Skip to main content
Log in

Brainstem mechanisms of hypertension: Role of the rostral ventrolateral medulla

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The central nervous system plays a key role in the regulation of cardiovascular function, and alterations in the central neural mechanisms that control blood pressure may underlie the vast majority of cases of primary hypertension. The well-studied baroreceptor reflex powerfully regulates arterial pressure, though its involvement in the pathogenesis of chronic hypertension is likely to be only of minor importance. Supraspinal maintenance of sympathetic vasomotor outflow appears to emanate from neurons in the rostral ventrolateral medulla, and the tonic drive exerted on sympathetic vasomotor activity by the rostral ventrolateral medulla appears to be increased in several animal models of hypertension. In particular, the excitation of the rostral ventrolateral medulla by excitatory amino acid neurotransmitters and by stimulation of AT1 angiotensin receptors appears to be increased in experimental hypertension. The current data support the view that neurogenic hypertension is mediated by increased excitatory drive of rostral ventrolateral medulla sympathoexcitatory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Esler M, Rumantir M, Kaye D, et al.: Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol 2001, 28:986–989.

    Article  PubMed  CAS  Google Scholar 

  2. Sved AF, Gordon FJ: Amino acids as central neurotransmitters in the baroreceptor reflex pathway. News Physiol Sci 1994, 9:243–246.

    CAS  Google Scholar 

  3. Hay M, Hoang CJ, Pamidimukkala J: Cellular mechanisms regulating synaptic vesicle exocytosis and endocytosis in aortic baroreceptor neurons. Ann N Y Acad Sci 2001, 940:119–131.

    Article  PubMed  CAS  Google Scholar 

  4. Mifflin SW: What does the brain know about blood pressure? News Physiol Sci 2001, 16:266–271.

    PubMed  CAS  Google Scholar 

  5. Gordon FJ: Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla. Am J Physiol 1987, 252:R628-R633.

    PubMed  CAS  Google Scholar 

  6. Weston M, Wang H, Stornetta RL, et al.: FOS expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. J Comp Neurol 2003, In press.

  7. Schreihofer AM, Guyenet PG: The baroreflex and beyond: control of sympathetic vasomotor tone by GABAergic neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 2002, 29:514–521.

    Article  PubMed  CAS  Google Scholar 

  8. Stornetta RL, Sevigny CP, Schreihofer AM, et al.: Vesicular glutamate transporter DNPI/VGLUT2 is expressed by both C1 adrenergic and nonaminergic presympathetic vasomotor neurons of the rat medulla. J Comp Neurol 2002, 444:207–220.

    Article  PubMed  CAS  Google Scholar 

  9. Sved AF, Ito S, Madden CJ: Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull 2000, 51:129–133.

    Article  PubMed  CAS  Google Scholar 

  10. Guyenet PG: Role of the ventral medulla oblongata in blood pressure regulation. In Central Regulation of Autonomic Functions. Edited by Loewy AD, Spyer KM. New York: Oxford University Press; 1990:145–167.

    Google Scholar 

  11. Sved AF, Schreihofer AM, Kost CK: Blood pressure regulation in baroreceptor-denervated rats. Clin Exp Pharmacol Physiol 1997, 24:77–82.

    PubMed  CAS  Google Scholar 

  12. Schreihofer AM, Sved AF: Role of the rostral ventrolateral medulla in the maintenance of arterial pressure in chronically baroreceptor denervated rats. Neurosci Abstr 1995, 22:352–354.

    Google Scholar 

  13. Araujo GC, Lopes OU, Campos RR: Importance of glycinergic and glutamatergic synapses within the rostral ventrolateral medulla for blood pressure regulation in conscious rats. Hypertension 1999, 34:752–755.

    PubMed  CAS  Google Scholar 

  14. Sakima A, Yamazato M, Sesoko S, et al.: Cardiovascular and sympathetic effects of L-glutamate and glycine injected into the rostral ventrolateral medulla of conscious rats. Hypertens Res 2000, 23:633–641.

