Skip to main content

Advertisement

Log in

Inflammation and Therapy for Hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

It is currently accepted that hypertension, atherosclerosis, and diabetes are disorders with subtle or overt activation of inflammatory mediators. Therefore, it has become increasingly important to ascertain whether current antihypertensive drug families have proinflammatory or anti-inflammatory actions that modify the outcomes of their hemodynamic effects on blood pressure. We review the current state of knowledge about the effects of the major classes of available antihypertensive agents on inflammation and speculate on the possible contribution of these effects to observations in clinical trials. We suggest that a strategy of drug development specifically addressing inflammation in hypertension may provide increased benefit in terms of target organ damage, and we describe some examples of these promising developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AASK:

African American Study of Kidney Disease and Hypertension

ACCOMPLISH:

Avoiding Cardiovascular Events Through Combination Therapy in Patients Living With Systolic Hypertension

ALLHAT:

Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial

ALPINE:

Antihypertensive Treatment and Lipid Profile in a North of Sweden Efficacy Evaluation

ASCOT:

Anglo-Scandinavian Cardiac Outcomes Trial

CAPPP:

Captopril Prevention Project

CHARM:

Candesartan in Heart Failure–Assessment Of Mortality And Morbidity

EPHESUS:

Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study

GEMINI:

The Glycemic Effects in Diabetes Mellitus: Carvedilol-Metoprolol Comparison in Hypertensives

HOPE:

Heart Outcomes Prevention Evaluation

LIFE:

Losartan Intervention for Endpoint Reduction in Hypertension

PRAISE:

Prospective Randomized Amlodipine Survival Evaluation

RALES:

Randomized Aldactone Evaluation Study

SOLVD:

Studies of Left Ventricular Dysfunction

UKPDS:

United Kingdom Prospective Diabetes Study

VALUE:

Valsartan Antihypertensive Long-Term Use Evaluation

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Laffer CL, Bolterman RJ, Romero JC, Elijovich F: Effect of salt on isoprostanes in salt-sensitive essential hypertension. Hypertension 2006, 47:434–440.

    Article  CAS  PubMed  Google Scholar 

  2. Rahman ST, Lauten WB, Khan QA, et al.: Effects of eprosartan versus hydrochlorothiazide on markers of vascular oxidation and inflammation and blood pressure (renin-angiotensin system antagonists, oxidation, and inflammation). Am J Cardiol 2002, 89:686–690.

    Article  CAS  PubMed  Google Scholar 

  3. Eriksson JW, Jansson PA, Carlberg B, et al.: Hydrochlorothiazide, but not candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the Mechanisms for the Diabetes Preventing Effect of Candesartan (MEDICA) study. Hypertension 2008, 52:1030–1037.

    Article  CAS  PubMed  Google Scholar 

  4. Schram MT, van Ittersum FJ, Spoelstra-de Man A, et al.: Aggressive antihypertensive therapy based on hydrochlorothiazide, candesartan or lisinopril as initial choice in hypertensive type II diabetic individuals: effects on albumin excretion, endothelial function and inflammation in a double-blind, randomized clinical trial. J Hum Hypertens 2005, 19:429–437.

    Article  CAS  PubMed  Google Scholar 

  5. Loffing J, Loffing-Cueni D, Hegyi I, et al.: Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int 1996, 50:1180–1190.

    Article  CAS  PubMed  Google Scholar 

  6. Westendorp B, Hamming I, Szymanski MK, et al.: Adverse renal effects of hydrochlorothiazide in rats with myocardial infarction treated with an ACE inhibitor. Eur J Pharmacol 2009, 602:373–379.

    Article  CAS  PubMed  Google Scholar 

  7. •• Monrad SU, Killen PD, Anderson MR, et al.: The role of aldosterone blockade in murine lupus nephritis. Arth Res Ther 2008, 10:R5. Using a murine model of an autoimmune inflammatory disease, unrelated to blood pressure, the authors document an inflammatory role for aldosterone by demonstrating that spironolactone decreases expression of inflammatory genes and ameliorates proteinuria and renal damage.

