-beta1 869T/C, but not interleukin-6–174G/C, polymorphism associates with hypertension in rheumatoid arthritis. Rheumatology (Oxford). 2009;48(2):113–8.CrossRefGoogle Scholar
  25. 25.
    He F, Zhao D, Deng F, Zhong H, Shi X, Yang J, et al. Association of TGF-beta1 gene polymorphisms in exon1 and blood levels with essential hypertension. Blood Press. 2010;19(4):225–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Li XX, Bek M, Asico LD, Yang Z, Grandy DK, Goldstein DS, et al. Adrenergic and endothelin B receptor-dependent hypertension in dopamine receptor type-2 knockout mice. Hypertension. 2001;38(3):303–8.PubMedGoogle Scholar
  27. 27.
    Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, et al. Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest. 1998;102:493–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Bek MJ, Wang X, Asico LD, Jones JE, Zheng S, Li X, et al. Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice. Hypertension. 2006;47(2):288–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Ramirez-Lorca R, Grilo A, Martinez-Larrad MT, Manzano L, Serrano-Hernando FJ, Moron FJ, et al. Sex and body mass index specific regulation of blood pressure by CYP19A1 gene variants. Hypertension. 2007;50(5):884–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor JY, Sun YV, Hunt SC, Kardia SL. Gene-environment interaction for hypertension among African American women across generations. Biol Res Nurs. 2010;12(2):149–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor J, Sun YV, Chu J, Mosley TH, Kardia SL. Interactions between metallopeptidase 3 polymorphism rs679620 and BMI in predicting blood pressure in African-American women with hypertension. J Hypertens. 2008;26(12):2312–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Pereira AC, Floriano MS, Mota GF, Cunha RS, Herkenhoff FL, Mill JG, et al. Beta2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension. 2003;42(4):685–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Pan X, Liu Y, Zhang Y, Zhang X, Xu Q, Tong W. Interaction of the C-344T polymorphism of CYP11b2 gene with body mass index and waist circumference affecting diastolic blood pressure in Chinese Mongolian population. Blood Press. 2010;19(6):373–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Fava C, Montagnana M, Almgren P, Rosberg L, Guidi GC, Berglund G, et al. Association between adducin-1 G460W variant and blood pressure in Swedes is dependent on interaction with body mass index and gender. Am J Hypertens. 2007;20(9):981–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Montasser ME, Gu D, Chen J, Shimmin LC, Gu C, Kelly TN, et al. Interactions of genetic variants with physical activity are associated with blood pressure in Chinese: The GenSalt Study. Am J Hypertens. 2011;24(9):1035–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Bowden DW, An SS, Palmer ND, Brown WM, Norris JM, Haffner SM, et al. Molecular basis of a linkage peak: exome sequencing and family-based analysis identify a rare genetic variant in the ADIPOQ gene in the IRAS Family Study. Hum Mol Genet. 2010;19(20):4112–20.PubMedCrossRefGoogle Scholar
  37. 37.
    •• Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-53. This review describes the state of complex trait genetics for several traits and discusses the possible sources of unexplained heritability. PubMedCrossRefGoogle Scholar
  38. 38.
    Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol. 2007;22(3):176–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, et al. Genome-wide mapping of human loci for essential hypertension. Lancet. 2003;361(9375):2118–23.PubMedCrossRefGoogle Scholar
  40. 40.
    Munroe PB, Wallace C, Xue MZ, Marcano AC, Dobson RJ, Onipinla AK, et al. Increased support for linkage of a novel locus on chromosome 5q13 for essential hypertension in the British Genetics of Hypertension Study. Hypertension. 2006;48(1):105–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Rao DC, Province MA, Leppert MF, Oberman A, Heiss G, Ellison RC, et al. A genome-wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am J Hypertens. 2003;16(2):148–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Province MA, Kardia SL, Ranade K, Rao DC, Thiel BA, Cooper RS, et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens. 2003;16(2):144–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Chang YP, Liu X, Kim JD, Ikeda MA, Layton MR, Weder AB, et al. Multiple genes for essential-hypertension susceptibility on chromosome 1q. Am J Hum Genet. 2007;80(2):253–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Perola M, Kainulainen K, Pajukanta P, Terwilliger JD, Hiekkalinna T, Ellonen P, et al. Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens. 2000;18(11):1579–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Hunt SC, Ellison RC, Atwood LD, Pankow JS, Province MA, Leppert MF. Genome scans for blood pressure and hypertension: the National Heart, Lung, and Blood Institute Family Heart Study. Hypertension. 2002;40(1):1–6.PubMedCrossRefGoogle Scholar
  46. 46.
    James K, Weitzel LR, Engelman CD, Zerbe G, Norris JM. Genome scan linkage results for longitudinal systolic blood pressure phenotypes in subjects from the Framingham Heart Study. BMC Genet. 2003;4 Suppl 1:S83.PubMedCrossRefGoogle Scholar
  47. 47.