    PubMed  CAS  Google Scholar 

  15. Madden CJ, Ito S, Rinaman L, et al.: Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-DbetaH-saporin. Am J Physiol 1999, 277:R1063–1075.

    PubMed  CAS  Google Scholar 

  16. Kishi T, Hirooka Y, Sakai K, et al.: Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 2001, 38:896–901. This report provides compelling evidence that changes in the neurochemical milieu of the RVLM can chronically alter blood pressure in conscious rats.

    PubMed  CAS  Google Scholar 

  17. Sun M-K, Young BS, Hackett JT, Guyenet PG: Reticulospinal pacemaker neurons of the rat rostral ventrolateral medulla with putative sympathoexcitatory function: an intracellular study in vitro. Brain Res 1988, 422:229–239.

    Article  Google Scholar 

  18. Lipski J, Kanjhan R, Kruszeska B, Rong W: Properties of presympathetic neurones in the rostral ventrolateral medulla in the rat: an intracellular study ‘in vivo’. J Physiol 1996, 490:729–744.

    PubMed  CAS  Google Scholar 

  19. Lipski J, Lin J, Teo MY, van Wyk M: The network vs. pacemaker theory of the activity of RVL presympathetic neurons--a comparison with another putative pacemaker system. Auton Neurosci 2002, 98:85–89.

    Article  PubMed  Google Scholar 

  20. Guyenet PG, Filtz TM, Donaldson SR: Role of excitatory amino acids in rat vagal and sympathetic baroreflexes. Brain Res 1987, 407:272–284.

    Article  PubMed  CAS  Google Scholar 

  21. Kiely JM, Gordon FJ: Role of rostral ventrolateral medulla in centrally mediated pressor responses. Am J Physiol 1994, 267:H1549-H1556.

    PubMed  CAS  Google Scholar 

  22. Ito S, Sved AF: Tonic glutamate-mediated control of rostral ventrolateral medulla and sympathetic vasomotor tone. Am J Physiol 1997, 273:R487-R494.

    PubMed  CAS  Google Scholar 

  23. Sved AF, Ito S, Madden CJ, et al.: Excitatory inputs to the RVLM in the context of the baroreceptor reflex. Ann N Y Acad Sci 2001, 940:247–258.

    Article  PubMed  CAS  Google Scholar 

  24. Ito S, Sved AF: Blockade of angiotensin receptors in rat rostral ventrolateral medulla removes excitatory vasomotor tone. Am J Physiol 1996, 270:R1317-R1323.

    PubMed  CAS  Google Scholar 

  25. Potts PD, Allen AM, Horiuchi J, Dampney RAL: Does angiotensin II have a significant tonic action on cardiovascular neurons in the rostral and caudal VLM? Am J Physiol Regul Integr Comp Physiol 2000, 279:1392–1402.

    Google Scholar 

  26. Ito S, Sved AF: Pharmacological profile of depressor response elicited by sarthran in rat ventrolateral medulla. Am J Physiol Heart Circ Physiol 2000, 279:H2961–2966.

    PubMed  CAS  Google Scholar 

  27. Allen AM, Moeller I, Jenkins TA, et al.: Angiotensin receptors in the nervous system. Brain Res Bull 1998, 47:17–28.

    Article  PubMed  CAS  Google Scholar 

  28. Ito S, Komatsu K, Tsukamoto K, et al.: Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 2002, 40:552–559. This report, along with references by Allen [45,50], provides compelling evidence that AT1 receptors in the RVLM, activated by an input from the hypothalamus, plays an important role in maintaining the elevated blood pressure in SHR.

    Article  PubMed  CAS  Google Scholar 

  29. Giuliano R, Ruggiero DA, Morrison S, et al.: Cholinergic regulation of arterial pressure by the C1 area of the rostral ventrolateral medulla. J Neurosci 1989, 9:923–942.

    PubMed  CAS  Google Scholar 

  30. Willette RN, Punnen S, Krieger AJ, Sapru HN: Cardiovascular control by cholinergic mechanisms in the rostral ventrolateral medulla. J Pharmacol Exp Ther 1984, 231:457–463.

