Skip to main content

Advertisement

Log in

Viral and Host Biomarkers of HIV Remission Post Treatment Interruption

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption.

Recent Findings

There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested.

Summary

A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science. 1997;278(5341):1291–5. https://doi.org/10.1126/science.278.5341.1291.

    Article  CAS  PubMed  Google Scholar 

  2. Eisele E, Siliciano RF. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity. 2012;37(3):377–88. https://doi.org/10.1016/j.immuni.2012.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    Article  CAS  Google Scholar 

  4. Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, et al. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med. 2020;26(9):1339–50. https://doi.org/10.1038/s41591-020-1022-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li JZ, Aga E, Bosch R, Pilkinton M, Kroon E, MacLaren L, et al. Time to Viral Rebound After Interruption of Modern Antiretroviral Therapies. Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab541.

  6. Namazi G, Fajnzylber JM, Aga E, Bosch RJ, Acosta EP, Sharaf R, et al. The Control of HIV After Antiretroviral Medication Pause (CHAMP) Study: Posttreatment Controllers Identified From 14 Clinical Studies. J Infect Dis. 2018;218(12):1954–63. https://doi.org/10.1093/infdis/jiy479.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Deeks SG, Barre-Sinoussi F. Public health: Towards a cure for HIV. Nature. 2012;487(7407):293–4. https://doi.org/10.1038/487293a.

    Article  CAS  PubMed  Google Scholar 

  8. Julg B, Dee L, Ananworanich J, Barouch DH, Bar K, Caskey M, et al. Recommendations for analytical antiretroviral treatment interruptions in HIV research trials-report of a consensus meeting. Lancet HIV. 2019;6(4):e259–e68. https://doi.org/10.1016/S2352-3018(19)30052-9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fajnzylber J, Sharaf R, Hutchinson JN, Aga E, Bosch RJ, Hartogensis W, et al. Frequency of post treatment control varies by antiretroviral therapy restart and viral load criteria. AIDS. 2021;35(13):2225–7. https://doi.org/10.1097/QAD.0000000000002978.

    Article  CAS  PubMed  Google Scholar 

  10. •• Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS. 2016;30(3):343–53. https://doi.org/10.1097/QAD.0000000000000953Viral factors: this study reported that the higher levels of cell-associated HIV RNA during ART are associated with a shorter time to HIV rebound after treatment interruption, highlighting the potential biological significance of transcriptionally active HIV reservoirs.

    Article  CAS  PubMed  Google Scholar 

  11. •• Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9(3):e1003211. https://doi.org/10.1371/journal.ppat.1003211Viral factors: this study was the first to report the possibility of achieving a post-treatment control phenotype and that this control is associated with low levels of HIV DNA measured in PBMCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams JP, Hurst J, Stohr W, Robinson N, Brown H, Fisher M, et al. HIV-1 DNA predicts disease progression and post-treatment virological control. Elife. 2014;3:e03821. https://doi.org/10.7554/eLife.03821.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med. 2017;23(11):1271–6. https://doi.org/10.1038/nm.4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993;362(6418):355–8. https://doi.org/10.1038/362355a0.

    Article  CAS  PubMed  Google Scholar 

  15. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell. 2013;155(3):540–51. https://doi.org/10.1016/j.cell.2013.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee E, Bacchetti P, Milush J, Shao W, Boritz E, Douek D, et al. Memory CD4 + T-Cells Expressing HLA-DR Contribute to HIV Persistence During Prolonged Antiretroviral Therapy. Front Microbiol. 2019;10:2214. https://doi.org/10.3389/fmicb.2019.02214.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15(8):893–900. https://doi.org/10.1038/nm.1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, et al. Different human resting memory CD4(+) T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med. 2020;12(528). https://doi.org/10.1126/scitranslmed.aax6795.

  19. Zerbato JM, McMahon DK, Sobolewski MD, Mellors JW, Sluis-Cremer N. Naive CD4+ T Cells Harbor a Large Inducible Reservoir of Latent, Replication-competent Human Immunodeficiency Virus Type 1. Clin Infect Dis. 2019;69(11):1919–25. https://doi.org/10.1093/cid/ciz108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abreu CM, Veenhuis RT, Avalos CR, Graham S, Parrilla DR, Ferreira EA, et al. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. MBio. 2019;10(4). https://doi.org/10.1128/mBio.01659-19.

  21. Ganor Y, Real F, Sennepin A, Dutertre CA, Prevedel L, Xu L, et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol. 2019;4(4):633–44. https://doi.org/10.1038/s41564-018-0335-z.

    Article  CAS  PubMed  Google Scholar 

  22. Liszewski MK, Yu JJ, O'Doherty U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods. 2009;47(4):254–60. https://doi.org/10.1016/j.ymeth.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Doherty U, Swiggard WJ, Jeyakumar D, McGain D, Malim MH. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol. 2002;76(21):10942–50.