    DiPetrillo K, Tsaih SW, Sheehan S, Johns C, Kelmenson P, Gavras H, et al. Genetic analysis of blood pressure in C3H/HeJ and SWR/J mice. Physiol Genomics. 2004;17(2):215–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Puppala S, Coletta DK, Schneider J, Hu SL, Farook VS, Dyer TD, et al. Genome-wide linkage screen for systolic blood pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and confirmation of a major susceptibility locus on chromosome 6q14.1. Hum Hered. 2011;71(1):1–10.PubMedCrossRefGoogle Scholar
  49. 49.
    Allayee H, de Bruin TW, Michelle Dominguez K, Cheng LS, Ipp E, Cantor RM, et al. Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension. 2001;38(4):773–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Yang HC, Liang YJ, Wu YL, Chung CM, Chiang KM, Ho HY, et al. Genome-wide association study of young-onset hypertension in the Han Chinese population of Taiwan. PLoS One. 2009;4(5):e5459.PubMedCrossRefGoogle Scholar
  51. 51.
    Cowley Jr AW. The genetic dissection of essential hypertension. Nat Rev Genet. 2006;7(11):829–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Hamet P, Merlo E, Seda O, Broeckel U, Tremblay J, Kaldunski M, et al. Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am J Hum Genet. 2005;76(5):815–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Ciullo M, Bellenguez C, Colonna V, Nutile T, Calabria A, Pacente R, et al. New susceptibility locus for hypertension on chromosome 8q by efficient pedigree-breaking in an Italian isolate. Hum Mol Genet. 2006;15(10):1735–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Simino J, Shi G, Kume R, Schwander K, Province MA, Gu CC, et al. Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program. Am J Hypertens. 2011;24(3):347–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Bell JT, Wallace C, Dobson R, Wiltshire S, Mein C, Pembroke J, et al. Two-dimensional genome-scan identifies novel epistatic loci for essential hypertension. Hum Mol Genet. 2006;15(8):1365–74.PubMedCrossRefGoogle Scholar
  56. 56.
    Fung MM, Zhang K, Zhang L, Rao F, O’Connor DT. Contemporary approaches to genetic influences on hypertension. Curr Opin Nephrol Hypertens. 2011;20(1):23–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Shi G, Gu CC, Kraja AT, Arnett DK, Myers RH, Pankow JS, et al. Genetic effect on blood pressure is modulated by age: the Hypertension Genetic Epidemiology Network Study. Hypertension. 2009;53(1):35–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Vidan-Jeras B, Gregoric A, Jurca B, Jeras M, Bohinjec M. Possible influence of genes located on chromosome 6 within or near to the major histocompatibility complex on development of essential hypertension. Pflugers Arch. 2000;439(3 Suppl):R60–2.PubMedCrossRefGoogle Scholar
  59. 59.
    Pausova Z, Deslauriers B, Gaudet D, Tremblay J, Kotchen TA, Larochelle P, et al. Role of tumor necrosis factor-alpha gene locus in obesity and obesity-associated hypertension in French Canadians. Hypertension. 2000;36(1):14–9.PubMedGoogle Scholar
  60. 60.
    Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 2009;5(7):e1000564.PubMedCrossRefGoogle Scholar
  61. 61.
    Adeyemo A, Luke A, Wu X, Cooper RS, Kan D, Omotade O, et al. Genetic effects on blood pressure localized to chromosomes 6 and 7. J Hypertens. 2005;23(7):1367–73.PubMedCrossRefGoogle Scholar
  62. 62.
    Nadar SK, Blann AD, Lip GY. Plasma and platelet-derived vascular endothelial growth factor and angiopoietin-1 in hypertension: effects of antihypertensive therapy. J Intern Med. 2004;256(4):331–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Jacobs KB, Gray-McGuire C, Cartier KC, Elston RC. Genome-wide linkage scan for genes affecting longitudinal trends in systolic blood pressure. BMC Genet. 2003;4 Suppl 1:S82.PubMedCrossRefGoogle Scholar
  64. 64.
    Barbalic M, Narancic NS, Skaric-Juric T, Salihovic MP, Klaric IM, Lauc LB, et al. A quantitative trait locus for SBP maps near KCNB1 and PTGIS in a population isolate. Am J Hypertens. 2009;22(6):663–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Iwai N, Katsuya T, Ishikawa K, Mannami T, Ogata J, Higaki J, et al. Human prostacyclin synthase gene and hypertension: the Suita Study. Circulation. 1999;100(22):2231–6.PubMedGoogle Scholar
  66. 66.
    Rutherford S, Cai G, Lopez-Alvarenga JC, Kent JW, Voruganti VS, Proffitt JM, et al. A chromosome 11q quantitative-trait locus influences change of blood-pressure measurements over time in Mexican Americans of the San Antonio Family Heart Study. Am J Hum Genet. 2007;81(4):744–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Xu X, Rogus JJ, Terwedow HA, Yang J, Wang Z, Chen C, et al. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet. 1999;64(6):1694–701.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, et al. Admixture mapping for hypertension loci with genome-scan markers. Nat Genet. 2005;37(2):177–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhu X, Cooper RS. Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PLoS One. 2007;2(11):e1244.PubMedCrossRefGoogle Scholar
  70. 70.