    Article  Google Scholar 

  8. Syngle A, Vohra K, Kaur L, Sharma S: Effect of spironolactone on endothelial dysfunction in rheumatoid arthritis. Scand J Rheumatol 2009, 38:15–22.

    Article  CAS  PubMed  Google Scholar 

  9. Rocha R, Martin-Berger CL, Yang P, et al.: Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 2002, 143:4828–4836.

    Article  CAS  PubMed  Google Scholar 

  10. Luther JM, Gainer JV, Murphey LJ, et al.: Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor–dependent mechanism. Hypertension 2006, 48:1050–1057.

    Article  CAS  PubMed  Google Scholar 

  11. Nagata K, Obata K, Xu J, et al.: Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 2006, 47:656–664.

    Article  CAS  PubMed  Google Scholar 

  12. Calhoun DA, Jones D, Textor S, et al.: Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association professional education committee of the Council for High Blood Pressure Research. Hypertension 2008, 51:1403–1419.

    Article  CAS  PubMed  Google Scholar 

  13. Turner NA, Porter KE, Smith WH, et al.: Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. Cardiovasc Res 2003, 57:784–792.

    Article  CAS  PubMed  Google Scholar 

  14. •• Kiriazis H, Wang K, Xu Q, et al.: Knockout of beta(1)- and beta(2)-adrenoceptors attenuates pressure overload-induced cardiac hypertrophy and fibrosis. Br J Pharmacol 2008, 153:684–692. Knocking out the beta-adrenergic receptors in mice, the authors showed that these animals are protected from the LVH and increased cardiac inflammatory cytokines, fibrogenic growth factors, and fibrosis that aortic banding induces in wild-type mice. This finding documents that inflammatory signaling pathways triggered by beta-receptor activation participate in cardiac hypertrophy secondary to pressure overload.

    Article  CAS  PubMed  Google Scholar 

  15. Mayer B, Holmer SR, Hengstenberg C, et al.: Functional improvement in heart failure patients treated with beta-blockers is associated with a decline of cytokine levels. Int J Cardiol 2005, 103:182–186.

    Article  PubMed  Google Scholar 

  16. Nishio M, Sakata Y, Mano T, et al.: Beneficial effects of bisoprolol on the survival of hypertensive diastolic heart failure model rats. Eur J Heart Fail 2008, 10:446–453.

    Article  CAS  PubMed  Google Scholar 

  17. Rossig L, Haendeler J, Mallat Z, et al.: Congestive heart failure induces endothelial cell apoptosis: protective role of carvedilol. J Am Coll Cardiol 2000, 36:2081–2089.

    Article  CAS  PubMed  Google Scholar 

  18. Chua S, Sheu JJ, Chang LT, et al.: Comparison of losartan and carvedilol on attenuating inflammatory and oxidative response and preserving energy transcription factors and left ventricular function in dilated cardiomyopathy rats. Int Heart J 2008, 49:605–619.

    Article  CAS  PubMed  Google Scholar 

  19. Lindholm LH, Carlberg B, Samuelsson O. Should β-blockers remain first choice in the treatment of primary hypertension? a meta-analysis. Lancet 2005, 366:1545–1453.

    Article  CAS  PubMed  Google Scholar 

  20. Savoia C, Touyz RM, Amiri F, Schiffrin EL: Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension 2008, 51:432–439.

    Article  CAS  PubMed  Google Scholar 

  21. Fonseca V, Bakris GL, Bell DS, et al.: Differential effect of beta-blocker therapy on insulin resistance as a function of insulin sensitizer use: results from GEMINI. Diabet Med 2007, 24:759–763.

    Article  CAS  PubMed  Google Scholar 

  22. Rizos E, Bairaktari E, Kostoula A, et al.: The combination of nebivolol plus pravastatin is associated with a more beneficial metabolic profile compared to that of atenolol plus pravastatin in hypertensive patients with dyslipidemia: a pilot study. J Cardiovasc Pharmacol Ther 2003, 8:127–134.

