Skip to main content

Advertisement

Log in

Cellular phenotypes and the genetics of hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Cellular phenotypes have been used in the search for genes or loci harboring genes in control of blood pressure in animals and humans. Preliminary findings using cellular phenotypes confirm that multiple genes contribute to the development of essential hypertension, consistent with the polygenic nature of this disorder. Although these results are promising, no loci have been unequivocally identified as causative for human hypertension. Cellular phenotypes, if combined with large-scale studies and evolving methodologies and databases for the human genome, could play an integral role in the search for genes causing essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Guo C, Ju H, Leung D, et al.: A novel vascular smooth muscle chymase is upregulated in hypertensive rats. J Clin Invest 2001, 107:703–715. Molecular and physiologic characterization of an enzyme with a potential role in genetic and essential hypertension.

    PubMed  CAS  Google Scholar 

  2. Ju H, Gros R, You X, et al.: Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice. Proc Natl Acad Sci U S A 2001, 98:7469–7474.

    Article  PubMed  CAS  Google Scholar 

  3. Richard V, Hurel-Merle S, Scalbert E, et al.: Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries. Circulation 2001, 104:750–752.

    PubMed  CAS  Google Scholar 

  4. Husted RF, Takahashi T, Stokes JB: IMCD cells cultured from Dahl S rats absorb more Na+ than Dahl R rats. Am J Physiol 1996, 271:F1029-F1036.

    PubMed  CAS  Google Scholar 

  5. Husted RF, Rapp JP, Stokes JB: Candidate genes in the regulation of Na+ transport by inner medullary collecting duct cells from Dahl rats. Hypertension 1998, 31:608–614. A study combining the use of congenic rats and cell physiology to test the putative effects of candidate genes on Na+ regulation.

    PubMed  CAS  Google Scholar 

  6. Moreau P, Tea BS, Dam TV, et al.: Altered balance between cell replication and apoptosis in hearts and kidneys of newborn SHR. Hypertension 1997, 30:720–724.

    PubMed  CAS  Google Scholar 

  7. Hamet P, Thorin-Trescases N, Moreau P, et al.: Workshop: excess growth and apoptosis: is hypertension a case of accelerated aging of cardiovascular cells? Hypertension 2001, 37:760–766.

    PubMed  CAS  Google Scholar 

  8. Aitman TJ, Gotoda T, Evans AL, et al.: Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 1997, 16:197–200. Example of multiple cellular phenotypes used to identify quantitative trait loci for metabolic defects associated with hypertension.

    Article  PubMed  CAS  Google Scholar 

  9. Aitman TJ, Glazier AM, Wallace CA, et al.: Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 1999, 21:76–81.

    Article  PubMed  CAS  Google Scholar 

  10. Pravenec M, Landa V, Zidek V, et al.: Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 2001, 27:156–158.

    Article  PubMed  CAS  Google Scholar 

  11. Touyz RM, He G, Wu XH, et al.: Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension 2001, 38:56–64.

    PubMed  CAS  Google Scholar 

  12. Gonzalez-Nunez D, Claria J, Rivera F, et al.: Increased levels of 12(S)-HETE in patients with essential hypertension. Hypertension 2001, 37:334–338.

    PubMed  CAS  Google Scholar 

  13. Hollah P, Hausberg M, Kosch M, et al.: A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. J Hypertens 2001, 19:237–245.

    Article  PubMed  CAS  Google Scholar 

  14. Blankenship KA, Dawson CB, Aronoff GR, et al.: Tyrosine phosphorylation of human platelet plasma membrane Ca(2+)- ATPase in hypertension. Hypertension 2000, 35:103–107.

    PubMed  CAS  Google Scholar 

  15. Rosskopf D, Fromter E, Siffert W.: Hypertensive sodium-proton exchanger phenotype persists in immortalized lymphoblasts from essential hypertensive patients. A cell culture model for human hypertension. J Clin Invest 1993, 92:2553–2559.

