Skip to main content

Advertisement

Log in

The Roles of Integrins in Mediating the Effects of Mechanical Force and Growth Factors on Blood Vessels in Hypertension

  • Mediators, Mechanisms in Tissue Injury (Heinrich Taegtmeyer, Steven Atlas, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is characterized by a sustained increase in vasoconstriction and attenuated vasodilation in the face of elevated mechanical stress in the blood vessel wall. To adapt to the increased stress, the vascular smooth muscle cell and its surrounding environment undergo structural and functional changes known as vascular remodeling. Multiple mechanisms underlie the remodeling process, including increased expression of humoral factors and their receptors as well as adhesion molecules and their receptors, all of which appear to collaborate and interact in the response to pressure elevation. In this review, we focus on the interactions between integrin signaling pathways and the activation of growth factor receptors in the response to the increased mechanical stress experienced by blood vessels in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mulvany MJ. Small artery remodeling in hypertension. Curr Hypertens Rep. 2002;4(1):49–55.

    Article  PubMed  Google Scholar 

  2. VanBavel E, Mulvany MJ. Integrins in hypertensive remodeling. Hypertension. 2006;47(2):147–8.

    Article  PubMed  CAS  Google Scholar 

  3. Heagerty AM, Heerkens EH, Izzard AS. Small artery structure and function in hypertension. J Cell Mol Med. 2010;14(5):1037–43.

    PubMed  Google Scholar 

  4. Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension. 2000;36(3):312–8.

    PubMed  CAS  Google Scholar 

  5. Martinez-Lemus LA, Hill MA, Meininger GA. The plastic nature of the vascular wall: a continuum of remodeling events contributing to control of arteriolar diameter and structure. Physiology (Bethesda). 2009;24:45–57.

    Article  Google Scholar 

  6. Heagerty AM, Izzard AS. Small-artery changes in hypertension. J Hypertens. 1995;13(12 Pt 2):1560–5.

    PubMed  CAS  Google Scholar 

  7. Prewitt RL, Rice DC, Dobrian AD. Adaptation of resistance arteries to increases in pressure. Microcirculation. 2002;9(4):295–304.

    PubMed  Google Scholar 

  8. • Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009;10(1):21–33. This review provides an update on the mechanisms of mechanotransduction mediated by integrins, ECM proteins, focal adhesion complex, and the actin/cytoskeletal network.

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz MA. Integrin signaling revisited. Trends Cell Biol. 2001;11(12):466–70.

    Article  PubMed  CAS  Google Scholar 

  10. Ruoslahti E. Integrins as signaling molecules and targets for tumor therapy. Kidney Int. 1997;51(5):1413–7.

    Article  PubMed  CAS  Google Scholar 

  11. Katsumi A, Naoe T, Matsushita T, Kaibuchi K, Schwartz MA. Integrin activation and matrix binding mediate cellular responses to mechanical stretch. J Biol Chem. 2005;280(17):16546–9.

    Article  PubMed  CAS  Google Scholar 

  12. Woodside DG, Obergfell A, Leng L, Wilsbacher JL, Miranti CK, Brugge JS, et al. Activation of Syk protein tyrosine kinase through interaction with integrin beta cytoplasmic domains. Curr Biol. 2001;11(22):1799–804.

    Article  PubMed  CAS  Google Scholar 

  13. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116(Pt 8):1397–408.

    Article  PubMed  CAS  Google Scholar 

  14. Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci. 2003;116(Pt 7):1157–73.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang W, Gunst SJ. Dynamic association between alpha-actinin and beta-integrin regulates contraction of canine tracheal smooth muscle. J Physiol. 2006;572(Pt 3):659–76.

    PubMed  CAS  Google Scholar 

  16. Huang Y, Zhang W, Gunst SJ. Activation of vinculin induced by cholinergic stimulation regulates contraction of tracheal smooth muscle tissue. J Biol Chem. 2011;286(5):3630–44.

    Article  PubMed  CAS  Google Scholar 

  17. Ross RS, Borg TK. Integrins and the myocardium. Circ Res. 2001;88(11):1112–9.

    Article  PubMed  CAS  Google Scholar 

  18. Muller JM, Chilian WM, Davis MJ. Integrin signaling transduces shear stress–dependent vasodilation of coronary arterioles. Circ Res. 1997;80(3):320–6.