    Article  CAS  Google Scholar 

  24. Strain MC, Richman DD. New assays for monitoring residual HIV burden in effectively treated individuals. Curr Opin HIV AIDS. 2013;8(2):106–10. https://doi.org/10.1097/COH.0b013e32835d811b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sneller MC, Huiting ED, Clarridge KE, Seamon C, Blazkova J, Justement JS, et al. Kinetics of Plasma HIV Rebound in the Era of Modern Antiretroviral Therapy. J Infect Dis. 2020;222(10):1655–9. https://doi.org/10.1093/infdis/jiaa270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. •• Giron LB, Palmer CS, Liu Q, Yin X, Papasavvas E, Sharaf R, et al. Non-invasive plasma glycomic and metabolic biomarkers of post-treatment control of HIV. Nat Commun. 2021;12(1):3922. https://doi.org/10.1038/s41467-021-24077-wHost factors: this study reported novel plasma metabolic and glycomic factors that their levels pre-ATI associate with both TTVR and probability-of-viral-remission post-ATI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Colby DJ, Trautmann L, Pinyakorn S, Leyre L, Pagliuzza A, Kroon E, et al. Rapid HIV RNA rebound after antiretroviral treatment interruption in persons durably suppressed in Fiebig I acute HIV infection. Nat Med. 2018;24(7):923–6. https://doi.org/10.1038/s41591-018-0026-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pannus P, Rutsaert S, De Wit S, Allard SD, Vanham G, Cole B, et al. Rapid viral rebound after analytical treatment interruption in patients with very small HIV reservoir and minimal on-going viral transcription. J Int AIDS Soc. 2020;23(2):e25453. https://doi.org/10.1002/jia2.25453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castagna A, Muccini C, Galli L, Bigoloni A, Poli A, Spagnuolo V, et al. Analytical treatment interruption in chronic HIV-1 infection: time and magnitude of viral rebound in adults with 10 years of undetectable viral load and low HIV-DNA (APACHE study). J Antimicrob Chemother. 2019;74(7):2039–46. https://doi.org/10.1093/jac/dkz138.

    Article  CAS  PubMed  Google Scholar 

  30. Pasternak AO, Grijsen ML, Wit FW, Bakker M, Jurriaans S, Prins JM, et al. Cell-associated HIV-1 RNA predicts viral rebound and disease progression after discontinuation of temporary early ART. JCI. Insight. 2020;5(6). https://doi.org/10.1172/jci.insight.134196.

  31. Goujard C, Girault I, Rouzioux C, Lecuroux C, Deveau C, Chaix ML, et al. HIV-1 control after transient antiretroviral treatment initiated in primary infection: role of patient characteristics and effect of therapy. Antivir Ther. 2012;17(6):1001–9. https://doi.org/10.3851/IMP2273.

    Article  CAS  PubMed  Google Scholar 

  32. Assoumou L, Weiss L, Piketty C, Burgard M, Melard A, Girard PM, et al. A low HIV-DNA level in peripheral blood mononuclear cells at antiretroviral treatment interruption predicts a higher probability of maintaining viral control. AIDS. 2015;29(15):2003–7. https://doi.org/10.1097/QAD.0000000000000734.

    Article  CAS  PubMed  Google Scholar 

  33. Van Gulck E, Bracke L, Heyndrickx L, Coppens S, Atkinson D, Merlin C, et al. Immune and viral correlates of "secondary viral control" after treatment interruption in chronically HIV-1 infected patients. PLoS One. 2012;7(5):e37792. https://doi.org/10.1371/journal.pone.0037792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. •• Sharaf R, Lee GQ, Sun X, Etemad B, Aboukhater LM, Hu Z, et al. HIV-1 proviral landscapes distinguish posttreatment controllers from noncontrollers. J Clin Invest. 2018;128(9):4074–85. https://doi.org/10.1172/JCI120549Viral factors: this study, using near-full-length HIV proviral sequencing, showed that PTCs have lower levels of intact HIV DNA compared to non-controllers.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee GQ, Orlova-Fink N, Einkauf K, Chowdhury FZ, Sun X, Harrington S, et al. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. J Clin Invest. 2017;127(7):2689–96. https://doi.org/10.1172/JCI93289.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee SK, Zhou S, Baldoni PL, Spielvogel E, Archin NM, Hudgens MG, et al. Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay. J Acquir Immune Defic Syndr. 2017;74(2):221–8. https://doi.org/10.1097/QAI.0000000000001187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Einkauf KB, Lee GQ, Gao C, Sharaf R, Sun X, Hua S, et al. Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. J Clin Invest. 2019;129(3):988–98. https://doi.org/10.1172/JCI124291.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, Sengupta S, et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature. 2019;566(7742):120–5. https://doi.org/10.1038/s41586-019-0898-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • SenGupta D, Brinson C, DeJesus E, Mills A, Shalit P, Guo S, et al. The TLR7 agonist vesatolimod induced a modest delay in viral rebound in HIV controllers after cessation of antiretroviral therapy. Sci Transl Med. 2021;13(599). https://doi.org/10.1126/scitranslmed.abg3071Viral factors: This study linked a smaller size of intact HIV DNA, measured by IPDA in blood, with a delay of viral rebound in HIV virological controllers recieved a TLR7 agonist.