    Ding K, Feng D, de Andrade M, Mosley Jr TH, Turner ST, Boerwinkle E, et al. Genomic regions that influence plasma levels of inflammatory markers in hypertensive sibships. J Hum Hypertens. 2008;22(2):102–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Franceschini N, Reiner AP, Heiss G. Recent findings in the genetics of blood pressure and hypertension traits. Am J Hypertens. 2011;24(4):392–400.PubMedCrossRefGoogle Scholar
  72. 72.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRefGoogle Scholar
  73. 73.
    Rafiqi FH, Zuber AM, Glover M, Richardson C, Fleming S, Jovanovic S, et al. Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol Med. 2010;2(2):63–75.PubMedCrossRefGoogle Scholar
  74. 74.
    Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8 Suppl 1:S3.PubMedCrossRefGoogle Scholar
  75. 75.
    Org E, Eyheramendy S, Juhanson P, Gieger C, Lichtner P, Klopp N, et al. Genome-wide scan identifies CDH13 as a novel susceptibility locus contributing to blood pressure determination in two European populations. Hum Mol Genet. 2009;18(12):2288–96.PubMedCrossRefGoogle Scholar
  76. 76.
    Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet. 2007;39(7):813–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, et al. Genetic variations in ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or hypertension in two Korean cohorts. J Hum Hypertens. 2010;24(6):367–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Hiura Y, Tabara Y, Kokubo Y, Okamura T, Miki T, Tomoike H, et al. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J. 2010;74(11):2353–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106(1):226–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Torkamani A, Topol EJ, Schork NJ. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. 2008;92(5):265–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study. Hum Mol Genet. 2011;20(11):2273–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41(1):35–46.PubMedCrossRefGoogle Scholar
  84. 84.
    Gu CC, Chang YP, Hunt SC, Schwander K, Arnett D, Djousse L, et al. Haplotype association analysis of AGT variants with hypertension-related traits: the HyperGEN study. Hum Hered. 2005;60(3):164–76.PubMedCrossRefGoogle Scholar
  85. 85.
    Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.PubMedCrossRefGoogle Scholar
  87. 87.
    Ho JE, Levy D, Rose L, Johnson AD, Ridker PM, Chasman DI. Discovery and replication of novel blood pressure genetic loci in the Women’s Genome Health Study. J Hypertens. 2011;29(1):62–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Hong KW, Jin HS, Lim JE, Kim S, Go MJ, Oh B. Recapitulation of two genomewide association studies on blood pressure and essential hypertension in the Korean population. J Hum Genet. 2010;55(6):336–41.PubMedCrossRefGoogle Scholar
  89. 89.
    Takeuchi F, Isono M, Katsuya T, Yamamoto K, Yokota M, Sugiyama T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation. 2010;121(21):2302–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8.PubMedCrossRefGoogle Scholar
  91. 91.
    • Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103-9. This account of a meta-GWAS for blood pressure with 200,000 subjects in the replication sample reported several novel loci and replicated them, as well as replicating several known blood pressure loci. PubMedCrossRefGoogle Scholar
  92. 92.
    • Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005-11. This meta-GWAS for pulse pressure and mean arterial pressure had 48,000 subjects in the replication sample. PubMedCrossRefGoogle Scholar
  93. 93.
    Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10):e1001177.PubMedCrossRefGoogle Scholar
  94. 94.
    Wang X, Snieder H. Genome-wide association studies and beyond: what’s next in blood pressure genetics? Hypertension. 2010;56(6):1035–7.PubMedCrossRefGoogle Scholar
  95. 95.
    •• Harrap SB. Blood pressure genetics: time to focus. J Am Soc Hypertens. 2009;3(4):231-7. This is a review of the 2007 meta-GWAS findings (CHARGE and GlobalBPgen). The author argues for a focused approach to determine the precise DNA variants and their mechanisms for known BP loci, rather than expanding GWAS for even smaller effects. PubMedCrossRefGoogle Scholar
  96. 96.
    Deng AY. Genetic basis of polygenic hypertension. Hum Mol Genet. 2007;16(Spec No. 2):R195–202.PubMedCrossRefGoogle Scholar
  97. 97.
    Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet. 2001;69(1):124–37.PubMedCrossRefGoogle Scholar
  98. 98.
    A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061-73.Google Scholar
  99. 99.
    Staessen JA, Kuznetsova T, Zhang H, Maillard M, Bochud M, Hasenkamp S, et al. Blood pressure and renal sodium handling in relation to genetic variation in the DRD1 promoter and GRK4. Hypertension. 2008;51(6):1643–50.PubMedCrossRefGoogle Scholar
  100. 100.
    Yeh TK, Yeh TC, Weng CF, Shih BF, Tsao HJ, Hsiao CH, et al. Association of polymorphisms in genes involved in the dopaminergic pathway with blood pressure and uric acid levels in Chinese females. J Neural Transm. 2010;117(12):1371–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Weng L, Macciardi F, Subramanian A, Guffanti G, Potkin SG, Yu Z, et al. SNP-based pathway enrichment analysis for genome-wide association studies. BMC Bioinformatics. 2011;12:99.PubMedCrossRefGoogle Scholar
  102. 102.
