Skip to main content

Advertisement

Log in

Oxidative Stress and Hypertension: Current Concepts

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is a major contributor to the development of renal failure, cardiovascular disease, and stroke. These pathologies are associated with vascular functional and structural changes including endothelial dysfunction, altered contractility, and vascular remodeling. Central to these phenomena is oxidative stress. Factors that activate pro-oxidant enzymes, such as NADPH oxidase, remain poorly defined, but likely involve angiotensin II, mechanical stretch, and inflammatory cytokines. Reactive oxygen species influence vascular, renal, and cardiac function and structure by modulating cell growth, contraction/dilatation, and inflammatory responses via redox-dependent signaling pathways. Compelling data from molecular and cellular experiments, together with animal studies, implicate a role for oxidative stress in hypertension. However, the clinical evidence is still controversial. This review provides current insights on the mechanisms of the generation of reactive oxygen species and the vascular effects of oxidative stress and discusses the significance of oxidative damage in experimental and clinical hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Paravicini TM, Touyz RM: Redox signaling in hypertension. Cardiovasc Res 2006, 71:247–258.

    Article  CAS  PubMed  Google Scholar 

  2. Forbes JM, Coughlan MT, Cooper ME: Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008, 57:1446–1454.

    Article  CAS  PubMed  Google Scholar 

  3. Huang PL: eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab 2009, 20:295–302.

    Article  CAS  PubMed  Google Scholar 

  4. Xu S, He Y, Vokurkova M, Touyz RM: Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: role of thioredoxin. Hypertension 2009, 54:427–433.

    Article  CAS  PubMed  Google Scholar 

  5. Allen CL, Bayraktutan U: Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 2009, 4:461–470.

    Article  CAS  PubMed  Google Scholar 

  6. Touyz RM: Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens 2005, 14:125–131.

    Article  CAS  PubMed  Google Scholar 

  7. Guzik TJ, Korbut R, Adamek-Guzik T: Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003, 54:469–487.

    CAS  PubMed  Google Scholar 

  8. Haddad JJ: Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002, 14:879–897.

    Article  CAS  PubMed  Google Scholar 

  9. Ardanaz N, Pagano PJ: Hydrogen peroxide as a paracrine vascular mediator: regulation and signaling leading to dysfunction. Exp Biol Med 2006, 231:237–251.

    CAS  Google Scholar 

  10. Liochev SI, Fridovich I: The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med 2007, 42:1465–1469.

    Article  CAS  PubMed  Google Scholar 

  11. Suvorava T, Kojda G: Reactive oxygen species as cardiovascular mediators: lessons from endothelial-specific protein overexpression mouse models. Biochem Biophys Acta 2009, 1787:802–810.

    Article  CAS  PubMed  Google Scholar 

  12. Brown DI, Griendling KK: Nox proteins in signal transduction. Free Radic Biol Med 2009, 47:1239–1253.

    Article  CAS  PubMed  Google Scholar 

  13. Gillespie MN, Pastukh V, Ruchko MV: Oxidative DNA modifications in hypoxic signaling. Ann N Y Acad Sci 2009, 1177:140–150.

    Article  CAS  PubMed  Google Scholar 

  14. Ebrahimian T, Touyz RM: Thioredoxin in vascular biology: role in hypertension. Antioxid Redox Signal 2008, 10:1127–1136.

    Article  CAS  PubMed  Google Scholar 

  15. Harrison DG, Gongora MC: Oxidative stress and hypertension. Med Clin North Am 2009, 93:621–635.

    Article  CAS  PubMed  Google Scholar 

  16. Vaziri ND: Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens 2004, 13:93–99.

    Article  CAS  PubMed  Google Scholar 

  17. Addabbo F, Montagnani M, Goligorsky MS: Mitochondria and reactive oxygen species. Hypertension 2009, 53:885–892.

    Article  CAS  PubMed  Google Scholar 

  18. Peterson JR, Sharma RV, Davisson RL: Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep 2006, 8:232–241.

    Article  CAS  PubMed  Google Scholar 

  19. Ponnuchamy B, Khalil RA: Cellular mediators of renal vascular dysfunction in hypertension. Am J Physiol Regul Integr Comp Physiol 2009, 296:R1001–R1018.