  40. •• Jonathan Z. Li AK, Meghan Melberg, Elizabeth Wonderlich, Jennifer Kinslow, Evgenia Aga, Ronald Bosch, Yijia Li, Mark Pilkinton, Lynsay MacLaren, Michael Keefer, Ed Acosta, Lawrence Fox, Liz Bar, John Mellors, Robert Coombs, Steven Deeks, Rajesh Gandhi, Michael Busch, Alan Landay, Bernard Macatangay, and Davey M. Smith for the A5345 Study Team. Size and Activity of the HIV Reservoir Predict Rebound Timing After ART Interruption. Conference on Retroviruses and Opportunistic Infections (CROI) 2022; Abstract # 1821. 2022. Viral factors: A report of virological and immunological correlates, measured during ART, of TTVR in 45 HIV-infected ART-suppressed individuals who underwent ATI without curative interventions. This study shows a correlation between the size of intact HIV DNA, measured by IPDA, and TTVR.

  41. Yijia Li BE, Meghan Melberg, Radwa Sharaf, Wendy Hartogensis, Evgenia Aga, Ronald J. Bosch, Jeffrey Jacobson, Elizabeth Connick, Paul Volberding, Daniel J. Skiest,, David M. Margolis SGD, Michael M. Lederman, Frederick M. Hecht, Jonathan Z. Li. Post-Treatment Controllers Maintain a Limited Intact Reservoir After ART Interruption. Conference on Retroviruses and Opportunistic Infections (CROI) 2022; Abstract number 364. 2022.

  42. Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol. 2005;79(11):6610–9. https://doi.org/10.1128/JVI.79.11.6610-6619.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sherrill-Mix S, Lewinski MK, Famiglietti M, Bosque A, Malani N, Ocwieja KE, et al. HIV latency and integration site placement in five cell-based models. Retrovirology. 2013;10:90. https://doi.org/10.1186/1742-4690-10-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patro SC, Brandt LD, Bale MJ, Halvas EK, Joseph KW, Shao W, et al. Combined HIV-1 sequence and integration site analysis informs viral dynamics and allows reconstruction of replicating viral ancestors. Proc Natl Acad Sci U S A. 2019;116(51):25891–9. https://doi.org/10.1073/pnas.1910334116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cesana D, Santoni de Sio FR, Rudilosso L, Gallina P, Calabria A, Beretta S et al. HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells. Nat Commun 2017;8(1):498. doi:https://doi.org/10.1038/s41467-017-00609-1.

  46. Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1. Nature. 2020;585(7824):261–7. https://doi.org/10.1038/s41586-020-2651-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lian X, Gao C, Sun X, Jiang C, Einkauf KB, Seiger KW, et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci Transl Med. 2021;13(624):eabl4097. https://doi.org/10.1126/scitranslmed.abl4097.

    Article  CAS  PubMed  Google Scholar 

  48. Xiaodong Lian KS, Gregory T. Gladkov, Joshua Chevalier, Kevin B. Einkauf, Jane E. Blackmer, Chenyang Jiang, Eric S. Rosenberg, Ce Gao, Xu Yu, Tae-Wook Chun, Mathias Lichterfeld. LONGITUDINAL DYNAMICS OF INTACT PROVIRAL HIV-1 DNA IN POSTTREATMENT CONTROLLERS. 2021 Conference on Retroviruses and Opportunistic Infection.Abstract # 309.

  49. Einkauf KB, Osborn MR, Gao C, Sun W, Sun X, Lian X, et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell. 2022. https://doi.org/10.1016/j.cell.2021.12.011.

  50. Abdel-Mohsen M, Wang C, Strain MC, Lada SM, Deng X, Cockerham LR, et al. Select host restriction factors are associated with HIV persistence during antiretroviral therapy. Aids. 2015;29(4):411–20. https://doi.org/10.1097/QAD.0000000000000572.

    Article  CAS  PubMed  Google Scholar 

  51. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 2013;9(2):e1003174. https://doi.org/10.1371/journal.ppat.1003174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar AM, Borodowsky I, Fernandez B, Gonzalez L, Kumar M. Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. J Neuro-Oncol. 2007;13(3):210–24. https://doi.org/10.1080/13550280701327038.

    Article  CAS  Google Scholar 

  53. Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, et al. HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med. 2018;10(430). https://doi.org/10.1126/scitranslmed.aap9927.

  54. Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, Cornelissen M, et al. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol. 2008;46(7):2206–11. https://doi.org/10.1128/JCM.00055-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M Jr, Coffin JM, et al. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2014;111(19):7078–83. https://doi.org/10.1073/pnas.1402873111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, et al. A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. EBioMedicine. 2015;2(8):874–83. https://doi.org/10.1016/j.ebiom.2015.06.019.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cabrera C, Chang L, Stone M, Busch M, Wilson DH. Rapid, Fully Automated Digital Immunoassay for p24 Protein with the Sensitivity of Nucleic Acid Amplification for Detecting Acute HIV Infection. Clin Chem. 2015;61(11):1372–80. https://doi.org/10.1373/clinchem.2015.243287.