    Article  CAS  PubMed  Google Scholar 

  23. Iaccarino G, Trimarco V, Lanni F, et al.: β-Blockade and increased dyslipidemia in patients bearing Glu27 variant of β2 adrenergic receptor gene. Pharmacogenomics J 2005, 5:292–297.

    Article  CAS  PubMed  Google Scholar 

  24. Fasshauer M, Klein J, Neumann S, et al.: Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes. FEBS Lett 2001, 500:60–63.

    Article  CAS  PubMed  Google Scholar 

  25. Wolf SC, Sauter G, Preyer M, et al.: Influence of nebivolol and metoprolol on inflammatory mediators in human coronary endothelial or smooth muscle cells: effects on neointima formation after balloon denudation in carotid arteries of rats treated with nebivolol. Cell Physiol Biochem 2007, 19:129–136.

    Article  CAS  PubMed  Google Scholar 

  26. Gandhi C, Zalawadia R, Balaraman R: Nebivolol reduces experimentally induced warm renal ischemia reperfusion injury in rats. Ren Fail 2008, 30:921–930.

    Article  CAS  PubMed  Google Scholar 

  27. • Schmidt AC, Flick B, Jahn E, Bramlage P: Effects of the vasodilating beta-blocker nebivolol on smoking-induced endothelial dysfunction in young healthy volunteers. Vasc Health Risk Manag 2008, 4:909–915. This small study in human volunteers indicates that the unique NO synthase stimulatory activity of the novel beta-blocker nebivolol has functional significance in humans—hence, the potential for beneficial effects beyond blood pressure reduction, yet to be documented in clinical trials.

    CAS  PubMed  Google Scholar 

  28. Mohler ER, Sorensen LC, Ghali JK, et al.: Role of cytokines in the mechanism of action of amlodipine: the PRAISE heart failure trial. (Prospective Randomized Amlodipine Survival Evaluation). J Am Coll Cardiol 1997, 30:35–41.

    Article  CAS  PubMed  Google Scholar 

  29. Hirooka Y, Kimura Y, Nozoe M, et al.: Amlodipine-induced reduction of oxidative stress in the brain is associated with sympatho-inhibitory effects in stroke-prone spontaneously hypertensive rats. Hypertens Res Clin Exp 2006, 29:49–56.

    Article  CAS  Google Scholar 

  30. Zhou MS, Jaimes EA, Raij L: Inhibition of oxidative stress and improvement of endothelial function by amlodipine in angiotensin II-infused rats. Am J Hypertens 2004, 17:167–171.

    Article  CAS  PubMed  Google Scholar 

  31. Toba H, Shimizu T, Miki S, et al.: Calcium [corrected] channel blockers reduce angiotensin II-induced superoxide generation and inhibit lectin-like oxidized low-density lipoprotein receptor-1 expression in endothelial cells. Hypertens Res 2006, 29:105–116.

    Article  CAS  PubMed  Google Scholar 

  32. On YK, Kim CH, Sohn DW, et al.: Improvement of endothelial function by amlodipine and vitamin C in essential hypertension. Korean J Intern Med 2002, 17:131–137.

    CAS  PubMed  Google Scholar 

  33. Yoshii T, Iwai M, Li Z, et al.: Regression of atherosclerosis by amlodipine via anti-inflammatory and anti-oxidative stress actions. Hypertens Res 2006, 29:457–466.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Ventura JL, Munoz-Garcia B, Blanco-Colio LM, et al.: Treatment with amlodipine and atorvastatin has additive effect on blood and plaque inflammation in hypertensive patients with carotid atherosclerosis. Kidney Int Suppl 2008, 74:S71–S74.

    Article  Google Scholar 

  35. Anjaneyulu M, Chopra K: Diltiazem attenuates oxidative stress in diabetic rats. Ren Fail 2005, 27:335–344.

    CAS  PubMed  Google Scholar 

  36. Matsui T, Yamagishi S, Takeuchi M, et al.: Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation. Biochem Biophys Res Commun 2009, 385:269–272.