    CAS  PubMed  Google Scholar 

  20. Alp NJ, Paolocci N, Champion HC, Kass DA: Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 2008, 117:2626–2636.

    Article  PubMed  CAS  Google Scholar 

  21. •Hulsmans M, Holvoet P: The vicious circle between oxidative stress and inflammation in atherosclerosis. J Cell Mol Med 2009 Nov 28 (Epub ahead of print). This is an up-to-date review on the association between ROS and inflammation.

  22. Castro MM, Rizzi E, Rodrigues GJ, et al.: Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med 2009, 46:1298–1307.

    Article  CAS  PubMed  Google Scholar 

  23. Tabet F, Savoia C, Schiffrin EL, Touyz RM: Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J Cardiovasc Pharmacol 2004, 44:200–208.

    Article  CAS  PubMed  Google Scholar 

  24. Touyz RM, Chen X, Tabet F, et al.: Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 2002, 90:1205–1213.

    Article  CAS  PubMed  Google Scholar 

  25. ••Yang G, Wu L, Jiang B, et al.: H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008, 322:587–590. This excellent study demonstrates that H 2 S is a potent vasodilator and that deficiency of H 2 S is associated with hypertension.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki H, DeLano FA, Parks DA, et al.: Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci U S A 1998, 95:4754–4759.

    Article  CAS  PubMed  Google Scholar 

  27. Adlam D, Bendall JK, De Bono JP, et al.: Relationships between nitric oxide-mediated endothelial function, eNOS coupling and blood pressure revealed by eNOS-GTP cyclohydrolase 1 double transgenic mice. Exp Physiol 2007, 92:119–126.

    Article  CAS  PubMed  Google Scholar 

  28. Victor VM, Apostolova N, Herance R, et al.: Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem 2009, 16:4654–4667.

    Article  CAS  PubMed  Google Scholar 

  29. Viel EC, Benkirane K, Javeshghani D, et al.: Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol 2008, 295:H281–H288.

    Article  CAS  PubMed  Google Scholar 

  30. Spiekermann S, Schenk K, Hoeper MM: Increased xanthine oxidase activity in idiopathic pulmonary arterial hypertension. Eur Respir J 2009, 34:276–280.

    Article  CAS  PubMed  Google Scholar 

  31. Mervaala EM, Cheng ZJ, Tikkanen I, et al.: Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 2001, 37:414–418.

    CAS  PubMed  Google Scholar 

  32. Laakso J, Mervaala E, Himberg JJ, et al.: Increased kidney xanthine oxidoreductase activity in salt-induced experimental hypertension. Hypertension 1998, 32:902–906.

    CAS  PubMed  Google Scholar 

  33. Sánchez-Lozada LG, Tapia E, Soto V, et al.: Treatment with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular hypertension in experimental hyperuricaemia. Nephrol Dial Transplant 2008, 23:1179–1185.

    Article  PubMed  CAS  Google Scholar 

  34. Kanbay M, Ozkara A, Selcoki Y, et al.: Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol 2007, 39:1227–1233.

    Article  CAS  PubMed  Google Scholar 

  35. Feig DI, Soletsky B, Johnson RJ: Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 2008, 300:924–932.

    Article  CAS  PubMed  Google Scholar 

  36. Yang J, Kamide K, Kokubo Y, et al.: Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene. Hypertens Res 2008, 31:931–940.

    Article  CAS  PubMed  Google Scholar 

  37. Vásquez-Vivar J: Tetrahydrobiopterin, superoxide, and vascular dysfunction. Free Radic Biol Med 2009, 47:1108–1119.

    Article  PubMed  CAS  Google Scholar 

  38. Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al.: Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 1998, 95:9220–9225.

    Article  CAS  PubMed  Google Scholar 

  39. Gao YT, Roman LJ, Martásek P, et al.: Oxygen metabolism by endothelial nitric-oxide synthase. J Biol Chem 2007, 282:28557–28565.

    Article  CAS  PubMed  Google Scholar 

  40. Cosentino F, Patton S, d’Uscio LV, et al.: Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 1998, 101:1530–1537.

    Article  CAS  PubMed  Google Scholar 

  41. Ozaki M, Kawashima S, Yamashita T, et al.: Overexpression of endothelial nitric oxide synthase attenuates cardiac. hypertrophy induced by chronic isoproterenol infusion. Circ J 2002, 66:851–856.