    Zuo Y, Kang G. A mixed two-stage method for detecting interactions in genomewide association studies. J Theor Biol. 2010;262(4):576–83.PubMedCrossRefGoogle Scholar
  103. 103.
    Shi G, Simino J, Rao DC. Enriching rare variants using family-specific linkage information. GAW 17 . BMC Proceedings. 2011.Google Scholar
  104. 104.
    Shi G, Rao DC. Optimum designs for next-generation sequencing to discover rare variants for common complex disease. Genet Epidemiol. 2011;35(6):572–9.PubMedGoogle Scholar
  105. 105.
    Gloyn AL, McCarthy MI. Variation across the allele frequency spectrum. Nat Genet. 2010;42(8):648–50.PubMedCrossRefGoogle Scholar
  106. 106.
    Zeggini E. Next-generation association studies for complex traits. Nat Genet. 2011;43(4):287–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Holm H, Gudbjartsson DF, Sulem P, Masson G, Helgadottir HT, Zanon C, et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet. 2011;43(4):316–20.PubMedCrossRefGoogle Scholar
  108. 108.
    Tobin MD, Raleigh SM, Newhouse S, Braund P, Bodycote C, Ogleby J, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation. 2005;112(22):3423–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–13.PubMedCrossRefGoogle Scholar
  110. 110.
    Campion J, Milagro F, Martinez JA. Epigenetics and obesity. Prog Mol Biol Transl Sci. 2010;94:291–347.PubMedCrossRefGoogle Scholar
  111. 111.
    Mathers JC, Mckay JA. Diet induced epigenetic changes and their implications for health. Acta Physiologica. 2011;202(2):103–18.PubMedCrossRefGoogle Scholar
  112. 112.
    Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355(6357):262–5.PubMedCrossRefGoogle Scholar
  114. 114.
    Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B gene (Ile-172→Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988;85(5):1600–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Funder J, Pearce P, Smith R, Smith A. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1987;242:583–5.CrossRefGoogle Scholar
  116. 116.
    Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, Rauh W, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49(5):757–64.PubMedCrossRefGoogle Scholar
  117. 117.
    Hurley DM, Accili D, Stratakis CA, Karl M, Vamvakopoulos N, Rorer E, et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest. 1991;87(2):680–6.PubMedCrossRefGoogle Scholar
  118. 118.
    White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rosler A. A mutation in CYP11B1 (Arg-448→His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991;87(5):1664–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Kagimoto M, Winter JS, Kagimoto K, Simpson ER, Waterman MR. Structural characterization of normal and mutant human steroid 17 alpha-hydroxylase genes: molecular basis of one example of combined 17 alpha-hydroxylase/17,20 lyase deficiency. Mol Endocrinol. 1988;2(6):564–70.PubMedCrossRefGoogle Scholar
  120. 120.
    Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289(5476):119–23.PubMedCrossRefGoogle Scholar
  121. 121.
    Hanukoglu A, Type I. pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J Clin Endocrinol Metab. 1991;73(5):936–44.PubMedCrossRefGoogle Scholar
  122. 122.
    Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996;12(3):248–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice-site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet. 1996;13(2):248–50.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293(5532):1107–12.PubMedCrossRefGoogle Scholar
  125. 125.
    Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79(3):407–14.PubMedCrossRefGoogle Scholar
  126. 126.
    Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11(1):76–82.PubMedCrossRefGoogle Scholar
  127. 127.
    Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, Molina AM, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet. 1996;12(1):24–30.PubMedCrossRefGoogle Scholar
  128. 128.
    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13(2):183–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, Trachtman H, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+channel, ROMK. Nat Genet. 1996;14(2):152–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter’s syndrome type III. Nat Genet. 1997;17(2):171–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.PubMedGoogle Scholar
  132. 132.
    Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, et al. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science. 2004;306(5699):1190–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Hasimu B, Nakayama T, Mizutani Y, Izumi Y, Asai S, Soma M, et al. Haplotype analysis of the human renin gene and essential hypertension. Hypertension. 2003;41(2):308–12.PubMedCrossRefGoogle Scholar
  134. 134.
    Ahmad U, Saleheen D, Bokhari A, Frossard PM. Strong association of a renin intronic dimorphism with essential hypertension. Hypertens Res. 2005;28(4):339–44.PubMedCrossRefGoogle Scholar
  135. 135.
    Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57(5):903–10.PubMedCrossRefGoogle Scholar
  136. 136.
    Jeunemaitre X, Rigat B, Charru A, Houot AM, Soubrier F, Corvol P. Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet. 1992;88(3):301–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Fu Y, Katsuya T, Asai T, Fukuda M, Inamoto N, Iwashima Y, et al. Lack of correlation between Mbo I restriction fragment length polymorphism of renin gene and essential hypertension in Japanese. Hypertens Res. 2001;24(3):295–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Sethi AA, Nordestgaard BG, Tybjaerg-Hansen A. Angiotensinogen gene polymorphism, plasma angiotensinogen, and risk of hypertension and ischemic heart disease: a meta-analysis. Arterioscler Thromb Vasc Biol. 2003;23(7):1269–75.PubMedCrossRefGoogle Scholar
  139. 139.