    PubMed  CAS  Google Scholar 

  31. Huangfu D, Schreihofer AM, Guyenet PG: Effect of cholinergic agonists on bulbospinal neurons in rats. Am J Physiol 1997, 272:R249-R258.

    PubMed  CAS  Google Scholar 

  32. Tsukamoto K, Yin M, Sved AF: Effect of atropine injected into the nucleus tractus solitarius on the regulation of blood pressure. Brain Res 1994, 648:9–15.

    Article  PubMed  CAS  Google Scholar 

  33. Dampney RAL: The subretrofacial vasomotor nucleus: anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog Neurobiol 1994, 42:197–227.

    Article  PubMed  CAS  Google Scholar 

  34. Gomez RE, Cannata MA, Milner TA, et al.: Vasopressinergic mechanisms in the nucleus reticularis lateralis in blood pressure control. Brain Res 1993, 604:90–105.

    Article  PubMed  CAS  Google Scholar 

  35. Ito S, Komatsu K, Tsukamoto K, Sved AF: Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 2000, 35:413–417. This report shows that whereas blockade of excitatory amino acid receptors in the RVLM does not alter blood pressure in normotensive rats, it markedly decreases blood pressure in a common model of experimental hypertension.

    PubMed  CAS  Google Scholar 

  36. Bergamaschi C, Campos RR, Schor N, Lopes OU: Role of the rostral ventrolateral medulla in maintenance of blood pressure in rats with Goldblatt Hypertension. Hypertension 1995, 26:1117–1120.

    PubMed  CAS  Google Scholar 

  37. Chan RKW, Chan YS, Wong TM: Responses of cardiovascular neurons in the rostral ventrolateral medulla of the normotensive Wistar Kyoto and spontaneously hypertensive rats to iontophoretic application of angiotensin II. Brain Res 1991, 556:145–150.

    Article  PubMed  CAS  Google Scholar 

  38. Matsuura T, Kumagai H, Kawai A, et al.: Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 2002, 40:560–565.

    Article  PubMed  CAS  Google Scholar 

  39. Sun M-K, Guyenet PG: Medullospinal sympathoexcitatory neurons in normotensive and spontaneously hypertensive rats. Am J Physiol 1986, 250:R910-R917.

    PubMed  CAS  Google Scholar 

  40. Minson J, Arnolda L, Llewellyn-Smith I, et al.: Altered c-fos in rostral medulla and spinal cord of spontaneously hypertensive rats. Hypertension 1996, 27:433–441.

    PubMed  CAS  Google Scholar 

  41. Ito S, Komatsu K, Tsukamoto K, Sved AF: Tonic excitatory input to the rostral ventrolateral medulla in Dahl salt-sensitive rats. Hypertension 2001, 37:687–691.

    CAS  Google Scholar 

  42. Smith JK, Barron KW: Cardiovascular effects of L-glutamate and tetrodotoxin microinjected into the rostral and caudal ventrolateral medulla in normotensive and spontaneously hypertensive rats. Brain Res 1990, 506:1–8.

    Article  PubMed  CAS  Google Scholar 

  43. Smith JK, Barron KW: GABAergic responses in ventrolateral medulla in spontaneously hypertensive rats. Am J Physiol 1990, 258:R450-R456.

    PubMed  CAS  Google Scholar 

  44. Muratani H, Ferrario CM, Averill DB: Ventrolateral medulla in spontaneously hypertensive rats: role of angiotensin II. Am J Physiol 1993, 264:R388-R395.

    PubMed  CAS  Google Scholar 

  45. Allen AM: Blockade of angiotensin AT1-receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats reduces blood pressure and sympathetic nerve discharge. J Renin Angiotens Aldost Syst 2001, 2(Suppl 1):S120-S124.