    Article  CAS  PubMed  Google Scholar 

  42. Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.

    CAS  PubMed  Google Scholar 

  43. Lee CK, Han JS, Won KJ, et al.: Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 2009, 9:4851–4858.

    Article  CAS  PubMed  Google Scholar 

  44. Ceylan-Isik AF, Guo KK, Carlson EC, et al.: Metallothionein abrogates GTP cyclohydrolase I inhibition-induced cardiac contractile and morphological defects: role of mitochondrial biogenesis. Hypertension 2009, 53:1023–1031.

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan JC, Pollock JS: Coupled and uncoupled NOS: separate but equal? Uncoupled NOS in endothelial cells is a critical pathway for intracellular signaling. Circ Res 2006, 98:717–719.

    Article  CAS  PubMed  Google Scholar 

  46. Katusic ZS, d’Uscio LV, Nath KA: Vascular protection by tetrahydrobiopterin: progress and therapeutic prospects. Trends Pharmacol Sci 2009, 30:48–54.

    Article  CAS  PubMed  Google Scholar 

  47. ••Leto TL, Morand S, Hurt D, Ueyama T: Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 2009, 11(10):2607–2619. This is an excellent overview of the Nox isoforms and their putative functions.

    Article  CAS  PubMed  Google Scholar 

  48. Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007, 87:245–313.

    Article  CAS  PubMed  Google Scholar 

  49. Brandes RP, Schröder K: Differential vascular functions of Nox family NADPH oxidases. Curr Opin Lipidol 2008, 19:513–518.

    Article  CAS  PubMed  Google Scholar 

  50. Sumimoto H: Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 2008, 275:3249–3277.

    Article  CAS  PubMed  Google Scholar 

  51. Nauseef WM: Biological roles for the NOX family NADPH oxidases. J Biol Chem 2008, 283:16961–16965.

    Article  CAS  PubMed  Google Scholar 

  52. Guzik TJ, Griendling KK: NADPH oxidases: molecular understanding finally reaching the clinical level? Antioxid Redox Signal 2009, 11:2365–2370.

    Article  CAS  PubMed  Google Scholar 

  53. Lassegue B, Clempus RE: Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003, 285:R277–R297.

    CAS  PubMed  Google Scholar 

  54. Sedeek M, Hébert RL, Kennedy CR, et al.: Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens 2009, 18:122–127.

    Article  CAS  PubMed  Google Scholar 

  55. Li JM, Shah AM: Intracellular localization and preassembly of the NAD(P)H oxidase complex in cultured endothelial cells. J Biol Chem 2002, 277:19952–19960.

    Article  CAS  PubMed  Google Scholar 

  56. Orosz Z, Csiszar A, Labinskyy N, et al.: Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol 2007, 292:H130–H139.

    Article  CAS  PubMed  Google Scholar 

  57. •Lyle AN, Deshpande NN, Taniyama Y, et al.: Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 2009, 105:249–259. This interesting study identifies a new regulator of Nox4 that also interacts with the cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  58. Touyz RM, Schiffrin EL: Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 2001, 19:1245–1254.

    Article  CAS  PubMed  Google Scholar 

  59. Landmesser U, Cai H, Dikalov S, et al.: Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002, 40:511–555.

    Article  CAS  PubMed  Google Scholar 

  60. Matsuno K, Yamada H, Iwata K, et al.: Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation 2005, 112:2677–2685.

    Article  CAS  PubMed  Google Scholar 

  61. Dikalova A, Clempus R, Lassegue B, et al.: Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation 2005, 112:2668–2676.

    Article  CAS  PubMed  Google Scholar 

  62. Touyz RM, Mercure C, He Y, et al.: Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 2005, 45:530–537.

    Article  CAS  PubMed  Google Scholar 

  63. Jung O, Schreiber JG, Geiger H, et al.: gp91phox-containing NAD(P)H oxidase mediates endothelial dysfunction in renovascular hypertension. Circulation 2004, 109:1795–1801.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou MS, Adam AG, Jaimes EA, Raij L: In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 2003, 42:945–951.