    Article  CAS  PubMed  Google Scholar 

  58. Livio Azzoni EP, Jay Kostman, Pablo Tebas, Karam Mounzer, Ian Frank, Kenneth M. Lynn, Linden Lalley-Chareczko, Rui Feng, Scott Appel, Bonnie J. Howell, Daniel Holder, Shih Lin Goh, Guoxin Wu, Luis Montaner. Interferon a2b Reduces Inducible CD4-associated HIV in ART-suppressed Individuals. Conference on Retroviruses and Opportunistic Infections (CROI); Abstract number 136. 2019.

  59. Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9(5):e1003398. https://doi.org/10.1371/journal.ppat.1003398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lorenzi JC, Cohen YZ, Cohn LB, Kreider EF, Barton JP, Learn GH, et al. Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. Proc Natl Acad Sci U S A. 2016;113(49):E7908–E16. https://doi.org/10.1073/pnas.1617789113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Plantin J, Massanella M, Chomont N. Inducible HIV RNA transcription assays to measure HIV persistence: pros and cons of a compromise. Retrovirology. 2018;15(1):9. https://doi.org/10.1186/s12977-017-0385-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Massanella M, Yek C, Lada SM, Nakazawa M, Shefa N, Huang K, et al. Improved assays to measure and characterize the inducible HIV reservoir. EBioMedicine. 2018;36:113–21. https://doi.org/10.1016/j.ebiom.2018.09.036.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Palmer S, Wiegand AP, Maldarelli F, Bazmi H, Mican JM, Polis M, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41(10):4531–6. https://doi.org/10.1128/JCM.41.10.4531-4536.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fidler S, Olson AD, Bucher HC, Fox J, Thornhill J, Morrison C, et al. Virological Blips and Predictors of Post Treatment Viral Control After Stopping ART Started in Primary HIV Infection. J Acquir Immune Defic Syndr. 2017;74(2):126–33. https://doi.org/10.1097/QAI.0000000000001220.

    Article  PubMed  Google Scholar 

  65. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22(9):1043–9. https://doi.org/10.1038/nm.4156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, Venanzi-Rullo E, et al. Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun. 2019;10(1):728. https://doi.org/10.1038/s41467-019-08431-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaebler C, Lorenzi JCC, Oliveira TY, Nogueira L, Ramos V, Lu CL, et al. Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. J Exp Med. 2019;216(10):2253–64. https://doi.org/10.1084/jem.20190896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Passaes CPB, Bruel T, Decalf J, David A, Angin M, Monceaux V, et al. Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents. J Virol. 2017;91(6). https://doi.org/10.1128/JVI.02296-16.

  69. Wu G, Swanson M, Talla A, Graham D, Strizki J, Gorman D, et al. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal. JCI. Insight. 2017;2(16). https://doi.org/10.1172/jci.insight.92901.

  70. Imamichi H, Smith M, Adelsberger JW, Izumi T, Scrimieri F, Sherman BT, et al. Defective HIV-1 proviruses produce viral proteins. Proc Natl Acad Sci U S A. 2020;117(7):3704–10. https://doi.org/10.1073/pnas.1917876117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8. https://doi.org/10.1038/nm880.

    Article  CAS  PubMed  Google Scholar 

  72. Bertagnolli LN, Varriale J, Sweet S, Brockhurst J, Simonetti FR, White J, et al. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc Natl Acad Sci U S A. 2020;117(50):32066–77. https://doi.org/10.1073/pnas.2020617117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cohen YZ, Lorenzi JCC, Krassnig L, Barton JP, Burke L, Pai J, et al. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J Exp Med. 2018;215(9):2311–24. https://doi.org/10.1084/jem.20180936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Salantes DB, Zheng Y, Mampe F, Srivastava T, Beg S, Lai J, et al. HIV-1 latent reservoir size and diversity are stable following brief treatment interruption. J Clin Invest. 2018;128(7):3102–15. https://doi.org/10.1172/JCI120194.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Metcalf Pate KA, Pohlmeyer CW, Walker-Sperling VE, Foote JB, Najarro KM, Cryer CG, et al. A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. J Infect Dis. 2015;212(9):1387–96. https://doi.org/10.1093/infdis/jiv230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Henrich TJ, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. PLoS Med. 2017;14(11):e1002417. https://doi.org/10.1371/journal.pmed.1002417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bachmann N, von Siebenthal C, Vongrad V, Turk T, Neumann K, Beerenwinkel N, et al. Determinants of HIV-1 reservoir size and long-term dynamics during suppressive ART. Nat Commun. 2019;10(1):3193. https://doi.org/10.1038/s41467-019-10884-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Leyre L, Kroon E, Vandergeeten C, Sacdalan C, Colby DJ, Buranapraditkun S, et al. Abundant HIV-infected cells in blood and tissues are rapidly cleared upon ART initiation during acute HIV infection. Sci Transl Med. 2020;12(533). https://doi.org/10.1126/scitranslmed.aav3491.

  79. Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010;207(10):2053–63. https://doi.org/10.1084/jem.20101664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Utay NS, Douek DC. Interferons and HIV Infection: The Good, the Bad, and the Ugly. Pathog Immun. 2016;1(1):107–16. https://doi.org/10.20411/pai.v1i1.125.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhen A, Rezek V, Youn C, Lam B, Chang N, Rick J, et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J Clin Invest. 2017;127(1):260–8. https://doi.org/10.1172/JCI89488.