    Province MA, Boerwinkle E, Chakravarti A, Cooper R, Fornage M, Leppert M, et al. Lack of association of the angiotensinogen-6 polymorphism with blood pressure levels in the comprehensive NHLBI Family Blood Pressure Program. National Heart, Lung and Blood Institute. J Hypertens. 2000;18(7):867–76.PubMedCrossRefGoogle Scholar
  140. 140.
    van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens. 2007;25(3):565–70.PubMedCrossRefGoogle Scholar
  141. 141.
    Arfa I, Nouira S, Abid A, Bouafif-Ben Alaya N, Zorgati MM, Malouche D, et al. Lack of association between renin-angiotensin system (RAS) polymorphisms and hypertension in Tunisian type 2 diabetics. Tunis Med. 2010;88(1):38–41.PubMedGoogle Scholar
  142. 142.
    Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation. 1998;97(18):1773–9.PubMedGoogle Scholar
  143. 143.
    Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Sorensen TI, Jensen G, Tybjaerg-Hansen A. ACE gene polymorphism: ischemic heart disease and longevity in 10,150 individuals. A case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation. 1997;95(10):2358–67.PubMedGoogle Scholar
  144. 144.
    Staessen JA, Wang J, Ginocchio G, Petrov V, Saavedra AP, Soubrier F, et al. The deletion/insertion polymorphism of the angiotensin converting-enzyme and cardiovascular-renal risk. J Hypertens. 1997;15:1579–92.PubMedCrossRefGoogle Scholar
  145. 145.
    Matsubara M, Suzuki M, Fujiwara T, Kikuya M, Metoki H, Michimata M, et al. Angiotensin-converting enzyme I/D polymorphism and hypertension: the Ohasama study. J Hypertens. 2002;20(6):1121–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994;24(1):63–9.PubMedGoogle Scholar
  147. 147.
    Miyamoto Y, Yoshimasa T, Itoh H, Igaki T, Harda M, Yamashita J, et al. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension in Japanese. J Hypertens. 1996;14:S29.Google Scholar
  148. 148.
    Wang WY, Zee RY, Morris BJ. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin Genet. 1997;51(1):31–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Castellano M, Muiesan ML, Beschi M, Rizzoni D, Cinelli A, Salvetti M, et al. Angiotensin II type 1 receptor A/C1166 polymorphism. Relationships with blood pressure and cardiovascular structure. Hypertension. 1996;28(6):1076–80.PubMedGoogle Scholar
  150. 150.
    Takami S, Katsuya T, Rakugi H, Sato N, Nakata Y, Kamitani A, et al. Angiotensin II type 1 receptor gene polymorphism is associated with increase of left ventricular mass but not with hypertension. Am J Hypertens. 1998;11(3 Pt 1):316–21.PubMedCrossRefGoogle Scholar
  151. 151.
    Zhang X, Erdmann J, Regitz-Zagrosek V, Kurzinger S, Hense HW, Schunkert H. Evaluation of three polymorphisms in the promoter region of the angiotensin II type I receptor gene. J Hypertens. 2000;18(3):267–72.PubMedCrossRefGoogle Scholar
  152. 152.
    Melander O, Orho-Melander M, Bengtsson K, Lindblad U, Rastam L, Groop L, et al. Genetic variants of thiazide-sensitive NaCl-cotransporter in Gitelman’s syndrome and primary hypertension. Hypertension. 2000;36(3):389–94.PubMedGoogle Scholar
  153. 153.
    Song Y, Herrera VL, Filigheddu F, Troffa C, Lopez LV, Glorioso N, et al. Non-association of the thiazide-sensitive Na, Cl-cotransporter gene with polygenic hypertension in both rats and humans. J Hypertens. 2001;19(9):1547–51.PubMedCrossRefGoogle Scholar
  154. 154.
    Kokubo Y, Kamide K, Inamoto N, Tanaka C, Banno M, Takiuchi S, et al. Identification of 108 SNPs in TSC, WNK1, and WNK4 and their association with hypertension in a Japanese general population. J Hum Genet. 2004;49(9):507–15.PubMedCrossRefGoogle Scholar
  155. 155.
    Chang PY, Zhang XG, Su XL. Lack of association of variants of the renal salt reabsorption-related genes SLC12A3 and ClC-Kb and hypertension in Mongolian and Han populations in Inner Mongolia. Genet Mol Res. 2011;10(2):948–54.PubMedCrossRefGoogle Scholar
  156. 156.
    Glorioso N, Filigheddu F, Troffa C, Soro A, Parpaglia PP, Tsikoudakis A, et al. Interaction of alpha(1)-Na, K-ATPase and Na, K,2Cl-cotransporter genes in human essential hypertension. Hypertension. 2001;38(2):204–9.PubMedGoogle Scholar
  157. 157.
    Iwai N, Tago N, Yasui N, Kokubo Y, Inamoto N, Tomoike H, et al. Genetic analysis of 22 candidate genes for hypertension in the Japanese population. J Hypertens. 2004;22(6):1119–26.PubMedCrossRefGoogle Scholar
  158. 158.
    Tobin MD, Tomaszewski M, Braund PS, Hajat C, Raleigh SM, Palmer TM, et al. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension. 2008;51(6):1658–64.PubMedCrossRefGoogle Scholar
  159. 159.
