Skip to main content

Advertisement

Log in

Hypertension and the expanding role of aldosterone

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Aldosterone is the principal human mineralocorticoid and plays a significant role in hypertension and cardiovascular morbidity. Classically, aldosterone is synthesized in the adrenal zona glomerulosa and binds to mineralocorticoid receptors in the cytosol of target epithelial cells. Nonepithelial and rapid nongenomic actions of aldosterone have now also been described, as well as a number of extra-adrenal sites of synthesis, including the central nervous system. Recent studies also suggest that elevated aldosterone biosynthesis, as defined by an increased aldosterone-to-renin ratio, is present in up to 15% of essential hypertensives and that aldosterone levels predict the development of hypertension in normotensive individuals. Furthermore, mineralocorticoid-receptor antagonists demonstrate that aldosterone is a significant contributor to cardiovascular pathology. In this article, we present the evidence behind these findings and explore the expanding role of aldosterone as a key cardiovascular hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mornet E, Dupont J, Vitek A, White PC: Characterization of two genes encoding human steroid 11beta-hydroxylase (P-450(11) beta). J Biol Chem 1989, 264:20961–20967.

    PubMed  CAS  Google Scholar 

  2. Wagner M, Ge Y, Siciliano M, Wells E: A hybrid cell mapping panel for regional localisation of probes to human chromosome 8. Genomics 1991, 10:114–125.

    Article  PubMed  CAS  Google Scholar 

  3. Snyder PM, Olson DR, Thomas BC: Serum and glucocorticoid-regulated kinase modulate Nedd4-2 mediated inhibition of the epithelial Na+ channel. J Biol Chem 2002, 277:5–8.

    Article  PubMed  CAS  Google Scholar 

  4. Brilla CG, Weber KT: Mineralocorticoid excess, dietary sodium, and myocardial flbrosis. J Lab Clin Med 1992, 120:893–901.

    PubMed  CAS  Google Scholar 

  5. Gómez Sánchez EP: Central hypertensive effects of aldosterone. Front Neuroendocrinol 1997, 18:440–462.

    Article  Google Scholar 

  6. Mihailidou AS, Funder JW: Nongenomic effects of mineralocorticoid receptor activation in the cardiovascular system. Steroids 2005, 70:347–351.

    Article  PubMed  CAS  Google Scholar 

  7. Haseroth K, Gerdes D, Berger S, et al.: Rapid nongenomic effects of aldosterone in mineralocorticoid-receptor-knockout mice. Biochem Biophys Res Comm 1999, 266:257–261.

    Article  PubMed  CAS  Google Scholar 

  8. Romagni P, Rossi F, Guerrini L, et al.: Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis 2003, 166:345–349.

    Article  PubMed  CAS  Google Scholar 

  9. Wehling M, Spes CH, Win N, et al.: Rapid cardiovascular action of aldosterone in man. J Clin Endocrinol Metab 1998, 83:3517–3522.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt BM, Montealegre A, Janson CP, et al.: Short-term cardiovascular effects of aldosterone in healthy male volunteers. J Clin Endocrinol Metab 1999, 84:3528–3533.

    Article  PubMed  CAS  Google Scholar 

  11. Weber MA, Purdy RE: Catecholamine-mediated constrictor effects of aldosterone on vascular smooth muscle. Life Sci 1982, 30:2009–2017.

    Article  PubMed  CAS  Google Scholar 

  12. Yee KM, Struthers AD: Aldosterone blunts the baroreflex response in man. Clin Sci 1998, 95:687–692.

    Article  PubMed  CAS  Google Scholar 

  13. Davies E, MacKenzie SM: Extra-adrenal production of corticosteroids. Clin Exper Pharmacol Physiol 2003, 30:437–445.

    Article  CAS  Google Scholar 

  14. Strömstedt M, Waterman MR: Messenger RNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res 1995, 34:75–88.

    Article  PubMed  Google Scholar 

  15. MacKenzie SM, Clark CJ, Fraser R, et al.: Expression of 11beta-hydroxylase and aldosterone synthase genes in the rat brain. J Mol Endocrinol 2000, 24:321–328.

    Article  PubMed  CAS  Google Scholar 

  16. Silvestre JS, Robert V, Heymes C, et al.: Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 1998, 273:4883–4891.

    Article  PubMed  CAS  Google Scholar 

  17. Xue C, Siragy HM: Local renal aldosterone system and its regulation by salt, diabetes and angiotensin II type 1 receptor. Hypertension 2005, 46:1–7.