    CAS  Google Scholar 

  46. Ito S, Hiratsuka M, Komatsu K, et al.: Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension 2003, In press.

  47. Fontes MA, Baltatu O, Caligiorne SM, et al.: Angiotensin peptides acting at rostral ventrolateral medulla contribute to hypertension of TGR(mREN2)27 rats. Physiol Genom 2000, 2:137–142.

    CAS  Google Scholar 

  48. Esler M: Differentiation in the effects of the angiotensin II receptor blocker class on autonomic function. J Hypertens 2002, 20(Suppl 5):S13-S19.

    CAS  Google Scholar 

  49. Tagawa T, Dampney RAL: AT1 receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension 1999, 34:1301–1307.

    PubMed  CAS  Google Scholar 

  50. Allen AM: Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 2002, 39:275–280.

    Article  PubMed  CAS  Google Scholar 

  51. Haywood JR, Mifflin SW, Craig T, et al.: gamma-Aminobutyric acid (GABA)--A function and binding in the paraventricular nucleus of the hypothalamus in chronic renal-wrap hypertension. Hypertension 2001, 37:614–618.

    PubMed  CAS  Google Scholar 

  52. Li Y-W, Guyenet PG: Neuronal excitation by angiotensin II in the rostral ventrolateral medulla of the rat in vitro. Am J Physiol 1995, 268:R272-R277.

    PubMed  CAS  Google Scholar 

  53. Li YW, Guyenet PG: Angiotensin II decreases a resting K+ conductance in rat bulbospinal neurons of the C1 area. Circ Res 1996, 78:274–282.

    PubMed  CAS  Google Scholar 

  54. Yang SN, Lippoldt A, Jansson A, et al.: Localization of angiotensin II AT1 receptor-like immunoreactivity in catecholaminergic neurons of the rat medulla oblongata. Neuroscience 1997, 81:503–515.

    Article  PubMed  CAS  Google Scholar 

  55. Benarroch EE, Schmeichel AM: Immunohistochemical localization of the angiotensin II type 1 receptor in human hypothalamus and brainstem. Brain Res 1998, 812:292–296.

    Article  PubMed  CAS  Google Scholar 

  56. Hu L, Zhu DN, Yu Z, et al.: Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol 2002, 92:2153–2161.

    Article  PubMed  CAS  Google Scholar 

  57. Song K, Kurobe Y, Kanehara H, et al.: Quantitative localization of angiotensin II receptor subtypes in spontaneously hypertensive rats. Blood Press Suppl 1994, 5:21–26.

    PubMed  CAS  Google Scholar 

  58. Raizada MK, Lu D, Tang W, et al.: Increased angiotensin II type-1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinology 1993, 132:1715–1722.

    Article  PubMed  CAS  Google Scholar 

  59. Yang H, Raizada MK: Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. J Neurosci 1999, 19:2413–2423.

    PubMed  CAS  Google Scholar 

  60. Seyedabadi M, Goodchild AK, Pilowsky PM: Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension 2001, 38:1087–1092.

    PubMed  CAS  Google Scholar 

  61. Kishi T, Hirooka Y, Ito K, et al.: Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 2002, 39:264–268.

    Article  PubMed  CAS  Google Scholar 

  62. Levy EI, Scarrow AM, Jannetta PJ: Microvascular decompression in the treatment of hypertension: review and update. Surg Neurol 2001, 55:2–10.

    Article  PubMed  CAS  Google Scholar 

  63. Morimoto S, Sasaki S, Miki S, et al.: Pressor response to compression of the ventrolateral medulla mediated by glutamate receptors. Hypertension 1999, 33:1207–1213.

    PubMed  CAS  Google Scholar 

  64. Morimoto S, Sasaki S, Miki S, et al.: Pressor response to pulsatile compression of the rostral ventrolateral medulla mediated by nitric oxide and c-fos expression. Br J Pharmacol 2000, 129:859–864.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sved, A.F., Ito, S. & Sved, J.C. Brainstem mechanisms of hypertension: Role of the rostral ventrolateral medulla. Current Science Inc 5, 262–268 (2003). https://doi.org/10.1007/s11906-003-0030-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-003-0030-0

Keywords

Navigation