    Article  PubMed  Google Scholar 

  82. •• Gondim MVP, Sherrill-Mix S, Bibollet-Ruche F, Russell RM, Trimboli S, Smith AG et al. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci Transl Med. 2021;13(576). https://doi.org/10.1126/scitranslmed.abd8179. Host factors: this study showed that rebounded virus after ATI is highly IFN-I resistant, suggesting that only the virus that can overcome certain host innate pressures can rebound to cause viremia post-ATI.

  83. • Zacharopoulou P, Marchi E, Ogbe A, Robinson N, Brown H, Jones M et al. Expression of type I interferon-associated genes at antiretroviral therapy interruption predicts HIV virological rebound. Sci Rep. 2022;12(1):462. doi:10.1038/s41598-021-04212-9. Host factors: this study reported that the higher expression of specific type I IFN associated genes (measured in CD4+ T cells) is associated with delayed viral rebound and an increased likelihood of achieving a PTC phenotype in women who underwent ATI.

  84. Mitchell JL, Takata H, Muir R, Colby DJ, Kroon E, Crowell TA, et al. Plasmacytoid dendritic cells sense HIV replication before detectable viremia following treatment interruption. J Clin Invest. 2020;130(6):2845–58. https://doi.org/10.1172/JCI130597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. • Blazkova J, Gao F, Marichannegowda MH, Justement JS, Shi V, Whitehead EJ, et al. Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. Nat Med. 2021;27(11):1893–8. https://doi.org/10.1038/s41591-021-01503-6Host factors: this study highlighted that the post ART control of HIV can be achieved by distinct host immune mechanisms.

    Article  CAS  PubMed  Google Scholar 

  86. Samri A, Bacchus-Souffan C, Hocqueloux L, Avettand-Fenoel V, Descours B, Theodorou I, et al. Polyfunctional HIV-specific T cells in Post-Treatment Controllers. AIDS. 2016;30(15):2299–302. https://doi.org/10.1097/QAD.0000000000001195.

    Article  CAS  PubMed  Google Scholar 

  87. Hurst J, Hoffmann M, Pace M, Williams JP, Thornhill J, Hamlyn E, et al. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption. Nat Commun. 2015;6:8495. https://doi.org/10.1038/ncomms9495.

    Article  CAS  PubMed  Google Scholar 

  88. McBrien JB, Mavigner M, Franchitti L, Smith SA, White E, Tharp GK, et al. Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8(+) cells. Nature. 2020;578(7793):154–9. https://doi.org/10.1038/s41586-020-1946-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keating SM, Pilcher CD, Jain V, Lebedeva M, Hampton D, Abdel-Mohsen M, et al. HIV Antibody Level as a Marker of HIV Persistence and Low-Level Viral Replication. J Infect Dis. 2017;216(1):72–81. https://doi.org/10.1093/infdis/jix225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burbelo PD, Bayat A, Rhodes CS, Hoh R, Martin JN, Fromentin R, et al. HIV antibody characterization as a method to quantify reservoir size during curative interventions. J Infect Dis. 2014;209(10):1613–7. https://doi.org/10.1093/infdis/jit667.

    Article  CAS  PubMed  Google Scholar 

  91. Yukl SA, Boritz E, Busch M, Bentsen C, Chun TW, Douek D, et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 2013;9(5):e1003347. https://doi.org/10.1371/journal.ppat.1003347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Offersen R, Yu WH, Scully EP, Julg B, Euler Z, Sadanand S, et al. HIV Antibody Fc N-Linked Glycosylation Is Associated with Viral Rebound. Cell Rep. 2020;33(11):108502. https://doi.org/10.1016/j.celrep.2020.108502Host factors: this report showed that the glycosylation of HIV-specific antibodies (especially galactosylation) is associated with TTVR.

    Article  CAS  PubMed  Google Scholar 

  93. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. https://doi.org/10.1056/NEJMoa1313984.

    Article  CAS  PubMed  Google Scholar 

  94. Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, et al. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res. 2010;70(11):4481–9. https://doi.org/10.1158/0008-5472.CAN-09-3704.

    Article  CAS  PubMed  Google Scholar 

  95. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87. https://doi.org/10.1038/nrc3236.

    Article  CAS  PubMed  Google Scholar 

  96. Sondermann P, Szymkowski DE. Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr Opin Immunol. 2016;40:78–87. https://doi.org/10.1016/j.coi.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  97. Baum LL, Cassutt KJ, Knigge K, Khattri R, Margolick J, Rinaldo C, et al. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J Immunol. 1996;157(5):2168–73.