    Article  CAS  PubMed  Google Scholar 

  37. • Li J, Li QX, Xie XF, et al.: Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol 2009, 620:97–104. Despite lack of benefit by DHP CCBs in the progression of human renal disease, some of these agents exhibit anti-inflammatory and antioxidant effects in experimental models of aminoglycoside-induced nephropathy, perhaps explaining newer observations in which their protective effects on human kidney can be unmasked by combination with blockers of the RAS [40••].

    Article  CAS  PubMed  Google Scholar 

  38. Orth SR, Nobiling R, Bonisch S, Ritz E: Inhibitory effect of calcium channel blockers on human mesangial cell growth: evidence for actions independent of L-type Ca2+ channels. Kidney Int 1996,49:868–879.

    Article  CAS  PubMed  Google Scholar 

  39. Nathan S, Pepine CJ, Bakris GL: Calcium antagonists: effects on cardio-renal risk in hypertensive patients. Hypertension 2005, 46:637–642.

    Article  CAS  PubMed  Google Scholar 

  40. •• Bakris GL, Sarafidis PA, Weir MR, et al.: Renal outcomes with different fixed-dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomized controlled trial. Lancet 2010, 375:1173–1181. This is recent evidence demonstrating greater renal protection by combining a blocker of the RAS with a DHP CCB, compared with combining a blocker of the RAS with a thiazide diuretic in hypertensive patients. This finding suggests that once the potentially detrimental effect of afferent arteriolar vasodilation by DHPs is counteracted by blockade of the RAS, the pleiotropic effects of DHPs [37•] are unmasked.

    Article  CAS  PubMed  Google Scholar 

  41. Fan YY, Kohno M, Nakano D, et al.: Inhibitory effects of a dihydropyridine calcium channel blocker on renal injury in aldosterone-infused rats. J Hypertens 2009, 27:1855–1862.

    Article  CAS  PubMed  Google Scholar 

  42. Inaba S, Iwai M, Tomono Y, et al.: Prevention of vascular injury by combination of an AT1 receptor blocker, olmesartan, with various calcium antagonists. Am J Hypertens 2009, 22:145–150.

    Article  CAS  PubMed  Google Scholar 

  43. Nakano K, Egashira K, Ohtani K, et al.: Azelnidipine has anti-atherosclerotic effects independent of its blood pressure-lowering actions in monkeys and mice. Atherosclerosis 2008, 196:172–179.

    Article  CAS  PubMed  Google Scholar 

  44. Ogawa S, Mori T, Nako K, Ito S: Combination therapy with renin-angiotensin system inhibitors and the calcium channel blocker azelnidipine decreases plasma inflammatory markers and urinary oxidative stress markers in patients with diabetic nephropathy. Hypertens Res 2008, 31:1147–1155.

    Article  CAS  PubMed  Google Scholar 

  45. Matsubara M, Akizuki O, Ikeda J, et al.: Benidipine, an anti-hypertensive drug, inhibits reactive oxygen species production in polymorphonuclear leukocytes and oxidative stress in salt-loaded stroke-prone spontaneously hypertensive rats. Eur J Pharmacol 2008, 580:201–213.

    Article  CAS  PubMed  Google Scholar 

  46. Sasaki H, Saiki A, Endo K, et al.: Protective effects of efonidipine, a T- and L-type calcium channel blocker, on renal function and arterial stiffness in type 2 diabetic patients with hypertension and nephropathy. J Atheroscler Thromb 2009, 16:568–575.

    CAS  PubMed  Google Scholar 

  47. Takemori K, Ishida H, Dote K, et al.: Prophylactic effects of an N- and L-type Ca2+ antagonist, cilnidipine, against cardiac hypertrophy and dysfunction in stroke-prone, spontaneously hypertensive rats. Can J Physiol Pharmacol 2005, 83:785–790.