    PubMed  CAS  Google Scholar 

  19. Mogford JE, Davis GE, Platts SH, Meininger GA. Vascular smooth muscle alpha v beta 3 integrin mediates arteriolar vasodilation in response to RGD peptides. Circ Res. 1996;79(4):821–6.

    PubMed  CAS  Google Scholar 

  20. Hein TW, Platts SH, Waitkus-Edwards KR, Kuo L, Mousa SA, Meininger GA. Integrin-binding peptides containing RGD produce coronary arteriolar dilation via cyclooxygenase activation. Am J Physiol Heart Circ Physiol. 2001;281(6):H2378–2384.

    PubMed  CAS  Google Scholar 

  21. Martinez-Lemus LA, Crow T, Davis MJ, Meininger GA. alphavbeta3- and alpha5beta1-integrin blockade inhibits myogenic constriction of skeletal muscle resistance arterioles. Am J Physiol Heart Circ Physiol. 2005;289(1):H322–329.

    Article  PubMed  CAS  Google Scholar 

  22. Heerkens EH, Izzard AS, Heagerty AM. Integrins, vascular remodeling, and hypertension. Hypertension. 2007;49(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  23. Heerkens EH, Shaw L, Ryding A, Brooker G, Mullins JJ, Austin C, et al. alphaV integrins are necessary for eutrophic inward remodeling of small arteries in hypertension. Hypertension. 2006;47(2):281–7.

    Article  PubMed  CAS  Google Scholar 

  24. Bezie Y, Lamaziere JM, Laurent S, Challande P, Cunha RS, Bonnet J, et al. Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 1998;18(7):1027–34.

    Article  PubMed  CAS  Google Scholar 

  25. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3.

    Article  PubMed  CAS  Google Scholar 

  26. Goldschmidt ME, McLeod KJ, Taylor WR. Integrin-mediated mechanotransduction in vascular smooth muscle cells: frequency and force response characteristics. Circ Res. 2001;88(7):674–80.

    Article  PubMed  CAS  Google Scholar 

  27. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83(4):1325–58.

    PubMed  CAS  Google Scholar 

  28. Wier WG, Morgan KG. Alpha1-adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol. 2003;150:91–139.

    Article  PubMed  CAS  Google Scholar 

  29. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387–423.

    PubMed  CAS  Google Scholar 

  30. Wu X, Davis GE, Meininger GA, Wilson E, Davis MJ. Regulation of the L-type calcium channel by alpha 5beta 1 integrin requires signaling between focal adhesion proteins. J Biol Chem. 2001;276(32):30285–92.

    Article  PubMed  CAS  Google Scholar 

  31. Wu X, Mogford JE, Platts SH, Davis GE, Meininger GA, Davis MJ. Modulation of calcium current in arteriolar smooth muscle by alphav beta3 and alpha5 beta1 integrin ligands. J Cell Biol. 1998;143(1):241–52.

    Article  PubMed  CAS  Google Scholar 

  32. Mogford JE, Davis GE, Meininger GA. RGDN peptide interaction with endothelial alpha5beta1 integrin causes sustained endothelin-dependent vasoconstriction of rat skeletal muscle arterioles. J Clin Invest. 1997;100(6):1647–53.

    Article  PubMed  CAS  Google Scholar 

  33. • Gui P, Chao JT, Wu X, Yang Y, Davis GE, Davis MJ. Coordinated regulation of vascular Ca2+ and K + channels by integrin signaling. Adv Exp Med Biol. 2010;674:69–79. This book chapter provides an overview of the roles of integrins in modulating ion channel function required for vascular tone.

    Article  PubMed  CAS  Google Scholar 

  34. Sjaastad MD, Lewis RS, Nelson WJ. Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell. 1996;7(7):1025–41.

    PubMed  CAS  Google Scholar 

  35. Schwartz MA. Spreading of human endothelial cells on fibronectin or vitronectin triggers elevation of intracellular free calcium. J Cell Biol. 1993;120(4):1003–10.

    Article  PubMed  CAS  Google Scholar 

  36. Chan WL, Holstein-Rathlou NH, Yip KP. Integrin mobilizes intracellular Ca(2+) in renal vascular smooth muscle cells. Am J Physiol Cell Physiol. 2001;280(3):C593–603.

    PubMed  CAS  Google Scholar 

  37. Diez J. Arterial stiffness and extracellular matrix. Adv Cardiol. 2007;44:76–95.

    Article  PubMed  CAS  Google Scholar 

  38. Lehoux S, Castier Y, Tedgui A. Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med. 2006;259(4):381–92.

    Article  PubMed  CAS  Google Scholar 

  39. Lehoux S, Esposito B, Merval R, Tedgui A. Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation. 2005;111(5):643–9.

    Article  PubMed  CAS  Google Scholar 

  40. Rice DC, Dobrian AD, Schriver SD, Prewitt RL. Src autophosphorylation is an early event in pressure-mediated signaling pathways in isolated resistance arteries. Hypertension. 2002;39(2 Pt 2):502–7.

    Article  PubMed  CAS  Google Scholar 

  41. Wilson E, Sudhir K, Ives HE. Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. J Clin Invest. 1995;96(5):2364–72.

    Article  PubMed  CAS  Google Scholar 

  42. Ling S, Dai A, Ma YH, Wilson E, Chatterjee K, Ives HE, et al. Matrix-dependent gene expression of egr-1 and PDGF A regulate angiotensin II-induced proliferation in human vascular smooth muscle cells. Hypertension. 1999;34(5):1141–6.

    PubMed  CAS  Google Scholar 

  43. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J Cell Sci. 1985;75:35–42.

    PubMed  CAS  Google Scholar 

  44. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol. 2000;278(2):H521–529.

    PubMed  CAS  Google Scholar 

  45. Standley PR, Obards TJ, Martina CL. Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol. 1999;276(4 Pt 1):E697–705.

    PubMed  CAS  Google Scholar 

  46. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6(6):499–506.

    Article  PubMed  CAS  Google Scholar 

  47. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.

    Article  PubMed  CAS  Google Scholar 

  48. Eguchi S, Iwasaki H, Inagami T, Numaguchi K, Yamakawa T, Motley ED, et al. Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension. 1999;33(1 Pt 2):201–6.

    PubMed  CAS  Google Scholar 

  49. Leduc I, Meloche S. Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J Biol Chem. 1995;270(9):4401–4.

    Article  PubMed  CAS  Google Scholar 

  50. Bardy N, Merval R, Benessiano J, Samuel JL, Tedgui A. Pressure and angiotensin II synergistically induce aortic fibronectin expression in organ culture model of rabbit aorta. Evidence for a pressure-induced tissue renin-angiotensin system. Circ Res. 1996;79(1):70–8.

    PubMed  CAS  Google Scholar 

  51. Fleming I. Signaling by the angiotensin-converting enzyme. Circ Res. 2006;98(7):887–96.

    Article  PubMed  CAS  Google Scholar 

  52. Heeneman S, Sluimer JC, Daemen MJ. Angiotensin-converting enzyme and vascular remodeling. Circ Res. 2007;101(5):441–54.

    Article  PubMed  CAS  Google Scholar 

  53. • Nguyen Dinh Cat A, Touyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep. 2011;13(2):122–8. This paper provides an overview of the effect of Ang II on different types of cells in the blood vessel in hypertension.

    Article  PubMed  CAS  Google Scholar 

  54. Fleming JT, Anderson GL, Chen J. Skeletal muscle arteriolar constriction to ANG II: evaluation of a myogenic component. Am J Physiol. 1992;263(6 Pt 2):H1847–1854.

    PubMed  CAS  Google Scholar 

  55. Nurkiewicz TR, Boegehold MA. Reinforcement of arteriolar myogenic activity by endogenous ANG II: susceptibility to dietary salt. Am J Physiol Heart Circ Physiol. 2000;279(1):H269–278.

    PubMed  CAS  Google Scholar 

  56. Touyz RM. The role of angiotensin II in regulating vascular structural and functional changes in hypertension. Curr Hypertens Rep. 2003;5(2):155–64.

    Article  PubMed  Google Scholar 

  57. •• Lacolley P, Safar ME, Regnault V, Frohlich ED. Angiotensin II, mechanotransduction, and pulsatile arterial hemodynamics in hypertension. Am J Physiol Heart Circ Physiol. 2009;297(5):H1567–1575. This paper provides an overview of Ang II–induced functional changes in blood vessels and their impact on hypertension.

    Article  PubMed  CAS  Google Scholar 

  58. Dendorfer A, Thornagel A, Raasch W, Grisk O, Tempel K, Dominiak P. Angiotensin II induces catecholamine release by direct ganglionic excitation. Hypertension. 2002;40(3):348–54.

    Article  PubMed  CAS  Google Scholar 

  59. Schnapp LM, Goswami S, Rienzi N, Koteliansky VE, Gotwals P, Schachter EN. Integrins inhibit angiotensin II-induced contraction in rat aortic rings. Regul Pept. 1998;77(1–3):177–83.