    CAS  PubMed  Google Scholar 

  98. Bruel T, Guivel-Benhassine F, Amraoui S, Malbec M, Richard L, Bourdic K, et al. Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat Commun. 2016;7:10844. https://doi.org/10.1038/ncomms10844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chung AW, Navis M, Isitman G, Wren L, Silvers J, Amin J, et al. Activation of NK cells by ADCC antibodies and HIV disease progression. J Acquir Immune Defic Syndr. 2011;58(2):127–31. https://doi.org/10.1097/QAI.0b013e31822c62b9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee WS, Kent SJ. Anti-HIV-1 antibody-dependent cellular cytotoxicity: is there more to antibodies than neutralization? Curr Opin HIV AIDS. 2018;13(2):160–6. https://doi.org/10.1097/COH.0000000000000439.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Z, Trypsteen W, Blaauw M, Chu X, Rutsaert S, Vandekerckhove L, et al. IRF7 and RNH1 are modifying factors of HIV-1 reservoirs: a genome-wide association analysis. BMC Med. 2021;19(1):282. https://doi.org/10.1186/s12916-021-02156-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Siegel DA, Thanh C, Wan E, Hoh R, Hobbs K, Pan T et al. Host Variation in Interferon, MHC Class I, Glycosylation, and Viral Transcription Genes Predict HIV Persistence. bioRxiv. 2021:2021.10.31.466670. https://doi.org/10.1101/2021.10.31.466670.

  103. • Corley MJ, Pang APS, Rasmussen TA, Tolstrup M, Sogaard OS, Ndhlovu LC. Candidate host epigenetic marks predictive for HIV reservoir size, responsiveness to latency reversal, and viral rebound. AIDS. 2021;35(14):2269–79. https://doi.org/10.1097/QAD.0000000000003065Host factors: this study reported an association between specific DNA methylation sites (in CD4+ T cells) and TTVR. These DNA methylation sites occur in genes previously linked to HIV replication and/or immune modulation.

    Article  CAS  PubMed  Google Scholar 

  104. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–55. https://doi.org/10.1146/annurev-med-042909-093756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsue PY, Deeks SG, Hunt PW. Immunologic basis of cardiovascular disease in HIV-infected adults. J Infect Dis. 2012;205(Suppl 3):S375–82. https://doi.org/10.1093/infdis/jis200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12(12):1365–71. https://doi.org/10.1038/nm1511.

    Article  CAS  PubMed  Google Scholar 

  107. Herbeuval JP, Hardy AW, Boasso A, Anderson SA, Dolan MJ, Dy M, et al. Regulation of TNF-related apoptosis-inducing ligand on primary CD4+ T cells by HIV-1: role of type I IFN-producing plasmacytoid dendritic cells. Proc Natl Acad Sci U S A. 2005;102(39):13974–9. https://doi.org/10.1073/pnas.0505251102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA, Herzenberg LA. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med. 1995;181(6):2029–36.

    Article  CAS  Google Scholar 

  109. Sedaghat AR, Siliciano RF, Wilke CO. Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART. BMC Infect Dis. 2008;8:2. https://doi.org/10.1186/1471-2334-8-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Naeger DM, Martin JN, Sinclair E, Hunt PW, Bangsberg DR, Hecht F, et al. Cytomegalovirus-specific T cells persist at very high levels during long-term antiretroviral treatment of HIV disease. PLoS One. 2010;5(1):e8886. https://doi.org/10.1371/journal.pone.0008886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Borges AH, O'Connor JL, Phillips AN, Ronsholt FF, Pett S, Vjecha MJ, et al. Factors Associated With Plasma IL-6 Levels During HIV Infection. J Infect Dis. 2015;212(4):585–95. https://doi.org/10.1093/infdis/jiv123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nixon DE, Landay AL. Biomarkers of immune dysfunction in HIV. Curr Opin HIV AIDS. 2010;5(6):498–503. https://doi.org/10.1097/COH.0b013e32833ed6f4.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Deeks SG. Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med. 2009;17(4):118–23.

    PubMed  Google Scholar 

  114. Klatt NR, Chomont N, Douek DC, Deeks SG. Immune activation and HIV persistence: implications for curative approaches to HIV infection. Immunol Rev. 2013;254(1):326–42. https://doi.org/10.1111/imr.12065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med. 2002;8(12):1439–44. https://doi.org/10.1038/nm1202-802.

    Article  CAS  PubMed  Google Scholar 

  116. Oeckl P, Otto M. A Review on MS-Based Blood Biomarkers for Alzheimer's Disease. Neurol Ther. 2019;8(Suppl 2):113–27. https://doi.org/10.1007/s40120-019-00165-4.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Yang L, Wang Y, Cai H, Wang S, Shen Y, Ke C. Application of metabolomics in the diagnosis of breast cancer: a systematic review. J Cancer. 2020;11(9):2540–51. https://doi.org/10.7150/jca.37604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Trbojevic Akmacic I, Ventham NT, Theodoratou E, Vuckovic F, Kennedy NA, Kristic J, et al. Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis. 2015;21(6):1237–47. https://doi.org/10.1097/MIB.0000000000000372.

    Article  PubMed  Google Scholar 

  119. Valle-Casuso JC, Angin M, Volant S, Passaes C, Monceaux V, Mikhailova A, et al. Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4(+) T Cells and Offers an Opportunity to Tackle Infection. Cell Metab. 2019;29(3):611–26 e5. https://doi.org/10.1016/j.cmet.2018.11.015.

