Skip to main content

Advertisement

Log in

Cytostatic Drugs, Neuregulin Activation of ErbB Receptors, and Angiogenesis

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Cytostatic drugs were developed to target specific molecular pathways shown to drive tumor growth. Although this approach has been very successful in treating cancers, its use is often hindered by off-target toxic effects. An example of this is trastuzumab, which targets the erbB2 kinase receptor. This drug successfully decreases tumor growth but adversely affects cardiac function. This observation led to important studies elucidating the importance of the erbB pathway in cardioprotection and angiogenesis. This review addresses the problem of off-target effects of cytostatic drugs (specifically trastuzumab) and their effect on cardiac function, summarizes the neuregulin-1 (NRG)/erbB signaling pathway, and discusses its importance in cardiac myocytes. It also highlights important findings showing the role of NRG/erbB signaling in microvascular preservation and angiogenesis, with a brief discussion of preclinical and clinical data regarding treatment of cardiovascular disease with NRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Chen MH: Cardiac dysfunction induced by novel targeted anticancer therapy: an emerging issue. Curr Cardiol Rep 2009, 11:167–174. This is a nice broad review of the cardiotoxicity of newer chemotherapeutic drugs.

    Article  CAS  PubMed  Google Scholar 

  2. Falls DL: Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 2003, 284:14–30.

    Article  CAS  PubMed  Google Scholar 

  3. Meyer D, Yamaai T, Garratt A, et al.: Isoform-specific expression and function of neuregulin. Development 1997, 124:3575–3586.

    CAS  PubMed  Google Scholar 

  4. Liu X, Gu X, Li Z, et al.: Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol 2006, 48:1438–1447.

    Article  CAS  PubMed  Google Scholar 

  5. • Gao R, Zhang J, Cheng L, et al.: A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 2010, 55:1907–1914. This is the first published clinical trial of neuregulin in patients with heart failure.

    Article  CAS  PubMed  Google Scholar 

  6. Garrett TP, McKern NM, Lou M, et al.: The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003, 11:495–505.

    Article  CAS  PubMed  Google Scholar 

  7. Lee K, Simon H, Chen H, et al.: Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 1995, 378:394–398.

    Article  CAS  PubMed  Google Scholar 

  8. Riese D, van Raaij T, Plowman G, et al.: The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 1995, 15:5770–5776.

    CAS  PubMed  Google Scholar 

  9. Zhao YY, Sawyer DR, Baliga RR, et al.: Neuregulins promote survival and growth of cardiac myocytes. Persistence of ErbB2 and ErbB4 expression in neonatal and adult ventricular myocytes. J Biol Chem 1998, 273:10261–10269.

    Article  CAS  PubMed  Google Scholar 

  10. Rohrbach S, Niemann B, Silber RE Holtz, J: Neuregulin receptors erbB2 and erbB4 in failing human myocardium—depressed expression and attenuated activation. Basic Res Cardiol 2005, 100:240–249.

    Article  CAS  PubMed  Google Scholar 

  11. Russell KS, Stern DF, Polverini PJ, Bender JR: Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. Am J Physiol 1999, 277:H2205–H2211.

    CAS  PubMed  Google Scholar 

  12. Cote GM, Miller TA, Lebrasseur NK, et al.: Neuregulin-1alpha and beta isoform expression in cardiac microvascular endothelial cells and function in cardiac myocytes in vitro. Exp Cell Res 2005, 311:135–146.

    Article  CAS  PubMed  Google Scholar 

  13. • Kalinowski A, Plowes NJ, Huang Q, et al.: Metalloproteinase-dependent cleavage of neuregulin and autocrine stimulation of vascular endothelial cells. FASEB J 2010, 24:2567–2575. The inflammatory cytokines IL-6 and IFNγ induce metalloproteinase-dependent cleavage of neuregulin from endothelial cells.

    Article  CAS  PubMed  Google Scholar 

  14. Uray IP, Connelly JH, Thomazy V, et al.: Left ventricular unloading alters receptor tyrosine kinase expression in the failing human heart. J Heart Lung Transplant 2002, 21:771–782.

    Article  PubMed  Google Scholar 

  15. • Ky B, Kimmel SE, Safa RN, et al.: Neuregulin-1 beta is associated with disease severity and adverse outcomes in chronic heart failure. Circulation 2009, 120:310–317. Increased NRG-1β in human serum is associated with heart failure, death, and cardiac transplantation, suggesting that NRG may be an important clinical biomarker.