    Iwai N, Kajimoto K, Kokubo Y, Tomoike H. Extensive genetic analysis of 10 candidate genes for hypertension in Japanese. Hypertension. 2006;48(5):901–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Han Y, Fan X, Sun K, Wang X, Wang Y, Chen J, et al. Hypertension associated polymorphisms in WNK1/WNK4 are not associated with hydrochlorothiazide response. Clin Biochem. 2011;44(13):1045–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Putku M, Kepp K, Org E, Sober S, Comas D, Viigimaa M, et al. Novel polymorphic AluYb8 insertion in the WNK1 gene is associated with blood pressure variation in Europeans. Hum Mutat. 2011;32(7):806–14.PubMedCrossRefGoogle Scholar
  162. 162.
    Padmanabhan S, Menni C, Lee WK, Laing S, Brambilla P, Sega R, et al. The effects of sex and method of blood pressure measurement on genetic associations with blood pressure in the PAMELA study. J Hypertens. 2010;28(3):465–77.PubMedCrossRefGoogle Scholar
  163. 163.
    Benjafield AV, Katyk K, Morris BJ. Association of EDNRA, but not WNK4 or FKBP1B, polymorphisms with essential hypertension. Clin Genet. 2003;64(5):433–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Speirs HJ, Morris BJ. WNK4 intron 10 polymorphism is not associated with hypertension. Hypertension. 2004;43(4):766–8.PubMedCrossRefGoogle Scholar
  165. 165.
    Busjahn A, Aydin A, Uhlmann R, Krasko C, Bahring S, Szelestei T, et al. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension. 2002;40(3):256–60.PubMedCrossRefGoogle Scholar
  166. 166.
    von Wowern F, Berglund G, Carlson J, Mansson H, Hedblad B, Melander O. Genetic variance of SGK-1 is associated with blood pressure, blood pressure change over time and strength of the insulin-diastolic blood pressure relationship. Kidney Int. 2005;68(5):2164–72.CrossRefGoogle Scholar
  167. 167.
    Lang F, Huang DY, Vallon V. SGK, renal function and hypertension. J Nephrol. 2010;23 Suppl 16:S124–9.PubMedGoogle Scholar
  168. 168.
    Trochen N, Ganapathipillai S, Ferrari P, Frey BM, Frey FJ. Low prevalence of nonconservative mutations of serum and glucocorticoid-regulated kinase (SGK1) gene in hypertensive and renal patients. Nephrol Dial Transplant. 2004;19(10):2499–504.PubMedCrossRefGoogle Scholar
  169. 169.
    Jin HS, Hong KW, Lim JE, Hwang SY, Lee SH, Shin C, et al. Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press Res. 2010;33(1):15–23.PubMedCrossRefGoogle Scholar
  170. 170.
    Jones ES, Owen EP, Davidson JS, Van Der Merwe L, Rayner BL. The R563Q mutation of the epithelial sodium channel beta-subunit is associated with hypertension. Cardiovasc J Afr. 2010;21:1–4.Google Scholar
  171. 171.
    Zhao Q, Gu D, Hixson JE, Liu DP, Rao DC, Jaquish CE, et al. Common variants in epithelial sodium channel genes contribute to salt sensitivity of blood pressure: the gensalt study. Circ Cardiovasc Genet. 2011;4(4):375–80.PubMedCrossRefGoogle Scholar
  172. 172.
    Munroe PB, Strautnieks SS, Farrall M, Daniel HI, Lawson M, DeFreitas P, et al. Absence of linkage of the epithelial sodium channel to hypertension in black Caribbeans. Am J Hypertens. 1998;11(8 Pt 1):942–5.PubMedCrossRefGoogle Scholar
  173. 173.
    Wang XF, Lu XM, Lin RY, Wang SZ, Zhang LP, Qian J, et al. Lack of association of functional variants in alpha-ENaC gene and essential hypertension in two ethnic groups in China. Kidney Blood Press Res. 2008;31(4):268–73.PubMedCrossRefGoogle Scholar
  174. 174.
    Kokubo Y, Tomoike H, Tanaka C, Banno M, Okuda T, Inamoto N, et al. Association of sixty-one non-synonymous polymorphisms in forty-one hypertension candidate genes with blood pressure variation and hypertension. Hypertens Res. 2006;29(8):611–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Jung J, Sun B, Kwon D, Koller DL, Foroud TM. Allelic-based gene-gene interaction associated with quantitative traits. Genet Epidemiol. 2009;33(4):332–43.PubMedCrossRefGoogle Scholar
  176. 176.
    Fava C, Montagnana M, Almgren P, Rosberg L, Guidi GC, Berglund G, et al. The functional variant of the CLC-Kb channel T481S is not associated with blood pressure or hypertension in Swedes. J Hypertens. 2007;25(1):111–6.PubMedCrossRefGoogle Scholar
  177. 177.