    Article  CAS  PubMed  Google Scholar 

  120. Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, et al. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett. 2017;591(20):3319–32. https://doi.org/10.1002/1873-3468.12843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Saez-Cirion A, Sereti I. Immunometabolism and HIV-1 pathogenesis: food for thought. Nat Rev Immunol. 2021;21(1):5–19. https://doi.org/10.1038/s41577-020-0381-7.

    Article  CAS  PubMed  Google Scholar 

  122. Clerc I, Moussa DA, Vahlas Z, Tardito S, Oburoglu L, Hope TJ, et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat Metab. 2019;1(7):717–30. https://doi.org/10.1038/s42255-019-0084-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hegedus A, Kavanagh Williamson M, Khan MB, Dias Zeidler J, Da Poian AT, El-Bacha T, et al. Evidence for Altered Glutamine Metabolism in Human Immunodeficiency Virus Type 1 Infected Primary Human CD4(+) T Cells. AIDS Res Hum Retrovir. 2017;33(12):1236–47. https://doi.org/10.1089/AID.2017.0165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, et al. Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism. Cell. 2018;175(7):1780–95 e19. https://doi.org/10.1016/j.cell.2018.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, et al. alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18(9):985–94. https://doi.org/10.1038/ni.3796.

    Article  CAS  PubMed  Google Scholar 

  126. Martinez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. https://doi.org/10.1038/s41467-019-13668-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sivanand S, Viney I, Wellen KE. Spatiotemporal Control of Acetyl-CoA Metabolism in Chromatin Regulation. Trends Biochem Sci. 2018;43(1):61–74. https://doi.org/10.1016/j.tibs.2017.11.004.

    Article  CAS  PubMed  Google Scholar 

  128. Lee S, Kim HS, Kim MJ, Min KY, Choi WS, You JS. Glutamine metabolite alpha-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Bone. 2021;145:115836. https://doi.org/10.1016/j.bone.2020.115836.

    Article  CAS  PubMed  Google Scholar 

  129. Cruzat VF, Krause M, Newsholme P. Amino acid supplementation and impact on immune function in the context of exercise. J Int Soc Sports Nutr. 2014;11(1):61. https://doi.org/10.1186/s12970-014-0061-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Newsholme P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr. 2001;131(9 Suppl):2515S-22S; discussion 23S-4S. https://doi.org/10.1093/jn/131.9.2515S.

  131. Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10(11). doi:https://doi.org/10.3390/nu10111564.

  132. • Giron LB, Papasavvas E, Yin X, Goldman AR, Tang HY, Palmer CS et al. Phospholipid Metabolism Is Associated with Time to HIV Rebound upon Treatment Interruption. mBio. 2021;12(1). https://doi.org/10.1128/mBio.03444-20. Host factors: this report showed that specific pro-inflammatory lipids that have been previously associated with the reactivation of dormant tumor cells are also associated with an accelerated TTVR.

  133. Vujkovic-Cvijin I, Dunham RM, Iwai S, Maher MC, Albright RG, Broadhurst MJ, et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med. 2013;5(193):193ra91. https://doi.org/10.1126/scitranslmed.3006438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Boyd A, Boccara F, Meynard JL, Ichou F, Bastard JP, Fellahi S et al. Serum Tryptophan-Derived Quinolinate and Indole-3-Acetate Are Associated With Carotid Intima-Media Thickness and its Evolution in HIV-Infected Treated Adults. Open Forum Infect Dis Ther 2019;6(12):ofz516. doi:https://doi.org/10.1093/ofid/ofz516.

  135. Kardashian A, Ma Y, Yin MT, Scherzer R, Nolan O, Aweeka F, et al. High Kynurenine:Tryptophan Ratio Is Associated With Liver Fibrosis in HIV-Monoinfected and HIV/Hepatitis C Virus-Coinfected Women. Open Forum Infect Dis. 2019;6(7):ofz281. https://doi.org/10.1093/ofid/ofz281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Martinez P, Tsai AC, Muzoora C, Kembabazi A, Weiser SD, Huang Y, et al. Reversal of the Kynurenine pathway of tryptophan catabolism may improve depression in ART-treated HIV-infected Ugandans. J Acquir Immune Defic Syndr. 2014;65(4):456–62. https://doi.org/10.1097/QAI.0000000000000062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moon JY, Zolnik CP, Wang Z, Qiu Y, Usyk M, Wang T, et al. Gut microbiota and plasma metabolites associated with diabetes in women with, or at high risk for, HIV infection. EBioMedicine. 2018;37:392–400. https://doi.org/10.1016/j.ebiom.2018.10.037.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Qi Q, Hua S, Clish CB, Scott JM, Hanna DB, Wang T, et al. Plasma Tryptophan-Kynurenine Metabolites Are Altered in Human Immunodeficiency Virus Infection and Associated With Progression of Carotid Artery Atherosclerosis. Clin Infect Dis. 2018;67(2):235–42. https://doi.org/10.1093/cid/ciy053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McLaughlin MM, Ma Y, Scherzer R, Rahalkar S, Martin JN, Mills C, et al. Association of Viral Persistence and Atherosclerosis in Adults With Treated HIV Infection. JAMA Netw Open. 2020;3(10):e2018099. https://doi.org/10.1001/jamanetworkopen.2020.18099.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Frasch SC, Zemski-Berry K, Murphy RC, Borregaard N, Henson PM, Bratton DL. Lysophospholipids of different classes mobilize neutrophil secretory vesicles and induce redundant signaling through G2A. J Immunol. 2007;178(10):6540–8. https://doi.org/10.4049/jimmunol.178.10.6540.