    Article  CAS  PubMed  Google Scholar 

  65. Peterson JR, Burmeister MA, Tian X, et al.: Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension 2009, 54:1106–1114.

    Article  CAS  PubMed  Google Scholar 

  66. Wilcox CS: Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol 2005, 289:R913–R935.

    CAS  PubMed  Google Scholar 

  67. Modlinger P, Chabrashvili T, Gill PS, et al.: RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension 2006, 47:238–244.

    Article  CAS  PubMed  Google Scholar 

  68. Adler S, Huang H: Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase. Am J Physiol Renal Physiol 2004, 287:F907–F913.

    Article  CAS  PubMed  Google Scholar 

  69. Panico C, Luo Z, Damiano S, et al.: Renal proximal tubular reabsorption is reduced in adult spontaneously hypertensive rats: roles of superoxide and Na+/H+ exchanger 3. Hypertension 2009, 54:1291–1297.

    Article  CAS  PubMed  Google Scholar 

  70. ••Violi F, Sanguigni V, Carnevale R, et al.: Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 2009, 120:1616–1622. This is the first comprehensive clinical study focusing on vascular function in patients deficient in gp91 phox.

    Article  CAS  PubMed  Google Scholar 

  71. Yogi A, Mercure C, Touyz J, et al.: Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension. Hypertension 2008, 51:500–506.

    Article  CAS  PubMed  Google Scholar 

  72. Nambiar S, Viswanathan S, Zachariah B, et al.: Oxidative stress in prehypertension: rationale for antioxidant clinical trials. Angiology 2009, 60:221–234.

    CAS  PubMed  Google Scholar 

  73. Nabha L, Garbern JC, Buller CL, Charpie JR: Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens 2005, 27:71–82.

    Article  CAS  PubMed  Google Scholar 

  74. Sathiyapriya V, Selvaraj N, Nandeesha H, et al.: Association between protein bound sialic acid and high sensitivity C-reactive protein in prehypertension: a possible indication of underlying cardiovascular risk. Clin Exp Hypertens 2008, 30:367–374.

    Article  CAS  PubMed  Google Scholar 

  75. Callera GE, Touyz RM, Teixeira SA, et al.: ETA receptor blockade decreases vascular superoxide generation in DOCA-salt hypertension. Hypertension 2003, 42:811–817.

    Article  CAS  PubMed  Google Scholar 

  76. Chen X, Touyz RM, Park JB, Schiffrin EL: Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001, 38:606–611.

    Article  CAS  PubMed  Google Scholar 

  77. •Ardanaz N, Yang XP, Cifuentes ME, et al.: Lack of glutathione peroxidase 1 accelerates cardiac-specific hypertrophy and dysfunction in angiotensin II hypertension. Hypertension 2009, 55:116–123. This interesting study demonstrates the importance of glutathione deficiency in cardiac hypertrophy but not in the development of hypertension.

    Article  PubMed  CAS  Google Scholar 

  78. Ward NC, Hodgson JM, Puddey IB, et al.: Oxidative stress in human hypertension: association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic Biol Med 2004, 36:226–232.

    Article  CAS  PubMed  Google Scholar 

  79. Moreno MU, San Jose G, Orbe J, et al.: Preliminary characterisation of the promoter of the human p22(phox) gene: identification of a new polymorphism associated with hypertension. FEBS Lett 2003, 542:27–31.

    Article  CAS  PubMed  Google Scholar 

  80. Holowatz LA, Kenney WL: Local ascorbate administration augments NO- and non-NO-dependent reflex cutaneous vasodilation in hypertensive humans. Am J Physiol Heart Circ Physiol 2007, 293:H1090–H1096.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies performed by the authors were supported by grants 57786 and 4401 from the Canadian Institutes of Health Research, by the Heart and Stroke Foundation of Canada, and by a grant from the Kidney Foundation of Canada-Pfizer. Ana M. Briones is supported through a Beca de Posgrado from Fundación CajaMadrid.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briones, A.M., Touyz, R.M. Oxidative Stress and Hypertension: Current Concepts. Curr Hypertens Rep 12, 135–142 (2010). https://doi.org/10.1007/s11906-010-0100-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0100-z

Keywords

Navigation