    Cwynar M, Staessen JA, Ticha M, Nawrot T, Citterio L, Kuznetsova T, et al. Epistatic interaction between alpha- and gamma-adducin influences peripheral and central pulse pressures in white Europeans. J Hypertens. 2005;23(5):961–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Busch CP, Harris SB, Hanley AJ, Zinman B, Hegele RA. The ADD1 G460W polymorphism is not associated with variation in blood pressure in Canadian Oji-Cree. J Hum Genet. 1999;44(4):225–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Shin MH, Chung EK, Kim HN, Park KS, Nam HS, Kweon SS, et al. Alpha-adducin Gly460Trp polymorphism and essential hypertension in Korea. J Korean Med Sci. 2004;19(6):812–4.PubMedCrossRefGoogle Scholar
  180. 180.
    Niu WQ, Zhang Y, Ji KD, Gao PJ, Zhu DL. Lack of association between alpha-adducin G460W polymorphism and hypertension: evidence from a case-control study and a meta-analysis. J Hum Hypertens. 2010;24(7):467–74.PubMedCrossRefGoogle Scholar
  181. 181.
    Tikhonoff V, Kuznetsova T, Stolarz K, Bianchi G, Casiglia E, Kawecka-Jaszcz K, et al. beta-Adducin polymorphisms, blood pressure, and sodium excretion in three European populations. Am J Hypertens. 2003;16(10):840–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Kato N, Miyata T, Tabara Y, Katsuya T, Yanai K, Hanada H, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum Mol Genet. 2008;17(4):617–27.PubMedCrossRefGoogle Scholar
  183. 183.
    Sharma P, Hingorani A, Jia H, Ashby M, Hopper R, Clayton D, et al. Positive association of tyrosine hydroxylase microsatellite marker to essential hypertension. Hypertension. 1998;32(4):676–82.PubMedGoogle Scholar
  184. 184.
    Jindra A, Jachymova M, Horky K, Peleska J, Umnerova V, Bultas J, et al. Association analysis of two tyrosine hydroxylase gene polymorphisms in normotensive offspring from hypertensive families. Blood Press. 2000;9(5):250–4.PubMedCrossRefGoogle Scholar
  185. 185.
    Sato M, Soma M, Nakayama T, Kanmatsuse K. Dopamine D1 receptor gene polymorphism is associated with essential hypertension. Hypertension. 2000;36(2):183–6.PubMedGoogle Scholar
  186. 186.
    Lu Y, Zhu H, Wang X, Snieder H, Huang Y, Harshfield GA, et al. Effects of dopamine receptor type 1 and Gs protein alpha subunit gene polymorphisms on blood pressure at rest and in response to stress. Am J Hypertens. 2006;19(8):832–6.PubMedCrossRefGoogle Scholar
  187. 187.
    Beige J, Bellmann A, Sharma AM, Gessner R. Ethnic origin determines the impact of genetic variants in dopamine receptor gene (DRD1) concerning essential hypertension. Am J Hypertens. 2004;17(12 Pt 1):1184–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Orun O, Nacar C, Cabadak H, Tiber PM, Dogan Y, Guneysel O, et al. Investigation of the association between dopamine D1 receptor gene polymorphisms and essential hypertension in a group of turkish subjects. Clin Exp Hypertens. 2011;33(6):418–21.PubMedCrossRefGoogle Scholar
  189. 189.
    Thomas GN, Critchley JA, Tomlinson B, Cockram CS, Chan JC. Relationships between the taq1 polymorphism of the dopamine D2 receptor and blood pressure in hyperglycaemic and normoglycaemic Chinese subjects. Clin Endocrinol. 2001;55:605–11.CrossRefGoogle Scholar
  190. 190.
    Chi Htun N, Miyaki K, Song Y, Ikeda S, Shimbo T, Muramatsu M. Association of the Catechol-O-Methyl Transferase Gene Val158Met Polymorphism With Blood Pressure and Prevalence of Hypertension: Interaction With Dietary Energy Intake. Am J Hypertens. 2011;24(9):1022–6.CrossRefGoogle Scholar
  191. 191.
    Abe M, Wu Z, Yamamoto M, Jin JJ, Tabara Y, Mogi M, et al. Association of dopamine beta-hydroxylase polymorphism with hypertension through interaction with fasting plasma glucose in Japanese. Hypertens Res. 2005;28(3):215–21.PubMedCrossRefGoogle Scholar
  192. 192.
    Martinez Cantarin MP, Ertel A, Deloach S, Fortina P, Scott K, Burns TL, et al. Variants in genes involved in functional pathways associated with hypertension in African Americans. Clin Transl Sci. 2010;3(6):279–86.PubMedCrossRefGoogle Scholar
  193. 193.
    Lou Y, Liu J, Huang Y, Wang Z, Liu Y, Li Z, et al. A46G and C79G polymorphisms in the beta2-adrenergic receptor gene (ADRB2) and essential hypertension risk: a meta-analysis. Hypertens Res. 2010;33(11):1114–23.PubMedCrossRefGoogle Scholar
  194. 194.
    Gjesing AP, Sparso T, Borch-Johnsen K, Jorgensen T, Pedersen O, Hansen T, et al. No consistent effect of ADRB2 haplotypes on obesity, hypertension and quantitative traits of body fatness and blood pressure among 6,514 adult Danes. PLoS One. 2009;4(9):e7206.PubMedCrossRefGoogle Scholar
  195. 195.