    Article  CAS  PubMed  Google Scholar 

  16. Hintsanen M, Elovainio M, Puttonen S, et al.: Neuregulin-1 genotype moderates the association between job strain and early atherosclerosis in young men. Ann Behav Med 2007, 33:148–155.

    Article  PubMed  Google Scholar 

  17. Clement CM, Thomas LK, Mou Y, et al.: Neuregulin-1 attenuates neointimal formation following vascular injury and inhibits the proliferation of vascular smooth muscle cells. J Vasc Res 2007, 44:303–312.

    Article  CAS  PubMed  Google Scholar 

  18. • Xu G, Watanabe T, Iso Y, et al.: Preventive effects of heregulin-β1 on macrophage foam cell formation and atherosclerosis. Circ Res 2009, 105:500–510. NRG-1 inhibits atherogenesis and macrophage foam-cell formation via scavenger receptor class A (SR-A), acyl-coenzyme A:cholesterol acyltransferase (ACAT)1, and ATP-binding cassette transporter ABCA1.

    Article  CAS  PubMed  Google Scholar 

  19. Slamon DJ, Leyland-Jones B, Shak S, et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344:783–792.

    Article  CAS  PubMed  Google Scholar 

  20. Baliga RR, Pimental DR, Zhao YY, et al.: NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Physiol 1999, 277:H2026–H2037.

    CAS  PubMed  Google Scholar 

  21. Lemmens K, Fransen P, Sys SU, et al.: Neuregulin-1 induces a negative inotropic effect in cardiac muscle: role of nitric oxide synthase. Circulation 2004, 109:324–326.

    Article  CAS  PubMed  Google Scholar 

  22. Fukazawa R, Miller TA, Kuramochi Y, et al.: Neuregulin-1 protects ventricular myocytes from anthracycline-induced apoptosis via erbB4-dependent activation of PI3-kinase/Akt. J Mol Cell Cardiol 2003, 35:1473–1479.

    Article  CAS  PubMed  Google Scholar 

  23. Nakaoka Y, Nishida K, Narimatsu M, et al.: Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. J Clin Invest 2007, 117:1771–1781.

    Article  CAS  PubMed  Google Scholar 

  24. • Horie T, Ono K, Nishi H, et al.: Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc Res 2010, 87:656–664.

    Article  CAS  PubMed  Google Scholar 

  25. • Bersell K, Arab S, Haring B, Kuhn B: Neuregulin1/erbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 2009, 138:257–270. This was the first study to demonstrate that adult cardiac myocytes can proliferate in response to NRG.

    Article  CAS  PubMed  Google Scholar 

  26. Kuramochi Y, Cote GM, Guo X, et al.: Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 2004, 279:51141–51147.

    Article  CAS  PubMed  Google Scholar 

  27. Huang Q, Kalinowski A, Palmeri M, et al.: Neuregulin decreases cardiac myocyte apoptosis induced by hypoxic injury [abstract]. Circulation 2005, 112(Suppl II):II-183.

    Google Scholar 

  28. Timolati F, Ott D, Pentassuglia L, et al.: Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 2006, 41:845–854.

    Article  CAS  PubMed  Google Scholar 

  29. • Pentassuglia L, Graf M, Lane H, et al.: Inhibition of erbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes. Exp Cell Res 2009, 315:1302–1312. Inhibition of erbB2 in cardiac myocytes results in an inhibition of excitation contraction coupling and myofibrillar structural damage.

    Article  CAS  PubMed  Google Scholar 

  30. Grazette LP, Boecker W, Matsui T, et al.: Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for Herceptin-induced cardiomyopathy. J Am Coll Cardiol 2004, 44:2231–2238.

    Article  CAS  PubMed  Google Scholar 

  31. Kuramochi Y, Guo X, Sawyer DB: Neuregulin activates erbB2-dependent src/FAK signaling and cytoskeletal remodeling in isolated adult rat cardiac myocytes. J Mol Cell Cardiol 2006, 41:228–235.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider JW, Chang AY, Garratt A: Trastuzumab cardiotoxicity: speculations regarding pathophysiology and targets for further study. Semin Oncol 2002, 29:22–28.

    CAS  PubMed  Google Scholar 

  33. Suter TM, Procter M, van Veldhuisen DJ, et al.: Trastuzumab-associated cardiac adverse effects in the Herceptin adjuvant trial. J Clin Oncol 2007, 25:3859–3865.