    Article  CAS  PubMed  Google Scholar 

  48. Taddei S, Virdis A, Ghiadoni L, et al.: Calcium antagonist treatment by lercanidipine prevents hyperpolarization in essential hypertension. Hypertension 2003, 41:950–955.

    Article  CAS  PubMed  Google Scholar 

  49. Cai D, Yuan M, Frantz DF, et al.: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005, 11:183–190.

    Article  CAS  PubMed  Google Scholar 

  50. Shoelson SE, Lee J, Yuan M: Inflammation and the IKK-beta/I-kappaB/NF-kappaB axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003, 27:S49–S52.

    Article  CAS  PubMed  Google Scholar 

  51. Cowling RT, Gurantz D, Peng J, et al.: Transcription factor NF-kappa B is necessary for up-regulation of type 1 angiotensin II receptor mRNA in rat cardiac fibroblasts treated with tumor necrosis factor-alpha or interleukin-1 beta. J Biol Chem 2002, 277:5719–5724.

    Article  CAS  PubMed  Google Scholar 

  52. Schmeisser A, Soehnlein O, Illmer T, et al.: ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression. Biochem Biophys Res Commun 2004,325:532–540.

    Article  CAS  PubMed  Google Scholar 

  53. Cristovam PC, Arnoni CP, de Andrade MC, et al.: ACE- and chymase-dependent angiotensin II generation in normal and glucose-stimulated human mesangial cells. Exp Biol Med 2008, 233:1035–1043.

    Article  CAS  Google Scholar 

  54. Costerousse O, Allegrini J, Clozel J, et al.: Angiotensin I-converting enzyme inhibition but not angiotensin II suppression alters angiotensin I-converting enzyme gene expression in vessels and epithelia. J Pharmacol Exp Ther 1988, 284:1180–1187.

    Google Scholar 

  55. Ignjacev-Lazich I, Kintsurashvili E, Johns C, et al.: Angiotensin-converting enzyme regulates bradykinin receptor gene expression. Am J Physiol Heart Circ Physiol 2005, 289:H1814–H1820.

    Article  CAS  PubMed  Google Scholar 

  56. Frantz S, Fraccarollo D, Wagner H, et al.: Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res 2003, 57:749–756.

    Article  CAS  PubMed  Google Scholar 

  57. Xu HX, Li JJ, Li GS, et al.: Decreased infiltration of macrophages and inhibited activation of nuclear factor-kappa B in blood vessels: a possible mechanism for the anti-atherogenic effects of losartan. Acta Cardiol 2007, 62:607–613.

    Article  PubMed  Google Scholar 

  58. Esteban V, Ruperez M, Vita JR, et al.: Effect of simultaneous blockade of AT1 and AT2 receptors on the NFkappaB pathway and renal inflammatory response. Kidney Int 2003, 86:S33–S38.

    Article  CAS  Google Scholar 

  59. Lorenzo O, Ruiz-Ortega M, Suzuki Y, et al.: Angiotensin III activates nuclear transcription factor-kappaB in cultured mesangial cells mainly via AT(2) receptors: studies with AT(1) receptor-knockout mice. J Am Soc Nephrol 2002,13:1162–1171.

    Article  CAS  PubMed  Google Scholar 

  60. Esteban V, Ruperez M, Sanchez-Lopez E, et al.: Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ Res 2005, 96:965–973.

    Article  CAS  PubMed  Google Scholar 

  61. •• Singh VP, Le B, Khode R, et al.: Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 2008, 57:3297–3306. Work in this laboratory has unequivocally documented activation of an intracellular RAS in experimental diabetes. They show here that increased generation of cardiomyocyte Ang II cannot be blocked by either an ACE inhibitor or an ARB but is effectively blocked by the direct renin inhibitor aliskiren, which was able to suppress superoxide production and fibrosis. This observation is important because it suggests that newer modalities in the blockade of the RAS may be more effective in preventing Ang II–induced insulin resistance, diabetes, or diabetic target organ damage.