    Gu D, Ge D, Snieder H, He J, Chen S, Huang J, et al. Association of alpha1A adrenergic receptor gene variants on chromosome 8p21 with human stage 2 hypertension. J Hypertens. 2006;24(6):1049–56.PubMedCrossRefGoogle Scholar
  196. 196.
    Freitas SR, Pereira AC, Floriano MS, Mill JG, Krieger JE. Association of alpha1a-adrenergic receptor polymorphism and blood pressure phenotypes in the Brazilian population. BMC Cardiovasc Disord. 2008;8:40.PubMedCrossRefGoogle Scholar
  197. 197.
    Xie HG, Kim RB, Stein CM, Gainer JV, Brown NJ, Wood AJ. Alpha1A-adrenergic receptor polymorphism: association with ethnicity but not essential hypertension. Pharmacogenetics. 1999;9(5):651–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Peng Y, Xue H, Luo L, Yao W, Li R. Polymorphisms of the beta1-adrenergic receptor gene are associated with essential hypertension in Chinese. Clin Chem Lab Med. 2009;47(10):1227–31.PubMedCrossRefGoogle Scholar
  199. 199.
    Gjesing AP, Andersen G, Albrechtsen A, Glumer C, Borch-Johnsen K, Jorgensen T, et al. Studies of associations between the Arg389Gly polymorphism of the beta1-adrenergic receptor gene (ADRB1) and hypertension and obesity in 7677 Danish white subjects. Diabet Med. 2007;24(4):392–7.PubMedCrossRefGoogle Scholar
  200. 200.
    Ringel J, Kreutz R, Distler A, Sharma AM. The Trp64Arg polymorphism of the beta3-adrenergic receptor gene is associated with hypertension in men with type 2 diabetes mellitus. Am J Hypertens. 2000;13(9):1027–31.PubMedCrossRefGoogle Scholar
  201. 201.
    Kitsios GD, Zintzaras E. Synopsis and data synthesis of genetic association studies in hypertension for the adrenergic receptor family genes: the CUMAGAS-HYPERT database. Am J Hypertens. 2010;23(3):305–13.PubMedCrossRefGoogle Scholar
  202. 202.
    Jemaa R, Kallel A, Sediri Y, Omar S, Feki M, Elasmi M, et al. Association between -786TC polymorphism in the endothelial nitric oxide synthase gene and hypertension in the Tunisian population. Exp Mol Pathol. 2011;90(2):210–4.PubMedCrossRefGoogle Scholar
  203. 203.
    Kato N, Sugiyama T, Morita H, Nabika T, Kurihara H, Yamori Y, et al. Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension. Hypertension. 1999;33(4):933–6.PubMedGoogle Scholar
  204. 204.
    Barath A, Endreffy E, Bereczki C, Gellen B, Szucs B, Nemeth I, et al. Endothelin-1 gene and endothelial nitric oxide synthase gene polymorphisms in adolescents with juvenile and obesity-associated hypertension. Acta Physiol Hung. 2007;94(1–2):49–66.PubMedCrossRefGoogle Scholar
  205. 205.
    Banno M, Hanada H, Kamide K, Kokubo Y, Kada A, Yang J, et al. Association of genetic polymorphisms of endothelin-converting enzyme-1 gene with hypertension in a Japanese population and rare missense mutation in preproendothelin-1 in Japanese hypertensives. Hypertens Res. 2007;30(6):513–20.PubMedCrossRefGoogle Scholar
  206. 206.
    Panoulas VF, Douglas KM, Smith JP, Taffe P, Stavropoulos-Kalinoglou A, Toms TE, et al. Polymorphisms of the endothelin-1 gene associate with hypertension in patients with rheumatoid arthritis. Endothelium. 2008;15(4):203–12.PubMedCrossRefGoogle Scholar
  207. 207.
    Wiltshire S, Powell BL, Jennens M, McCaskie PA, Carter KW, Palmer LJ, et al. Investigating the association between K198N coding polymorphism in EDN1 and hypertension, lipoprotein levels, the metabolic syndrome and cardiovascular disease. Hum Genet. 2008;123(3):307–13.PubMedCrossRefGoogle Scholar
  208. 208.
    Rahman T, Baker M, Hall DH, Avery PJ, Keavney B. Common genetic variation in the type A endothelin-1 receptor is associated with ambulatory blood pressure: a family study. J Hum Hypertens. 2008;22(4):282–8.PubMedCrossRefGoogle Scholar
  209. 209.
    Teh LK, Zahri MK, Zakaria ZA, Ismail R, Salleh MZ. Mutational analysis of CYP2C8 in hypertensive patients using denaturing high performance liquid chromatography. J Clin Pharm Ther. 2010;35(6):723–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Dreisbach AW, Japa S, Sigel A, Parenti MB, Hess AE, Srinouanprachanh SL, et al. The Prevalence of CYP2C8, 2C9, 2J2, and soluble epoxide hydrolase polymorphisms in African Americans with hypertension. Am J Hypertens. 2005;18(10):1276–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of BiostatisticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations