Skip to main content

Advertisement

Log in

Thymic function in HIV infection

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Current models hold that CD4+ depletion occurs as a result of direct and indirect effects of HIV, which both kill peripheral CD4+ cells and prevent adequate regeneration. Although age-associated involution diminishes thymic reserve and HIV is clearly thymotoxic, clinical trials have nonetheless shown that large proportions of patients who sustain adequate control of viral replication with highly active antiretroviral therapy (HAART) will demonstrate some evidence for thymic-dependent immune reconstitution, which is associated with improved immune competence. Furthermore, patients with insufficient or absent immune reconstitution following HAART generally lack evidence for thymopoiesis. Current studies are focused on improving our understanding of the causes for thymic failure in HIV infection. Recent work has demonstrated that some HIV strains, especially those that are CXCR4 trophic, are more thymotoxic and may contribute to irreversible thymic damage in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Douek DC, Picker LJ, Koup RA: T cell dynamics in HIV-1 infection. Annu Rev Immunol 2003, 21:265–304.

    Article  CAS  PubMed  Google Scholar 

  2. Connors M, Kovacs JA, Krevat S, et al.: HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med 1997, 3:533–540.

    Article  CAS  PubMed  Google Scholar 

  3. Gorochov G, Neumann AU, Kereveur A, et al.: Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nat Med 1998, 4:215–221.

    Article  CAS  PubMed  Google Scholar 

  4. Kimmig S, Przybylski GK, Schmidt CA, et al.: Two subsets of naive T helper cells with distinct T cell receptor excision circle content in human adult peripheral blood. J Exp Med 2002, 195:789–794. A study that identifies a cell surface marker that differentiates recent thymic emigrants from peripherally expanded naïve T cells.

    Article  CAS  PubMed  Google Scholar 

  5. Vigano A, Vella S, Saresella M, et al.: Early immune reconstitution after potent antiretroviral therapy in HIV-infected children correlates with the increase in thymus volume. Aids 2000, 14:251–261.

    Article  CAS  PubMed  Google Scholar 

  6. Smith KY, Valdez H, Landay A, et al.: Thymic size and lymphocyte restoration in patients with human immunodeficiency virus infection after 48 weeks of zidovudine, lamivudine, and ritonavir therapy. J Infect Dis 2000, 181:141–147.

    Article  CAS  PubMed  Google Scholar 

  7. Flores KG, Li J, Sempowski GD, et al.: Analysis of the human thymic perivascular space during aging. J Clin Invest 1999, 104:1031–1039.

    Article  CAS  PubMed  Google Scholar 

  8. Hardy G, Worrell S, Hayes P, et al.: Evidence of thymic reconstitution after highly active antiretroviral therapy in HIV-1 infection. HIV Med 2004, 5:67–73.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen Stuart JW, Slieker WA, Rijkers GT, et al.: Early recovery of CD4+ T lymphocytes in children on highly active antiretroviral therapy. Dutch study group for children with HIV infections. AIDS 1998, 12:2155–21599.

    Article  CAS  PubMed  Google Scholar 

  10. Sleasman JW, Nelson RP, Goodenow MM, et al.: Immunoreconstitution after ritonavir therapy in children with human immunodeficiency virus infection involves multiple lymphocyte lineages. J Pediatr 1999, 134:597–606.

    Article  CAS  PubMed  Google Scholar 

  11. Essajee SM, Kim M, Gonzalez C, et al.: Immunologic and virologic responses to HAART in severely immunocompromised HIV-1-infected children. AIDS 1999, 13:2523–2532.

    Article  CAS  PubMed  Google Scholar 

  12. Berkelhamer S, Borock E, Elsen C, et al.: Effect of highly active antiretroviral therapy on the serological response to additional measles vaccinations in human immunodeficiency virus-infected children. Clin Infect Dis 2001, 32:1090–1094.

    Article  CAS  PubMed  Google Scholar 

  13. Chougnet C, Jankelevich S, Fowke K, et al.: Long-term protease inhibitor-containing therapy results in limited improvement in T cell function but not restoration of interleukin-12 production in pediatric patients with AIDS. J Infect Dis 2001, 184:201–205.

    Article  CAS  PubMed  Google Scholar 

  14. Autran B, Carcelain G, Li TS, et al.: Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997, 277:112–116.

    Article  CAS  PubMed  Google Scholar 

  15. Pakker NG, Notermans DW, de Boer RJ, et al.: Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nat Med 1998, 4:208–214.

    Article  CAS  PubMed  Google Scholar 

  16. Haynes BF, Hale LP, Weinhold KJ, et al.: Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection. J Clin Invest 1999, 103:921.

    Article  PubMed  Google Scholar 

  17. Douek DC, McFarland RD, Keiser PH, et al.: Changes in thymic function with age and during the treatment of HIV infection. Nature 1998, 396:690–695.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Lewin SR, Markowitz M, et al.: Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J Exp Med 1999, 190:725–732.

    Article  CAS  PubMed  Google Scholar 

  19. Diaz M, Douek DC, Valdez H, et al.: T cells containing T cell receptor excision circles are inversely related to HIV replication and are selectively and rapidly released into circulation with antiretroviral treatment. AIDS 2003, 17:1145–1149.

    Article  PubMed  Google Scholar 

  20. Nobile M, Correa R, Borghans JA, et al.: De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood 2004, 104:470–477. A large cohort study that demonstrates thymic function is preserved in younger HIV-infected adults in early and intermediate stages of disease.

    Article  CAS  PubMed  Google Scholar 

  21. Manfredi R: HIV infection and advanced age emerging epidemiological, clinical, and management issues. Ageing Res Rev 2004, 3:31–54.

    Article  PubMed  Google Scholar 

  22. Teixeira L, Valdez H, McCune JM, et al.: Poor CD4 T-cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS 2001, 15:1749–1756.

    Article  CAS  PubMed  Google Scholar 

  23. Hatzakis A, Touloumi G, Karanicolas R, et al.: : Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 2000, 355:599–604.

    Article  CAS  PubMed  Google Scholar 

  24. de la Rosa R, Leal M, Rubio A, et al.: Baseline thymic volume is a predictor for CD4 T cell repopulation in adult HIV-infected patients under highly active antiretroviral therapy. Antivir Ther 2002, 7:159–163.

    PubMed  Google Scholar 

  25. Ruiz-Mateos E, de la Rosa R, Franco JM, et al.: Endogenous IL-7 is associated with increased thymic volume in adult HIVinfected patients under highly active antiretroviral therapy. AIDS 2003, 17:947–954.

    Article  CAS  PubMed  Google Scholar 

  26. Chiappini E, Galli L, Azzari C, de Martino M: Interleukin-7 and immunologic failure despite treatment with highly active antiretroviral therapy in children perinatally infected with HIV-1. J Acquir Immune Defic Syndr 2003, 33:601–604.

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz-Mateos E, Rubio A, Vallejo A, et al.: Thymic volume is associated independently with the magnitude of short-and long-term repopulation of CD4+ T cells in HIV-infected adults after highly active antiretroviral therapy (HAART). Clin Exp Immunol 2004, 136:501–506.

    Article  CAS  PubMed  Google Scholar 

  28. Spits H: Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2002, 2:760–772.

    Article  CAS  PubMed  Google Scholar 

  29. Reyes RA, Canfield DR, Esser U, et al.: Induction of simian AIDS in infant rhesus macaques infected with CCR5-or CXCR4-utilizing simian-human immunodeficiency viruses is associated with distinct lesions of the thymus. J Virol 2004, 78:2121–2130. A study in macaques that characterizes disease caused by X4 and R5 viruses and demonstrates the dramatically different impact of these strains on the thymus.

    Article  CAS  PubMed  Google Scholar 

  30. Ye P, Kourtis AP, Kirschner DE: Reconstitution of thymic function in HIV-1 patients treated with highly active antiretroviral therapy. Clin Immunol 2003, 106:95–105.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitt N, Chene L, Boutolleau D, et al.: Positive regulation of CXCR4 expression and signaling by interleukin-7 in CD4+ mature thymocytes correlates with their capacity to favor human immunodeficiency X4 virus replication. J Virol 2003, 77:5784–5793.

    Article  CAS  PubMed  Google Scholar 

  32. Meissner EG, Duus KM, Gao F, Yu XF, Su L: Characterization of a thymus-tropic HIV-1 isolate from a rapid progressor: role of the envelope. Virology 2004, 328:74–88.

    Article  CAS  PubMed  Google Scholar 

  33. Stove V, Naessens E, Stove C, et al.: Signaling but not trafficking function of HIV-1 protein Nef is essential for Nefinduced defects in human intrathymic T-cell development. Blood 2003, 102:2925–2932.

    Article  CAS  PubMed  Google Scholar 

  34. Hanna Z, Priceputu E, Kay DG, et al.: In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice. Virology 2004, 327:273–286.

    Article  CAS  PubMed  Google Scholar 

  35. Deeks SG, Wrin T, Liegler T, et al.: Virologic and immunologic consequences of discontinuing combination antiretroviraldrug therapy in HIV-infected patients with detectable viremia. N Engl J Med 2001, 344:472–480.

    Article  CAS  PubMed  Google Scholar 

  36. Stoddart CA, Liegler TJ, Mammano F, et al.: Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nat Med 2001, 7:712–718.

    Article  CAS  PubMed  Google Scholar 

  37. Sereti I, Anthony KB, Martinez-Wilson H, et al.: IL-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood 2004, 104:775–780.

    Article  CAS  PubMed  Google Scholar 

  38. Natarajan V, Lempicki RA, Sereti I, et al.: Increased peripheral expansion of naive CD4+ T cells in vivo after IL-2 treatment of patients with HIV infection. Proc Natl Acad Sci U S A 2002, 99:10712–10717.

    Article  CAS  PubMed  Google Scholar 

  39. Lu AC, Jones EC, Chow C, et al.: Increases in CD4+ T lymphocytes occur without increases in thymic size in HIV-infected subjects receiving interleukin-2 therapy. J Acquir Immune Defic Syndr 2003, 34:299–303.

    Article  CAS  PubMed  Google Scholar 

  40. Carcelain G, Saint-Mezard P, Altes HK, et al.: IL-2 therapy and thymic production of naive CD4 T cells in HIV-infected patients with severe CD4 lymphopenia. AIDS 2003, 17:841–850.

    Article  CAS  PubMed  Google Scholar 

  41. Marchetti G, Meroni L, Varchetta S, et al.: Low-dose prolonged intermittent interleukin-2 adjuvant therapy: results of a randomized trial among human immunodeficiency viruspositive patients with advanced immune impairment. J Infect Dis 2002, 186:606–616.

    Article  CAS  PubMed  Google Scholar 

  42. Vigano A, Saresella M, Trabattoni D, et al.: Growth hormone in T-lymphocyte thymic and postthymic development: a study in HIV-infected children. J Pediatr 2004, 145:542–548.

    Article  CAS  PubMed  Google Scholar 

  43. Napolitano LA, Lo JC, Gotway MB, et al.: Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 2002, 16:1103–1111.

    Article  CAS  PubMed  Google Scholar 

  44. Pires A, Pido-Lopez J, Moyle G, et al.: Enhanced T-cell maturation, differentiation and function in HIV-1-infected individuals after growth hormone and highly active antiretroviral therapy. Antivir Ther 2004, 9:67–75.

    CAS  PubMed  Google Scholar 

  45. Fry TJ, Moniuszko M, Creekmore S, et al.: IL-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 2003, 101:2294–2299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazra, R., Mackall, C. Thymic function in HIV infection. Curr HIV/AIDS Rep 2, 24–28 (2005). https://doi.org/10.1007/s11904-996-0005-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-996-0005-2

Keywords

Navigation