Skip to main content
Log in

Mitochondrial Biogenesis and Fragmentation as Regulators of Muscle Protein Degradation

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Mitochondria form a dynamic network that rapidly adapts to cellular energy demand. This adaptation is particularly important in skeletal muscle because of its high metabolic rate. Indeed, muscle energy level is one of the cellular checkpoints that lead either to sustained protein synthesis and growth or protein breakdown and atrophy. Mitochondrial function is affected by changes in shape, number, and localization. The dynamics that control the mitochondrial network, such as biogenesis and fusion, or fragmentation and fission, ultimately affect the signaling pathways that regulate muscle mass. Regular exercise and healthy muscles are important players in the metabolic control of human body. Indeed, a sedentary lifestyle is detrimental for muscle function and is one of the major causes of metabolic disorders such as obesity and diabetes. This article reviews the rapid progress made in the past few years regarding the role of mitochondria in the control of proteolytic systems and in the loss of muscle mass and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sandri M: Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 2008, 23:160–170.

    CAS  Google Scholar 

  2. Lecker SH, Jagoe RT, Gilbert A, et al.: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004, 18(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  3. Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117(3):399–412.

    Article  CAS  PubMed  Google Scholar 

  4. Stitt TN, Drujan D, Clarke BA, et al.: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004, 14(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  5. Bodine SC, Latres E, Baumhueter S, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294(5547):1704–1708.

    Article  CAS  PubMed  Google Scholar 

  6. Gomes MD, Lecker SH, Jagoe RT, et al.: Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 2001, 98(25):14440–14445.

    Article  CAS  PubMed  Google Scholar 

  7. Kamei Y, Miura S, Suzuki M, et al.: Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004, 279(39):41114–41123.

    Article  CAS  PubMed  Google Scholar 

  8. •• Mammucari C, Milan G, Romanello V, et al.: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007, 6(6):458–471. This study demonstrates that FoxO3 coordinates the ubiquitin-proteasome and autophagy-lysosome systems.

    Article  CAS  PubMed  Google Scholar 

  9. •• Zhao J, Brault JJ, Schild A, et al.: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007, 6(6):472–483. This study demonstrates that FoxO3 coordinates the ubiquitin-proteasome and autophagy-lysosome systems.

    Article  CAS  PubMed  Google Scholar 

  10. Hoppeler H: Exercise-induced ultrastructural changes in skeletal muscle. Int J Sports Med 1986, 7(4):187–204.

    Article  CAS  PubMed  Google Scholar 

  11. Cogswell AM, Stevens RJ, Hood DA: Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Am J Physiol 1993, 264(2 Pt 1):C383–C389.

    CAS  PubMed  Google Scholar 

  12. Takahashi M, Hood DA: Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions. J Biol Chem 1996, 271(44):27285–27291.

    Article  CAS  PubMed  Google Scholar 

  13. Krieger DA, Tate CA, McMillin-Wood J, et al.: Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol 1980, 48(1):23–28.

    CAS  PubMed  Google Scholar 

  14. Lionetti L, Mollica MP, Crescenzo R, et al.: Skeletal muscle subsarcolemmal mitochondrial dysfunction in high-fat fed rats exhibiting impaired glucose homeostasis. Int J Obes (Lond) 2007, 31(10):1596–1604.

    Article  CAS  Google Scholar 

  15. Ljubicic V, Joseph AM, Adhihetty PJ, et al.: Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. Aging (Albany NY) 2009, 1(9):818–830.

    CAS  Google Scholar 

  16. Mollica MP, Lionetti L, Crescenzo R, et al.: Heterogeneous bioenergetic behaviour of subsarcolemmal and intermyofibrillar mitochondria in fed and fasted rats. Cell Mol Life Sci 2006, 63(3):358–366.

    Article  CAS  PubMed  Google Scholar 

  17. Adhihetty PJ, O’Leary MF, Chabi B, et al.: Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol 2007, 102(3):1143–1151.

    Article  CAS  PubMed  Google Scholar 

  18. O’Leary MF, Hood DA: Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle. J Appl Physiol 2008, 105(1):114–120.

    Article  PubMed  Google Scholar 

  19. Desplanches D, Kayar SR, Sempore B, et al.: Rat soleus muscle ultrastructure after hindlimb suspension. J Appl Physiol 1990, 69(2):504–508.

    CAS  PubMed  Google Scholar 

  20. Benard G, Karbowski M: Mitochondrial fusion and division: Regulation and role in cell viability. Semin Cell Dev Biol 2009, 20(3):365–374.

    Article  CAS  PubMed  Google Scholar 

  21. Wasilewski M, Scorrano L: The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 2009, 20(6):287–294.

    Article  CAS  PubMed  Google Scholar 

  22. • Chen H, Vermulst M, Wang YE, et al.: Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010, 141(2):280–289. This study demonstrates that correct mitochondrial fusion is required for maintenance of muscle mass.

    Article  CAS  PubMed  Google Scholar 

  23. Zuchner S, Mersiyanova IV, Muglia M, et al.: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004, 36(5):449–451.

    Article  PubMed  Google Scholar 

  24. Amati-Bonneau P, Valentino ML, Reynier P, et al.: OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain 2008, 131(Pt 2):338–351.

    Article  PubMed  Google Scholar 

  25. Schiaffino S, Sandri M, Murgia M: Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 2007, 22:269–278.

    CAS  Google Scholar 

  26. Potthoff MJ, Olson EN, Bassel-Duby R: Skeletal muscle remodeling. Curr Opin Rheumatol 2007, 19(6):542–549.

    Article  PubMed  Google Scholar 

  27. Raffaello A, Laveder P, Romualdi C, et al.: Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling. Physiol Genomics 2006, 25(1):60–74.

    Article  CAS  PubMed  Google Scholar 

  28. Wallberg AE, Yamamura S, Malik S, et al.: Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell 2003, 12(5):1137–1149.

    Article  CAS  PubMed  Google Scholar 

  29. Olesen J, Kiilerich K, Pilegaard H: PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 2010, 460(1):153–162.

    Article  CAS  PubMed  Google Scholar 

  30. Lin J, Wu H, Tarr PT, et al.: Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002, 418(6899):797–801.

    Article  CAS  PubMed  Google Scholar 

  31. Lynch GS, Schertzer JD, Ryall JG: Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007, 113(3):461–487.

    Article  CAS  PubMed  Google Scholar 

  32. Sandri M, Lin J, Handschin C, et al.: PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A 2006, 103(44):16260–16265.

    Article  CAS  PubMed  Google Scholar 

  33. Chabi B, Ljubicic V, Menzies KJ, et al.: Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 2008, 7(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  34. Patti ME, Butte AJ, Crunkhorn S, et al.: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003, 100(14):8466–8471.

    Article  CAS  PubMed  Google Scholar 

  35. • Brault JJ, Jespersen JG, Goldberg AL: Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 2010, 285(25):19460–19471. This study demonstrates that PGC-1α does not control protein synthesis.

    Article  CAS  PubMed  Google Scholar 

  36. Wenz T, Rossi SG, Rotundo RL, et al.: Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A 2009, 106(48):20405–20410.

    Article  CAS  PubMed  Google Scholar 

  37. Koves TR, Ussher JR, Noland RC, et al.: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008, 7(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  38. Padfield KE, Astrakas LG, Zhang Q, et al.: Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc Natl Acad Sci U S A 2005, 102(15):5368–5373.

    Article  CAS  PubMed  Google Scholar 

  39. •• Masiero E, Agatea L, Mammucari C, et al.: Autophagy is required to maintain muscle mass. Cell Metab 2009, 10(6):507–515. This study demonstrates that autophagy is required to clear abnormal mitochondria in skeletal muscle.

    Article  CAS  PubMed  Google Scholar 

  40. Raben N, Hill V, Shea L, et al.: Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 2008, 17(24):3897–3908.

    Article  CAS  PubMed  Google Scholar 

  41. Bonnard C, Durand A, Peyrol S, et al.: Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008, 118(2):789–800.

    CAS  PubMed  Google Scholar 

  42. Jang YC, Lustgarten MS, Liu Y, et al.: Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration. FASEB J 2010, 24(5):1376–1390.

    Article  CAS  PubMed  Google Scholar 

  43. Dobrowolny G, Aucello M, Rizzuto E, et al.: Skeletal muscle is a primary target of SOD1G93A-mediated toxicity. Cell Metab 2008, 8(5):425–436.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Yi J, Fu R, et al.: Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J Biol Chem 2010, 285(1):705–712.

    Article  CAS  PubMed  Google Scholar 

  45. Du J, Wang X, Miereles C, et al.: Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004, 113(1):115–123.

    CAS  PubMed  Google Scholar 

  46. Wang XH, Hu J, Du J, et al.: X-chromosome linked inhibitor of apoptosis protein inhibits muscle proteolysis in insulin-deficient mice. Gene Ther 2007, 14(9):711–720.

    Article  CAS  PubMed  Google Scholar 

  47. •• Romanello V, Guadagnin E, Gomes L, et al.: Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 2010, 29(10):1774–1785. This study illustrates the changes of mitochondrial network in living animals during catabolic conditions and demonstrates that retrograde signaling starting from mitochondrial signals to myonuclei via FoxO3 and regulates gene expression in catabolic conditions.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose studies were not cited owing to space limitations. Our work is supported by grants from ASI (OSMA project), Telethon-Italy (TCP04009), from the European Union (MYOAGE, contract: 223576 of FP7), AFM (14135), and the Italian Ministry of Education, University and Research (PRIN 2007). The critical reading of Kenneth Dyar is gratefully acknowledged.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Sandri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanello, V., Sandri, M. Mitochondrial Biogenesis and Fragmentation as Regulators of Muscle Protein Degradation. Curr Hypertens Rep 12, 433–439 (2010). https://doi.org/10.1007/s11906-010-0157-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0157-8

Keywords

Navigation