    Article  PubMed  CAS  Google Scholar 

  60. Lacolley P, Labat C, Pujol A, Delcayre C, Benetos A, Safar M. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone. Circulation. 2002;106(22):2848–53.

    Article  PubMed  CAS  Google Scholar 

  61. Asmar R, Topouchian J, Pannier B, Benetos A, Safar M. Pulse wave velocity as endpoint in large-scale intervention trial. The Complior study. Scientific, Quality Control, Coordination and Investigation Committees of the Complior Study. J Hypertens. 2001;19(4):813–8.

    Article  PubMed  CAS  Google Scholar 

  62. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103(7):987–92.

    PubMed  CAS  Google Scholar 

  63. Safar ME. Can antihypertensive treatment reverse large-artery stiffening? Curr Hypertens Rep. 2010;12(1):47–51.

    Article  PubMed  Google Scholar 

  64. Kakou A, Bezie Y, Mercier N, Louis H, Labat C, Challande P, et al. Selective reduction of central pulse pressure under angiotensin blockage in SHR: role of the fibronectin-alpha5beta1 integrin complex. Am J Hypertens. 2009;22(7):711–7.

    Article  PubMed  CAS  Google Scholar 

  65. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45(6):1050–5.

    Article  PubMed  CAS  Google Scholar 

  66. Vecchione C, Colella S, Fratta L, Gentile MT, Selvetella G, Frati G, et al. Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension. 2001;37(6):1480–5.

    PubMed  CAS  Google Scholar 

  67. McCallum RW, Hamilton CA, Graham D, Jardine E, Connell JM, Dominiczak AF. Vascular responses to IGF-I and insulin are impaired in aortae of hypertensive rats. J Hypertens. 2005;23(2):351–8.

    Article  PubMed  CAS  Google Scholar 

  68. Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest. 1996;98(11):2648–55.

    Article  PubMed  CAS  Google Scholar 

  69. Conti E, Carrozza C, Capoluongo E, Volpe M, Crea F, Zuppi C, et al. Insulin-like growth factor-1 as a vascular protective factor. Circulation. 2004;110(15):2260–5.

    Article  PubMed  Google Scholar 

  70. Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24(3):435–44.

    Article  PubMed  CAS  Google Scholar 

  71. Frystyk J, Ledet T, Moller N, Flyvbjerg A, Orskov H. Cardiovascular disease and insulin-like growth factor I. Circulation. 2002;106(8):893–5.

    Article  PubMed  Google Scholar 

  72. Fath KA, Alexander RW, Delafontaine P. Abdominal coarctation increases insulin-like growth factor I mRNA levels in rat aorta. Circ Res. 1993;72(2):271–7.

    PubMed  CAS  Google Scholar 

  73. Diez J. Insulin-like growth factor I in essential hypertension. Kidney Int. 1999;55(2):744–59.

    Article  PubMed  CAS  Google Scholar 

  74. Cheng J, Du J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol. 2007;27(8):1744–51.

    Article  PubMed  CAS  Google Scholar 

  75. Holmes DI, Abdel Wahab N, Mason RM. Identification of glucose-regulated genes in human mesangial cells by mRNA differential display. Biochem Biophys Res Commun. 1997;238(1):179–84.

    Article  PubMed  CAS  Google Scholar 

  76. Kawamura H, Yokote K, Asaumi S, Kobayashi K, Fujimoto M, Maezawa Y, et al. High glucose-induced upregulation of osteopontin is mediated via Rho/Rho kinase pathway in cultured rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24(2):276–81.

    Article  PubMed  CAS  Google Scholar 

  77. Stenina OI, Krukovets I, Wang K, Zhou Z, Forudi F, Penn MS, et al. Increased expression of thrombospondin-1 in vessel wall of diabetic Zucker rat. Circulation. 2003;107(25):3209–15.

    Article  PubMed  CAS  Google Scholar 

  78. Nam TJ, Busby Jr WH, Rees C, Clemmons DR. Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-I-stimulated cell growth. Endocrinology. 2000;141(3):1100–6.

    Article  PubMed  CAS  Google Scholar 

  79. Jones JI, Prevette T, Gockerman A, Clemmons DR. Ligand occupancy of the alpha-V-beta3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor. Proc Natl Acad Sci USA. 1996;93(6):2482–7.