    Article  CAS  PubMed  Google Scholar 

  34. Brutsaert DL: Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 2003, 83:59–115.

    CAS  PubMed  Google Scholar 

  35. Li K, Rouleau JL, Andries LJ, Brutsaert DL: Effect of dysfunctional vascular endothelium on myocardial performance in isolated papillary muscles. Circ Res 1993, 72:768–777.

    CAS  PubMed  Google Scholar 

  36. Rakusan K, Hrdina PW, Turek Z, et al.: Cell size and capillary supply of the hypertensive rat heart: quantitative study. Basic Res Cardiol 1984, 79:389–395.

    Article  CAS  PubMed  Google Scholar 

  37. Hudlicka O, Brown M, Egginton S: Angiogenesis in skeletal and cardiac muscle. Physiol Rev 1992, 72:369–417.

    CAS  PubMed  Google Scholar 

  38. Walsh K, Shiojima I: Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest 2007, 117:3176–3179.

    Article  CAS  PubMed  Google Scholar 

  39. Tirziu D, Chorianopoulos E, Moodie KL, et al.: Myocardial hypertrophy in the absence of external stimuli is induced by angiogenesis in mice. J Clin Invest 2007, 117:3188–3197.

    Article  CAS  PubMed  Google Scholar 

  40. Shiojima I, Sato K, Izumiya Y, et al.: Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 2005, 115:2108–2118.

    Article  CAS  PubMed  Google Scholar 

  41. • Hoenig MR, Bianchi C, Rosenzweig A, Sellke FW: The cardiac microvasculature in hypertension, cardiac hypertrophy, and diastolic heart failure. Curr Vasc Pharmacol 2008, 6:292–300. This is a review of the importance of determining mechanisms to activate angiogenic genes in cardiac-related myopathies that are associated with capillary rarefaction.

    Article  CAS  PubMed  Google Scholar 

  42. • Hoenig MR, Bianchi C, Rosenzweig A, Sellke FW: Decreased vascular repair and neovascularization with ageing: mechanisms and clinical relevance with an emphasis on hypoxia-inducible factor-1. Curr Mol Med 2008, 8:754–767. Loss of vascular repair in aging animals is associated with decreased hypoxia-inducible factor signaling and VEGF activation.

    Article  CAS  PubMed  Google Scholar 

  43. Houghton JL, Frank MJ, Carr AA, et al.: Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 1990, 15:43–51.

    Article  CAS  PubMed  Google Scholar 

  44. Debl K, Djavidani B, Buchner S, et al.: Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualisation of focal fibrosis. Heart 2006, 92:1447–1451.

    Article  CAS  PubMed  Google Scholar 

  45. Hedhli N, Kalinowski A, Huang Q, et al.: Endothelial neuregulin expression is essential for maintaining capillaries in the heart and preserving cardiac function [abstract 3340]. Circulation 2009, 120:S791.

    Google Scholar 

  46. Bagheri-Yarmand R, Vadlamudi RK, Wang RA, et al.: Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. J Biol Chem 2000, 275:39451–39457.

    Article  CAS  PubMed  Google Scholar 

  47. Iivanainen E, Paatero I, Heikkinen SM, et al.: Intra- and extracellular signaling by endothelial neuregulin-1. Exp Cell Res 2007, 313:2896–2909.

    Article  CAS  PubMed  Google Scholar 

  48. Panutsopulos D, Arvanitis DL, Tsatsanis C, et al.: Expression of heregulin in human coronary atherosclerotic lesions. J Vasc Res 2005, 42:463–474.

    Article  CAS  PubMed  Google Scholar 

  49. • Guler M, Yilmaz T, Ozercan I, Elkiran T: The inhibitory effects of trastuzumab on corneal neovascularization. Am J Ophthalmol 2009, 147:703–708. Systemic administration of an erbB2 monoclonal antibody, trastuzumab, can decrease vascular formation.

    Article  PubMed  Google Scholar 

  50. Hedhli N, Dobrucki LW, Kalinowski A, et al.: Endothelial neuregulin expression is essential for angiogenesis in response to hindlimb ischemia [abstract 5111]. Circulation 2009, 120:S1052.

    Google Scholar 

Download references

Acknowledgment

Dr. Russell’s institution has received grants R01HL80176 and K08HL04429 from the National Institutes of Health–NHLBI. Dr. Hedhli is supported by T32HL007950.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Strong Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedhli, N., Russell, K.S. Cytostatic Drugs, Neuregulin Activation of ErbB Receptors, and Angiogenesis. Curr Hypertens Rep 12, 411–417 (2010). https://doi.org/10.1007/s11906-010-0148-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0148-9

Keywords

Navigation