    Article  Google Scholar 

  18. Ye P, Kenyon CJ, MacKenzie SM, et al.: Regulation of aldosterone synthase gene expression in the rat adrenal gland and central nervous system by sodium and angiotensin II. Endocrinology 2003, 144:3321–3328.

    Article  PubMed  CAS  Google Scholar 

  19. Agarwal MK, Mirshahi F, Mirshahi M, Rostene W: Immunochemical detection of the mineralocorticoid receptor in rat brain. Neuroendocrinology 1993, 58:575–580.

    PubMed  CAS  Google Scholar 

  20. Satoh M, Nakamura M, Saitoh H, et al.: Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Clin Sci 2002, 102:381–386.

    Article  PubMed  CAS  Google Scholar 

  21. Kayes-Wandover KM, White PC: Steroidogenic enzyme gene expression in the human heart. J Clin Endocrinol Metab 2000, 85:2519–2525.

    Article  PubMed  CAS  Google Scholar 

  22. Ye P, Kenyon CJ, MacKenzie SM, et al.: The aldosterone synthase (CYP11B2) and 11β-hydroxylase genes are not expressed in the rat heart. Endocrinology 2005, 146:5287–5293.

    Article  PubMed  CAS  Google Scholar 

  23. Gòmez Sánchez EP, Ahmad N, Romero DG, Gòmez Sánchez CE: Origin of aldosterone in the rat heart. Endocrinology 2004, 145:4796–4802.

    Article  CAS  Google Scholar 

  24. Vasan RS, Evans JC, Larson MG, et al.: Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med 2004, 351:33–41. Interindividual variations in serum aldosterone levels were found to predict the likelihood of nonhypertensive individuals becoming hypertensive. The authors suggest that increased physiologic levels of aldosterone predispose normotensive individuals to elevated blood pressure.

    Article  PubMed  CAS  Google Scholar 

  25. Schiffrin EL, Franks DJ, Gutkowska J: Effect of aldosterone on vascular angiotensin II receptors in the rat. Can J Physiol Pharmacol 1985, 63:1522–1527.

    PubMed  CAS  Google Scholar 

  26. Taddei S, Virdis A, Mattei P, Salvetti A: Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 1993, 21:929–933.

    PubMed  CAS  Google Scholar 

  27. Vallotton MB: Primary aldosteronism. Part I. Diagnosis of primary hyperaldosteronism. Clin Endocrinol 1996, 45:47–52.

    Article  CAS  Google Scholar 

  28. Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.

    Article  PubMed  CAS  Google Scholar 

  29. White PC, Speiser PW: Steroid 11beta-hydroxylase deficiency and related disorder. Endocrinol Metabol Clin North Am 1994, 23:325–339.

    CAS  Google Scholar 

  30. Connell JM, Fraser R, MacKenzie SM, Davies E: Is altered adrenal steroid synthesis a key intermediate phenotype in hypertension? Hypertension 2003, 41:993–999.

    Article  PubMed  CAS  Google Scholar 

  31. Gordon RD, Stowasser M, Tunny TJ, et al.: High incidence of primary aldosteronism in 199 patients referred with hypertension. Clin Exper Pharmacol Physiol 1994, 21:315–318.

    CAS  Google Scholar 

  32. Lim PO, Rodgers P, Cardale K, et al.: Potentially high prevalence of primary aldosteronism in a primary-care population. Lancet 1999, 353:40.

    Article  PubMed  CAS  Google Scholar 

  33. Fardella CE, Mosso L, Gòmez Sánchez CE, et al.: Primary aldosteronism in essential hypertensives: prevalence, biochemical profile and molecular biology. J Clin Endocrinol Metab 2000, 85:1863–1867.

    Article  PubMed  CAS  Google Scholar 

  34. Young WF Jr: Primary aldosteronism: update on diagnosis and treatment. Endocrinologist 1997, 7:213–221.

    Article  Google Scholar 

  35. Lim PO, MacDonald TM, Holloway CD, et al.: Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone to renin ratio. J Clin Endocrinol Metab 2002, 87:4398–4402.

    Article  PubMed  CAS  Google Scholar 

  36. Davies E, Holloway CD, Ingram MC, et al.: Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2 Hypertension 1999, 33:703–707.

