Paul M, Poyan Mehr A, Kreutz R: Physiology of local renin-angiotensin systems. Physiol Rev 2006, 86:747–803.
Article
CAS
PubMed
Google Scholar
Tipnis SR, Hooper NM, Hyde R, et al.: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000, 275:33238–33243.
Article
CAS
PubMed
Google Scholar
Donoghue M, Hsieh F, Baronas E, et al.: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000, 87:E1–E9.
CAS
PubMed
Google Scholar
Vickers C, Hales P, Kaushik V, et al.: Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002, 277:14838–14843.
Article
CAS
PubMed
Google Scholar
Ferrario CM, Trask AJ, Jessup JA: Advances in the biochemical and functional roles of angiotensin converting enzyme 2 and angiotensin-(1-7) in the regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005, 289:H2281–H2290.
Article
CAS
PubMed
Google Scholar
Xia H, Lazartigues E: Angiotensin-converting enzyme 2 in the brain: properties and future directions. J Neurochem 2008, 107:1482–1494.
Article
CAS
PubMed
Google Scholar
Phillips MI, de Oliveira EM: Brain renin angiotensin in disease. J Mol Med 2008, 86:715–722.
Article
CAS
PubMed
Google Scholar
Nagata S, Kato J, Sasaki K, et al.: Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun 2006, 350:1026–1031.
Article
CAS
PubMed
Google Scholar
Harmer D, Gilbert M, Borman R, et al.: Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002, 532:107–110.
Article
CAS
PubMed
Google Scholar
Hamming I, Timens W, Bulthuis MLC, et al.: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004, 203:631–637.
Article
CAS
PubMed
Google Scholar
Doobay MF, Talman LS, Obr TD, et al.: Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol 2007, 292:R373–R381.
CAS
PubMed
Google Scholar
• Lin Z, Chen Y, Zhang W, et al.: RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2. Exp Physiol 2008, 93:676–684. Using adenovirus vectors carrying small, hairpin RNA for AT1a or AT1b, the authors demonstrated that downregulated AT1a mRNA in the mouse brainstem resulted in decreased ACE2 mRNA expression in this region, whereas reduction in AT1b mRNA had no effect on ACE2.
Google Scholar
Phillips MI, Sumners C: Angiotensin II in central nervous system physiology. Regul Pept 1998, 78:1–11.
Article
CAS
PubMed
Google Scholar
Tan J, Wang H, Leenen FH: Increases in brain and cardiac AT1 receptor and ACE densities after myocardial infarct in rats. Am J Physiol Heart Circ Physiol 2004, 286:H1665–H1671.
Article
CAS
PubMed
Google Scholar
Campagnole-Santos MJ, Heringer SB, Batista EN, et al.: Differential baroreceptor reflex modulation by centrally infused angiotensin peptides. Am J Physiol 1992, 263:R89–R94.
CAS
PubMed
Google Scholar
Heringer-Walther S, Batista EN, Walther T, et al.: Baroreflex improvement in SHR after ace inhibition involves angiotensin-(1-7). Hypertension 2001, 37:1309–1314.
CAS
PubMed
Google Scholar
Gironacci MM, Valera MS, Yujnovsky I, et al.: Angiotensin-(1-7) inhibitory mechanism of norepinephrine release in hypertensive rats. Hypertension 2004, 44:783–787.
Article
CAS
PubMed
Google Scholar
Dobruch J, Paczwa P, Lon S, et al.: Hypotensive function of the brain angiotensin-(1-7) in Sprague Dawley and renin transgenic rats. J Physiol Pharmacol 2003, 54:371–381.
CAS
PubMed
Google Scholar
Höcht C, Gironacci MM, Mayer MA, et al.: Involvement of angiotensin-(1-7) in the hypothalamic hypotensive effect of captopril in sinoaortic denervated rats. Regul Pept 2008, 146:58–66.
Article
PubMed
Google Scholar
Lu J, Zhang Y, Shi J: Effects of intracerebroventricular infusion of angiotensin-(1-7) on bradykinin formation and the kinin receptor expression after focal cerebral ischemia-reperfusion in rats. Brain Res 2008, 1219:127–135.
Article
CAS
PubMed
Google Scholar
Bomtempo CA, Santos GF, Santos RA, et al.: Interaction of bradykinin and angiotensin-(1-7) in the central modulation of the baroreflex control of the heart rate. J Hypertens 1998, 16:1797–1804.
Article
CAS
PubMed
Google Scholar
Gironacci MM, Vatta M, Rodriguez-Fermepin M, et al.: Angiotensin-(1-7) reduces norepinephrine release through a nitric oxide mechanism in rat hypothalamus. Hypertension 2000, 35:1248–1252.
CAS
PubMed
Google Scholar
Dean RG, Burrell LM: ACE2 and diabetic complications. Curr Pharm Des 2007, 13:2730–2735.
Article
CAS
PubMed
Google Scholar
Raizada MK, Ferreira AJ: ACE2: A new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol 2007, 50:112–119.
Article
CAS
PubMed
Google Scholar
Ferreira AJ, Raizada MK: Genomic and proteomic approaches for targeting of angiotensin-converting enzyme 2 for cardiovascular diseases. Curr Opin Cardiol 2008, 23:364–369.
Article
PubMed
Google Scholar
Lambert DW, Hooper NM, Turner AJ: Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system. Biochem Pharmacol 2008, 75:781–786.
Article
CAS
PubMed
Google Scholar
Ingelfinger JR: Angiotensin-converting enzyme 2: implications for blood pressure and kidney disease. Curr Opin Nephrol Hypertens 2009, 18:79–84.
