Skip to main content
Log in

Knockout of renin-angiotensin system genes: Effects on vascular development

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Pharmacologic inhibition of the renin-angiotensin system (RAS) is a widely accepted and effective treatment for hypertension. However, in the past several years, much attention has been focused on additional roles of the RAS including the possibility that its end-product, angiotensin II, could elicit end-organ pathologies independent of its effect on blood pressure. The ability to selectively delete genes in mice (by homologous recombination or gene knockouts) has led to new — and sometimes surprising — insights into the roles of the RAS in the developmental modeling and pathologic remodeling of the heart and blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gomez RA, Gloor JM: Expression of the renin-angiotensin system in the kidney. In Hypertension: Pathophysiology, Diagnosis, and Management, edn. 2. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1995:1637–1652.

    Google Scholar 

  2. Morishita R, Gibbons GH, Kaneda Y, et al.: Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest 1993, 91:2580–2585.

    PubMed  CAS  Google Scholar 

  3. Pratt RE: Regulation of vascular smooth-muscle cell growth by angiotensin II. Blood Press 1996, 2(suppl):6–9.

    CAS  Google Scholar 

  4. Schiffrin EL: Correction of remodeling and function of small arteries in human hypertension by cilazapril, an angiotensin I-converting enzyme inhibitor. J Cardiovas Pharmacol 1996, 27(suppl 2):S13-S18.

    Article  CAS  Google Scholar 

  5. Schieffer B, Bernstein KE, Marrero MB: The role of tyrosine phosphorylation in angiotensin II mediated intracellular signaling and cell growth [review] [57 refs]. J Mol Med 1996, 74:85–91.

    Article  PubMed  CAS  Google Scholar 

  6. Booz GW, Baker KM: Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995, 30:537–543.

    Article  PubMed  CAS  Google Scholar 

  7. Hsueh WA, Do YS, Anderson PW, Law RE: Angiotensin II in cell growth and matrix production. Adv Exp Med Biol 1995, 377:217–223.

    PubMed  CAS  Google Scholar 

  8. Yamada T, Horiuchi M, Dzau VJ: Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A 1996, 93:156–160.

    Article  PubMed  CAS  Google Scholar 

  9. Tanimoto K, Sugiyama F, Goto Y, et al.: Angiotensinogendeficient mice with hypotension. J Biol Chem 1994, 269:31334–31337.

    PubMed  CAS  Google Scholar 

  10. Kim HS, Krege JH, Kluckman KD: Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A 1995, 92:2735–2739.

    Article  PubMed  CAS  Google Scholar 

  11. Niimura F, Labosky PA, Kakuchi J, et al.: Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 1995, 96:2947–2954.

    PubMed  CAS  Google Scholar 

  12. Kihara M, Umemura S, Sumida Y, et al.: Genetic deficiency of angiotensinogen produces an impaired urine concentrating ability in mice. Kidney Int 1998, 53:548–555.

    Article  PubMed  CAS  Google Scholar 

  13. Kakinuma Y, Hama H, Sugiyama F, et al.: Impaired blood-brain barrier function in angiotensinogen-deficient mice. Nat Med 1998, 4:1078–1080 This is the first report of the fascinating, but little explored role of the RAS in mammals.

    Article  PubMed  CAS  Google Scholar 

  14. Yanai K, Saito T, Kakinuma Y, et al.: Renin-dependent cardiovascular functions and renin-independent bloodbrain barrier functions revealed by renin-deficient mice. J Biol Chem 2000, 275:5–8 This paper makes use of the first reported renin gene knockouts to show that angiotensins in the brain may be generated by enzymes other than renin.

    Article  PubMed  CAS  Google Scholar 

  15. Krege JH, John SW, Langenbach LL, et al.: Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995, 375:146–148.

    Article  PubMed  CAS  Google Scholar 

  16. Carpenter C, Honkanen AA, Mashimo H, et al.: Renal abnormalities in mutant mice. Nature 1996, 380:292–292.

    Article  PubMed  CAS  Google Scholar 

  17. Tsuchida S, Matsusaka T, Chen X, et al.: Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 1998, 101:755–760.

    PubMed  CAS  Google Scholar 

  18. Esther CR Jr, Howard TE, Marino EM, et al.: Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 1996, 74:953–965.

    PubMed  CAS  Google Scholar 

  19. Esther CR, Marino EM, Howard TE, et al.: The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J Clin Invest 1997, 99:2375–2385 This group used a very clever variation of the gene knockout strategy to test for the relative importance of the membrane-bound and soluble forms of ACE in the mouse.