    PubMed  CAS  Google Scholar 

  37. Paillard F, Chansel D, Brand E, et al.: Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population. Hypertension 1999, 34:423–429.

    PubMed  CAS  Google Scholar 

  38. Mulatero P, Schiavone D, Fallo F, et al.: CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension 2000, 35:694–698.

    PubMed  CAS  Google Scholar 

  39. Bassett MH, Zhang Y, Clyne C, et al.: Differential regulation of aldosterone synthase and 11β-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol 2002, 28:125–135.

    Article  PubMed  CAS  Google Scholar 

  40. de Simone G, Tommaselli A, Rossi R, et al.: Partial deficiency of adrenal 11β-hydroxylase—a possible cause of primary hypertension. Hypertension 1985, 7:204–210.

    PubMed  Google Scholar 

  41. Connell JM, Jamieson A, Davies E, et al.: 11betahydroxylase activity in glucocorticoid suppressible hyperaldosteronism: Lessons for essential hypertension? Endocr Res 1996, 22:691–700.

    PubMed  CAS  Google Scholar 

  42. Davies E, Holloway CD, Ingram MC, et al.: An influence of variation in the aldosterone synthase gene (CYP11B2) on corticosteroid responses to ACTH in normal human subjects. Clin Endocrinol 2001, 54:813–817.

    Article  CAS  Google Scholar 

  43. Kennon B, Ingram MC, Friel EC, et al.: Aldosterone synthase gene variation and adrenocortical response to sodium status, angiotensin II and ACTH in normal male subjects. Clin Endocrinol 2004, 61:174–181.

    Article  CAS  Google Scholar 

  44. Hautanen A, Raikkonen K, Adlercreutz H: Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 1997, 241:451–461.

    Article  PubMed  CAS  Google Scholar 

  45. Whitworth JA, Mangos GJ, Kelly JJ: Cushing, cortisol and cardiovascular disease. Hypertension 2000, 36:912–916.

    PubMed  CAS  Google Scholar 

  46. Inglis GC, Plouin PF, Friel EC, et al.: Polymorphic differences from normal in the aldosterone synthase gene (CYP11B2) in patients with primary hyperaldosteronism and adrenal tumour (Conn’s syndrome). Clin Endocrinol 2001, 54:725–730.

    Article  CAS  Google Scholar 

  47. Milliez P, Girerd X, Plouin PF, et al.: Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 2005, 45:1243–1248.

    Article  PubMed  CAS  Google Scholar 

  48. Pitt B, Zannad F, Remme WJ, et al.: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999, 341:709–717.

    Article  PubMed  CAS  Google Scholar 

  49. Pitt B, Remme W, Zannad F, et al.: Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003, 348:1309–1321.

    Article  PubMed  CAS  Google Scholar 

  50. Young M, Funder JW: Eplerenone, but not steroid withdrawal, reverses cardiac fibrosis in deoxycorticosterone/ salt-treated rats. Endocrinology 2004, 145:3153–3157. The beneficial effects of eplerenone have been illustrated by several studies, but this paper further suggests that MR antagonism can lead to the reversal of mineralocorticoid-induced cardiac flbrosis.

    Article  PubMed  CAS  Google Scholar 

  51. Komiya I, Yamada T, Takasu N, et al.: An abnormal sodium metabolism in Japanese patients with essential hypertension, judged by serum sodium distribution, renal function and the renin-aldosterone system. J Hypertens 15:65–72.

  52. Lim PO, Dow E, Brennan G, et al.: High prevalence of primary aldosteronism in the Tayside hypertension clinic population. J Hum Hypertens 14:311–315.

  53. Loh K, Koay S, Khaw MC, et al.: Prevalence of primary aldosteronism among Asian hypertensive patients in Singapore. J Clin Endocrinol Metab 85:2854–2859.

  54. Rayner BL, Opie LH, Davidson JS: The aldosterone/renin ratio as a screening test for primary aldosteronism. S Afr Med J 90:394–400.

  55. Rossi E, Regolisti G, Negro A, et al.: High prevalence of primary aldosteronism using postcaptopril plasma aldosterone to renin ratio as a screening test among Italian hypertensives. Am J Hypertens 15:896–902.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. C. Connell MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, S.M., Connell, J.M.C. Hypertension and the expanding role of aldosterone. Current Science Inc 8, 255–261 (2006). https://doi.org/10.1007/s11906-006-0059-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0059-y

Keywords

Navigation