Article
CAS
PubMed
Google Scholar
Yamazato M, Yamazato Y, Sun C, et al.: Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension 2007, 49:926–931.
Article
CAS
PubMed
Google Scholar
• Diz DI, Garcia-Espinosa MA, Gegick S, et al.: Injections of angiotensin-converting enzyme 2 inhibitor MLN4760 into nucleus tractus solitarii reduce baroreceptor reflex sensitivity for heart rate control in rats. Exp Physiol 2008, 93:694–700. Using an ACE2 inhibitor, MLN4760, in Sprague Dawley rats, the authors showed that inhibition of ACE2 activity in the NTS impaired the baroreflex sensitivity for control of heart rate in response to increases in arterial pressure. Moreover, there was no further reduction of these effects following combined Ang-(1-7) receptor blockade and ACE2 inhibition, suggesting that ACE2 is the main enzyme forming Ang-(1-7).
Feng Y, Yue X, Xia H, et al.: Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents the angiotensin II-mediated pressor and drinking responses and is associated with angiotensin II type 1 receptor downregulation. Circ Res 2008, 102:729–736.
Article
CAS
PubMed
Google Scholar
•• Xia H, Feng Y, Obr TD, et al.: Angiotensin II type 1 receptor mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension 2009, 53:210–216. Using a chronically hypertensive model and a triple-transgenic model with chronic overexpression of Ang II and brain ACE2, the authors found that AT1R exerts an inhibitory effect on ACE2 activity in the brain of hypertensive mice, and that brain selective overexpression of ACE2 attenuated the hypertension by improving arterial baroreflex and autonomic function.
Xiao L, Gao L, Zucker IH: Angiotensin-converting enzyme 2 attenuates the angiotensin II-induced upregulation of angiotensin II type 1 receptor in CATH.a neurons. Hypertension 2009, 54:e70.
Google Scholar
•• Feng Y, Xia H, Cai Y, et al.: Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res 2010, 106:373–382. Using a new transgenic mouse model (syn-hACE2) with neuron-targeted ACE2 overexpression, the investigators demonstrated that ACE2 overexpression attenuates the development of Ang II–induced hypertension by preventing the decrease in baroreflex sensitivity and parasympathetic tone. In addition, these protective effects could be mediated by increased NO availability in the brain, likely resulting from Mas and AT2R upregulation.
Kar S, Gao L, Zucker IH: Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing induced chronic heart failure. J Appl Physiol. 2010 Jan 21 [Epub ahead of print].
Kawajiri M, Mogi M, Higaki N, et al.: Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult Scler 2009, 15:262–265.
Article
CAS
PubMed
Google Scholar
Sriramula S, Cardinate JP, Lazartigues E, et al.: Bilateral ACE2 overexpression in the PVN attenuates angiotensin II-induced blood pressure response. Hypertension 2009, 54:e97.
Google Scholar
Merrill DC, Thompson MW, Carney CL, et al.: Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest 1996, 97:1047–1055.
Article
CAS
PubMed
Google Scholar
Cangussu LM, Silva JR, Alzamora AC, et al.: Increased hypothalamus expression of ACE2 and Mas receptor mRNA in renovascular hypertensive rats submitted to exercise training. [abstract No. 930]. Presented at the International American Society of Hypertension 17th Scientific Sessions. Belo Horizonte, Brazil; August 5–8, 2009.
Lima AM, Xavier CH, Santos RAS, et al.: Central activation of the ACE2-Ang-(1-7)-Mas axis markedly reduces the tachycardia evoked by acute stress exposure. Hypertension 2009, 54:e98.
Article
Google Scholar
Feng Y, Xia H, Lazartigues E: Alteration of baroreflex and autonomic function precedes the development of high blood pressure in angiotensin-converting enzyme 2 deficient mice. Hypertension 2009, 54:e97.
Article
Google Scholar
Xia H, Feng Y, Seth D, et al.: Impaired baroreflex and autonomic function in ACE2 knockout mice. Hypertension 2008, 52:e80.
Article
Google Scholar
Zheng H, Liu X, Moser JS, et al.: Gene transfer of angiotensin converting enzyme 2 to the paraventricular nucleus improves attenuated nitric oxide mechanism in rats with chronic heart failure. FASEB J 2009, 23:956.2.
Google Scholar
Gao L, Farrar R, Wang W, et al.: Selective over expression of central ACE2 prevents baroreflex dysfunction in the chronic heart failure. FASEB J 2009, 23:610.2.
Google Scholar
Villela DC, Verano TB, Campagnole-Santos MJ, et al.: Changes in the baroreflex control of heart rate produced by central infusion of a novel ACE2 product peptide, Ala1-Ang-(1-7). [abstract No. 1072]. Presented at the International American Society of Hypertension 17th Scientific Sessions. Belo Horizonte, Brazil; August 5–8, 2009.
Zanzinger J: Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc Res 1999, 43:639–649.
Article
CAS
PubMed
Google Scholar
Zanzinger J, Czachurski J: Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflugers Arch 2000, 439:489–494.
Article
CAS
PubMed
Google Scholar
Gao L, Wang W, Li YL, et al.: Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Circ Res 2004, 95:937–944.
Article
CAS
PubMed
Google Scholar
Xia H, Cai Y, Bindom S, et al.: ACE2 gene deletion mediates an age-dependent increase in oxidative stress in the central nervous system. Hypertension 2009, 54:e98.
Article
Google Scholar