    PubMed  CAS  Google Scholar 

  20. Hein L, Barsh GS, Pratt RE, et al.: Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor gene in mice. Nature 1995, 377:744–747.

    Article  PubMed  CAS  Google Scholar 

  21. Ichiki T, Labosky PA, Shiota C, et al.: Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 1995, 377:748–750.

    Article  PubMed  CAS  Google Scholar 

  22. Nishimura H, Yerkes E, Hohenfellner K, et al.: Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 1999, 3:1–10.

    Article  PubMed  CAS  Google Scholar 

  23. Nagata M, Tanimoto K, Fukamizu A, et al.: Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 1996, 75:745–753.

    PubMed  CAS  Google Scholar 

  24. Matsusaka T, Nishimura H, Uutsunomiya H, et al.: Chimeric mice carrying ‘regional’ targeted deletion of the angiotensin type 1A receptor gene. Evidence against the role for local angiotensin in the in vivo feedback regulation of renin synthesis in juxtaglomerular cells. J Clin Invest 1996, 98:1867–1877 By taking advantage of the ability to make mice chimeric for inactivation of AT1 receptors, this group was able to study local cellular actions of Ang II on regulating renin secretion from the kidney.

    PubMed  CAS  Google Scholar 

  25. Akishita, M, Horiuchi M, Yamada H, et al.: Inflammation induces vascular remodeling through AT2 receptor expression and signaling. Physiol Genomics 2000, 2:13–20.

    PubMed  CAS  Google Scholar 

  26. Harada K, Komuro I, Shiojima I, et al.: Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998, 97:1952–1959.

    PubMed  CAS  Google Scholar 

  27. Kudoh S, Komuro I, Hiroi Y, et al.: Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 1998, 273:24037–24043.

    Article  PubMed  CAS  Google Scholar 

  28. Hamawaki M, Coffman TM, Lashus A, et al.: Pressure-overload hypertrophy is unabated in mice devoid of AT1A receptors. Am J Physiol 1998, 274:H868–73.

    PubMed  CAS  Google Scholar 

  29. Matsusaka T, Katori H, Inagami T, Fogo A, Ichikawa I: Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. J Clin Invest 1999, 103:1451–1458 By taking advantage of the ability to make mice chimeric for inactivation of AT1 receptors, this group was able to study local cellular actions of Ang II on fibroblast proliferation and induction of fibrosis in the heart.

    Article  PubMed  CAS  Google Scholar 

  30. Harada K, Komuro I, Hayashi D, et al.: Angiotensin II type 1a receptor is involved in the occurrence of reperfusion arrhythmias. Circulation 1998, 97:315–317.

    PubMed  CAS  Google Scholar 

  31. Harada K, Sugaya T, Murakami K, et al.: Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 1999, 100:2093–2099.

    PubMed  CAS  Google Scholar 

  32. Senbonmatsu T, Ichihara S, Price EJ, et al.: Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 2000, 106:R25-R29.

    PubMed  CAS  Google Scholar 

  33. Akishita M, Iwai M, Wu L, et al.: Inhibitory effect of angiotensin II type 2 receptor on coronary arterial remodeling after aortic banding in mice. Circulation 2000, 102:1684–1689.

    PubMed  CAS  Google Scholar 

  34. Maeda K, Hata R, Bader M, et al.: Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cerebral Blood Flow Metab 1999, 19:1092–1098.

    Article  CAS  Google Scholar 

  35. Guron G, Friberg P: An intact renin-angiotensin system is a prerequisite for normal renal development. J Hypertens 2000, 18:123–137.

    Article  PubMed  CAS  Google Scholar 

  36. Sugaya T, Nishimatsu S, Tanimoto K, et al.: Angiotensin II type 1a receptor-deficient mice with hypotension and hyperreninemia. J Biol Chem 1995, 270:18719–18722.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Methot, D., Reudelhuber, T.L. Knockout of renin-angiotensin system genes: Effects on vascular development. Current Science Inc 3, 68–73 (2001). https://doi.org/10.1007/s11906-001-0083-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0083-x

Keywords

Navigation