Skip to main content
Log in

Telomeres: The time factor in essential hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Essential hypertension, particularly systolic hypertension, can be characterized as a disorder of aging. The diverse expressions of this disorder represent the interactions of a genetic script, the environment, chance, and a temporal factor. The temporal factor, namely the telomeres, is biological, intrinsic, and dynamic. Telomere length is heritable, is inversely related to pulse pressure, and can be modified by reactive oxygen species. The incorporation of a temporal factor into models of essential hypertension may provide a heretofore missing link explaining variations in age-dependent increase in pulse pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Abstracts of the Council for High Blood Pressure Research 54th Annual Fall Conference and Scientific Seminar. Hypertension 2000, 36:676–730.

  2. Izzo JL Jr, Levy D, Black HR: Clinical Advisory Statement. Importance of systolic blood pressure in older Americans. Hypertension 2000, 35:1021–1024. A statement about the shift in emphasis to systolic blood pressure as a cardiovascular risk factor.

    PubMed  Google Scholar 

  3. O‘Rourke M, Frohlich ED: Pulse pressure: is this a clinically useful risk factor? Hypertension 1999, 34:372–374. Review of the evidence that pulse pressure is a reliable indicator of cardiovascular risk.

    PubMed  CAS  Google Scholar 

  4. Hogg N: Free radicals in disease. Semin Reprod Endocrinol 1998, 16:241–248.

    Article  PubMed  CAS  Google Scholar 

  5. Ward R: Familial aggregation and genetic epidemiology of blood pressure. In Hypertension: Pathophysiology, Diagnosis and Management. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1990:81–100.

    Google Scholar 

  6. Pausova Z, Tremblay J, Hamet P: Gene-environment interactions in hypertension. Curr Hypertens Rep 1999, 1:42–50.

    Article  PubMed  CAS  Google Scholar 

  7. Finch CE, Kirkwood TBL: Chance, Development, and Aging. New York: Oxford University Press; 2000. As indicated in the title, a compelling account of the role of chance in aging and disorders of aging.

    Google Scholar 

  8. Blackburn EH: Telomeres: no end in sight. Cell 1994, 77:621–3.

    Article  PubMed  CAS  Google Scholar 

  9. Sedivy JM: Can ends justify the means? Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci U S A 1998, 95:9078–9081.

    Article  PubMed  CAS  Google Scholar 

  10. Shore D: Telomere length regulation: getting the measure of chromosome ends. Biol Chem. 1997, 378:591–597.

    PubMed  CAS  Google Scholar 

  11. Olovnikov AM: A theory of marginotomy. The incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 1973, 41:181–190.

    Article  PubMed  CAS  Google Scholar 

  12. Watson JD: Origin of concatemeric T7 DNA. Nat New Biol 1972, 239:197–201.

    Article  PubMed  CAS  Google Scholar 

  13. Hayflick L, Moorhead PS: The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965, 37:614–636.

    Article  PubMed  CAS  Google Scholar 

  14. Wright WE, Shay JW: Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 2000, 6:849–851. A summary describing the difference in telomere biology between humans and mice.

    Article  PubMed  CAS  Google Scholar 

  15. Bodnar AG, Quellette M, Frolkis M, et al.: Extensions of life-span by introduction of telomerase into normal human cells. Science 1998, 279:349–352.

    Article  PubMed  CAS  Google Scholar 

  16. Kiyono T, Foster SA, Koop JI, et al.: Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998, 396:84–88.

    Article  PubMed  CAS  Google Scholar 

  17. Hahn WC, Stewart SA, Brooks MW, et al.: Inhibition of telomerase limits the growth of human cancer cells. Nat Med 1999, 5:1164–1170.

    Article  PubMed  CAS  Google Scholar 

  18. Sherr CJ, DePinho RA: Cellular senescence: mitotic clock or culture shock? Cell 2000, 102:407–410. A summary of the evidence about mechanisms of senescence in cultured cells.

    Article  PubMed  CAS  Google Scholar 

  19. Harley CB: Telomere loss: mitotic clock or genetic time bomb? Mutat Res 1991, 256:271–282.

    PubMed  CAS  Google Scholar 

  20. Harley CB, Vaziri H, Counter CM, et al.: The telomere hypothesis of cellular aging. Exp Gerontol 1992, 27:375–382.

    Article  PubMed  CAS  Google Scholar 

  21. Lee HW, Blasco MA, Gottlieb GJ, et al.: Essential role of mouse telomerase in highly proliferative organs. Nature 1998, 392:569–574.

    Article  PubMed  CAS  Google Scholar 

  22. Rudolph KL, Chang S, Millard M, et al.: Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 2000, 287:1253–1258.

    Article  PubMed  CAS  Google Scholar 

  23. Okuda K, Khan MY, Skurnick J, et al.: Telomere attrition of the human abdominal aorta: relationships with age and atherosclerosis. Atherosclerosis 2000, 152:391–398.

    Article  PubMed  CAS  Google Scholar 

  24. Vaziri H, Schachter R, Uchida I, et al.: Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993, 52:661–667.

    PubMed  CAS  Google Scholar 

  25. Slagboom PE, Droog S, Boomsma DI: Genetic determination of telomere size in humans: a twin study of three groups. Am J Hum Genet 1994, 55:876–862.

    PubMed  CAS  Google Scholar 

  26. Jeanclos E, Schork NJ, Kyvik KO, et al.: Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 2000, 36:195–200. A study demonstrating that telomere length may provide a better account than chronological age of biologic aging of central arteries in humans.

    PubMed  CAS  Google Scholar 

  27. Benetos A, Okuda K, Lajemi M, et al.: Pulse pressure inversely correlates with telomere length in French men [abstract]. Hypertension 2000, 36:716.

    Google Scholar 

  28. Kyo S, Takakura M, Kanaya T, et al.: Estrogen activates telomerase. Cancer Res 1999, 59:5917–5921.

    PubMed  CAS  Google Scholar 

  29. Harley CB, Futcher AB, Greider CW: Telomeres shorten during ageing of human fibroblasts. Nature 1990, 345:458–460.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang L, Aviv H, Gardner JP, et al.: Loss of chromosome 13 in cultured human vascular endothelial cells. Exp Cell Res 2000, 260:357–364.

    Article  PubMed  CAS  Google Scholar 

  31. Von Zglinicki T: Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 2000, 908:99–110. A review of the impact of reactive oxygen species on telomere dynamics.

    Article  Google Scholar 

  32. Xu D, Neville R, Finkel T: Homocysteine accelerates endothelial cell senescence. FEBS Lett 2000, 470:20–24.

    Article  PubMed  CAS  Google Scholar 

  33. Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000, 86:494–501.

    PubMed  CAS  Google Scholar 

  34. Beckman KB, Ames BN: The free radical theory of aging matures. Physiol Rev 1998, 78:547–581.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aviv, A., Zahorodny, W. Telomeres: The time factor in essential hypertension. Current Science Inc 3, 33–35 (2001). https://doi.org/10.1007/s11906-001-0075-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0075-x

Keywords

Navigation