    Article  PubMed  CAS  Google Scholar 

  80. Clemmons DR, Maile LA. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs. Mol Endocrinol. 2005;19(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  81. Cascella T, Radhakrishnan Y, Maile LA, Busby Jr WH, Gollahon K, Colao A, et al. Aldosterone enhances IGF-I-mediated signaling and biological function in vascular smooth muscle cells. Endocrinology. 2010;151(12):5851–64.

    Article  PubMed  CAS  Google Scholar 

  82. Kalmes A, Daum G, Clowes AW. EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci. 2001;947:42–54. discussion 54–45.

    Article  PubMed  CAS  Google Scholar 

  83. Swaminathan N, Vincent M, Sassard J, Sambhi MP. Elevated epidermal growth factor receptor levels in hypertensive Lyon rat kidney and aorta. Clin Exp Pharmacol Physiol. 1996;23(9):793–6.

    Article  PubMed  CAS  Google Scholar 

  84. Lundstam U, Hagg U, Sverrisdottir YB, Svensson LE, Gan LM. Epidermal growth factor levels are related to diastolic blood pressure and carotid artery stiffness. Scand Cardiovasc J. 2007;41(5):308–12.

    Article  PubMed  CAS  Google Scholar 

  85. Belmadani S, Palen DI, Gonzalez-Villalobos RA, Boulares HA, Matrougui K. Elevated epidermal growth factor receptor phosphorylation induces resistance artery dysfunction in diabetic db/db mice. Diabetes. 2008;57(6):1629–37.

    Article  PubMed  CAS  Google Scholar 

  86. Florian JA, Watts SW. Epidermal growth factor: a potent vasoconstrictor in experimental hypertension. Am J Physiol. 1999;276(3 Pt 2):H976–983.

    PubMed  CAS  Google Scholar 

  87. Flamant M, Tharaux PL, Placier S, Henrion D, Coffman T, Chatziantoniou C, et al. Epidermal growth factor receptor trans-activation mediates the tonic and fibrogenic effects of endothelin in the aortic wall of transgenic mice. FASEB J. 2003;17(2):327–9.

    PubMed  CAS  Google Scholar 

  88. Amin AH, Abd Elmageed ZY, Partyka M, Matrougui K. Mechanisms of myogenic tone of coronary arteriole: Role of down stream signaling of the EGFR tyrosine kinase. Microvasc Res. 2011;81(1):135–42.

    Article  PubMed  CAS  Google Scholar 

  89. Lucchesi PA, Sabri A, Belmadani S, Matrougui K. Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation. 2004;110(23)):3587–93.

    Article  PubMed  CAS  Google Scholar 

  90. Fernandez-Patron C. Therapeutic potential of the epidermal growth factor receptor transactivation in hypertension: a convergent signaling pathway of vascular tone, oxidative stress, and hypertrophic growth downstream of vasoactive G-protein-coupled receptors? Can J Physiol Pharmacol. 2007;85(1):97–104.

    Article  PubMed  CAS  Google Scholar 

  91. Berk BC, Brock TA, Webb RC, Taubman MB, Atkinson WJ, Gimbrone Jr MA, et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J Clin Invest. 1985;75(3):1083–6.

    Article  PubMed  CAS  Google Scholar 

  92. Schreier B, Dohler M, Rabe S, Schneider B, Schwerdt G, Ruhs S, et al. Consequences of Epidermal Growth Factor Receptor (ErbB1) Loss for Vascular Smooth Muscle Cells From Mice With Targeted Deletion of ErbB1. Arterioscler Thromb Vasc Biol. 2011;31(7):1643–52.

    Article  PubMed  CAS  Google Scholar 

  93. Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res. 2002;91(9):769–75.

    Article  PubMed  CAS  Google Scholar 

  94. Cabodi S, Moro L, Bergatto E, Boeri Erba E, Di Stefano P, Turco E, et al. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans. 2004;32(Pt3):438–42.

    Article  PubMed  CAS  Google Scholar 

  95. Mawatari K, Liu B, Kent KC. Activation of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. J Vasc Surg. 2000;31(2):375–81.

    Article  PubMed  CAS  Google Scholar 

  96. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E, Smeriglio M, et al. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem. 2002;11:9405–14.

    Article  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, JT., Davis, M.J. The Roles of Integrins in Mediating the Effects of Mechanical Force and Growth Factors on Blood Vessels in Hypertension. Curr Hypertens Rep 13, 421–429 (2011). https://doi.org/10.1007/s11906-011-0227-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0227-6

Keywords

Navigation