    PubMed  CAS  Google Scholar 

  16. Siffert W, Rosskopf D, Moritz A, et al.: Enhanced G protein activation in immortalized ly6mphoblasts from patients with essential hypertension. J Clin Invest 1995, 96:759–766.

    Article  PubMed  CAS  Google Scholar 

  17. Pietruck F, Moritz A, Montemurro M, et al.: Selectively enhanced cellular signaling by Gi proteins in essential hypertension. G alpha 12, G alpha 13, G beta 1, and G beta 2 are not mutated. Circ Res 1996, 79:974–983.

    PubMed  CAS  Google Scholar 

  18. Siffert W, Rosskopf D, Siffert G, et al.: Association of a human G-protein beta3 subunit variant with hypertension. Nat Genet 1998, 18:45–48. Culmination of a series of works using cellular phenotypes to suggest a polymorphic variant involved in essential hypertension.

    Article  PubMed  CAS  Google Scholar 

  19. Siffert W: G protein beta 3 subunit 825T allele, hypertension, obesity, and diabetic nephropathy. Nephrol Dial Transplant 2000, 15:1298–1306.

    Article  PubMed  CAS  Google Scholar 

  20. Brzustowicz LM, Gardner JP, Hopp L, et al.: Linkage analysis using platelet-activating factor Ca2+ response in transformed lymphoblasts. Hypertension 1997, 29:158–164.

    PubMed  CAS  Google Scholar 

  21. Murray JC, Buetow KH, Weber JL, et al.: A comprehensive human linkage map with centimorgan density. Science 1994, 265:2049–2054.

    Article  PubMed  CAS  Google Scholar 

  22. Suthanthiran M, Li B, Song JO, et al.: Transforming growth factor- beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. Proc Natl Acad Sci U S A 2000, 97:3479–3484. Molecular, clinical, and pathologic study of a cytokine’s role in hypertension.

    Article  PubMed  CAS  Google Scholar 

  23. Suthanthiran M, Khanna A, Cukran D, et al.: Transforming growth factor-beta 1 hyperexpression in African American end-stage renal disease patients. Kidney Int 1998, 53:639–644.

    Article  PubMed  CAS  Google Scholar 

  24. West IC, Rutherford PA, Thomas TH: Sodium-lithium countertransport: physiology and function. J Hypertens 1998, 16:3–13.

    Article  PubMed  CAS  Google Scholar 

  25. Mead P, Wilkinson R, Thomas TH: Thiol protein defect in sodium-lithium countertransport in subset of essential hypertension. Hypertension 1999, 34:1275–1280.

    PubMed  CAS  Google Scholar 

  26. Watkins SL, West IC, Wilkinson R, et al.: Abnormal thiol reactivity of tropomyosin in essential hypertension and its association with abnormal sodium-lithium countertransport kinetics. J Hypertens 2001, 19:485–493.

    Article  PubMed  CAS  Google Scholar 

  27. Kammerer CM, Cox LA, Mahaney MC, et al.: Sodium-lithium countertransport activity is linked to chromosome 5 in baboons. Hypertension 2001, 37:398–402.

    PubMed  CAS  Google Scholar 

  28. Hasstedt SJ, Wu LL, Ash KO, et al.: Hypertension and sodiumlithium countertransport in Utah pedigrees: evidence for major-locus inheritance. Am J Hum Genet 1988, 43:14–22.

    PubMed  CAS  Google Scholar 

  29. Hamet P, Skuherska R, Pang SC, et al.: Abnormalities of platelet function in hypertension and diabetes. Hypertension 1985, 7:II135–142.

    PubMed  CAS  Google Scholar 

  30. O’Donnell CJ, Larson MG, Feng D, et al.: Genetic and environmental contributions to platelet aggregation: the Framingham heart study. Circulation 2001, 103:3051–3056.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, J.P. Cellular phenotypes and the genetics of hypertension. Current Science Inc 4, 32–36 (2002). https://doi.org/10.1007/s11906-002-0050-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-002-0050-1

Keywords

Navigation