    Article  CAS  PubMed  Google Scholar 

  62. Fisher NDL, Danser AHJ, Nussberger J, et al.: Renal and hormonal responses to direct renin inhibition with aliskiren in healthy humans. Circulation 2008, 117:3199–3205.

    Article  CAS  PubMed  Google Scholar 

  63. Krum H, Viskoper RJ, Lacourciere Y, et al.: The effect of an endothelin-receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. N Engl J Med 1998, 338:784–791.

    Article  CAS  PubMed  Google Scholar 

  64. Weber MA, Black H, Bakris G, et al.: A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomized, double-blind, placebo-controlled trial. Lancet 2009, 374:1423–1431.

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez-Patron C, Zouki C, Whittal R, et al.: Matrix metalloproteinases regulate neutrophil endothelial cell adhesion through generation of endothelin-1[1-32]. FASEB J 2001, 15:2230–2240.

    Article  CAS  PubMed  Google Scholar 

  66. Wilson SH, Simari RD, Lerman A: The effect of endothelin-1 on nuclear factor kappa B in macrophages. Biochem Biophys Res Commun 2001, 286:968–972.

    Article  CAS  PubMed  Google Scholar 

  67. Pu Q, Neves MF, Virdis A, et al.: Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 2003, 42:49–55.

    Article  CAS  PubMed  Google Scholar 

  68. Boesen EI, Sasser JM, Saleh MA, et al.: Interleukin-1β, but not interleukin-6, enhances renal and systemic endothelin production in vivo. Am J Physiol Renal Physiol 2008, 295:F446–F453.

    Article  CAS  PubMed  Google Scholar 

  69. Elijovich F, Laffer CL: Participation of renal and circulating endothelin in salt-sensitive essential hypertension. J Hum Hypertens 2002, 16:459–467.

    Article  CAS  PubMed  Google Scholar 

  70. Elijovich F, Laffer CL, Amador EN, et al.: Regulation of plasma endothelin by salt in salt-sensitive hypertension. Circulation 2001, 103:263–268.

    CAS  PubMed  Google Scholar 

  71. Amiri F, Paradis P, Reudelhuber TL, Schiffrin EL: Vascular inflammation in absence of blood pressure elevation in transgenic murine model overexpressing endothelin-1 in endothelial cells. J Hypertens 2008, 26:1102–1109.

    Article  CAS  PubMed  Google Scholar 

  72. Elijovich F, Laffer CL, Schiffrin EL, et al.: Endothelin-aldosterone interaction and proteinuria in low-renin essential hypertension. J Hypertens 2004, 22:573–582.

    Article  CAS  PubMed  Google Scholar 

  73. Dhaun N, MacIntyre IM, Melville V, et al.: Blood pressure independent reduction in proteinuria and arterial stiffness after acute endothelin-A receptor antagonism in chronic kidney disease. Hypertension 2009, 54:113–119.

    Article  CAS  PubMed  Google Scholar 

  74. Montezano AC, Callera GE, Yogi A, et al.: Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol 2008, 28:1511–1518.

    Article  CAS  PubMed  Google Scholar 

  75. •• Bussemaker E, Herbrig K, Pistrosch F, et al.: Role of rho-kinase in the regulation of vascular tone in hypertensive renal transplant recipients. Atherosclerosis 2009, 207:567–572. This is an example of the application of a strategy of drug development that primarily targets a human signaling pathway involved in the control of vascular tone, and constitutes a new modality for the treatment of hypertension or its target organ consequences.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Both Dr. Elijovich and Dr. Laffer are members of the Speakers Bureau for Novartis. Dr. Laffer has also received grant support from Novartis and CVRx, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Elijovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laffer, C.L., Elijovich, F. Inflammation and Therapy for Hypertension. Curr Hypertens Rep 12, 233–242 (2010). https://doi.org/10.1007/s11906-010-0125-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0125-3

Keywords

Navigation