    Article  CAS  PubMed  Google Scholar 

  141. Zhao Y, Natarajan V. Lysophosphatidic acid (LPA) and its receptors: role in airway inflammation and remodeling. Biochim Biophys Acta. 2013;1831(1):86–92. https://doi.org/10.1016/j.bbalip.2012.06.014.

    Article  CAS  PubMed  Google Scholar 

  142. Qin X, Qiu C, Zhao L. Lysophosphatidylcholine perpetuates macrophage polarization toward classically activated phenotype in inflammation. Cell Immunol. 2014;289(1-2):185–90. https://doi.org/10.1016/j.cellimm.2014.04.010.

    Article  CAS  PubMed  Google Scholar 

  143. Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim Biophys Acta. 2002;1582(1-3):81–8. https://doi.org/10.1016/s1388-1981(02)00140-3.

    Article  CAS  PubMed  Google Scholar 

  144. Perego M, Tyurin VA, Tyurina YY, Yellets J, Nacarelli T, Lin C, et al. Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci Transl Med. 2020;12(572). https://doi.org/10.1126/scitranslmed.abb5817.

  145. Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18(9):1401–6. https://doi.org/10.1038/nm.2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320(5874):373–6. https://doi.org/10.1126/science.1154315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670–3. https://doi.org/10.1126/science.1129594.

    Article  CAS  PubMed  Google Scholar 

  148. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A. 2015;112(11):E1297–306. https://doi.org/10.1073/pnas.1422481112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol. 2010;30(Suppl 1):S9–14. https://doi.org/10.1007/s10875-010-9405-6.

    Article  CAS  PubMed  Google Scholar 

  150. Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol. 2010;10(5):301–16. https://doi.org/10.1038/nri2761.

    Article  CAS  PubMed  Google Scholar 

  151. Kristic J, Vuckovic F, Menni C, Klaric L, Keser T, Beceheli I, et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci. 2014;69(7):779–89. https://doi.org/10.1093/gerona/glt190.

    Article  CAS  PubMed  Google Scholar 

  152. Miura Y, Endo T. Glycomics and glycoproteomics focused on aging and age-related diseases--Glycans as a potential biomarker for physiological alterations. Biochim Biophys Acta. 2016;1860(8):1608–14. https://doi.org/10.1016/j.bbagen.2016.01.013.

    Article  CAS  PubMed  Google Scholar 

  153. Itakura Y, Sasaki N, Kami D, Gojo S, Umezawa A, Toyoda M. N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci. 2016;6:14. https://doi.org/10.1186/s13578-016-0079-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Giron LB, Papasavvas E, Azzoni L, Yin X, Anzurez A, Damra M, et al. Plasma and antibody glycomic biomarkers of time to HIV rebound and viral setpoint. AIDS. 2020;34(5):681–6. https://doi.org/10.1097/QAD.0000000000002476.

    Article  CAS  PubMed  Google Scholar 

  155. Das B, Dobrowolski C, Luttge B, Valadkhan S, Chomont N, Johnston R, et al. Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir. Proc Natl Acad Sci U S A. 2018;115(33):E7795–E804. https://doi.org/10.1073/pnas.1803468115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Falcinelli SD, Shook-Sa BE, Dewey MG, Sridhar S, Read J, Kirchherr J, et al. Impact of Biological Sex on Immune Activation and Frequency of the Latent HIV Reservoir During Suppressive Antiretroviral Therapy. J Infect Dis. 2020;222(11):1843–52. https://doi.org/10.1093/infdis/jiaa298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Scully EP, Gandhi M, Johnston R, Hoh R, Lockhart A, Dobrowolski C, et al. Sex-Based Differences in Human Immunodeficiency Virus Type 1 Reservoir Activity and Residual Immune Activation. J Infect Dis. 2019;219(7):1084–94. https://doi.org/10.1093/infdis/jiy617.

    Article  CAS  PubMed  Google Scholar 

  158. Deleage C, Chan CN, Busman-Sahay K, Estes JD. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments. Retrovirology. 2018;15(1):4. https://doi.org/10.1186/s12977-017-0387-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M Jr, et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. Pathog Immun. 2016;1(1):68–106. https://doi.org/10.20411/pai.v1i1.100.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Abdel-Mohsen M, Kuri-Cervantes L, Grau-Exposito J, Spivak AM, Nell RA, Tomescu C, et al. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci Transl Med. 2018;10(437). https://doi.org/10.1126/scitranslmed.aar6759.

  161. Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta. 2019;488:165–71. https://doi.org/10.1016/j.cca.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  162. Gai W, Sun K. Epigenetic Biomarkers in Cell-Free DNA and Applications in Liquid Biopsy. Genes (Basel). 2019;10(1). https://doi.org/10.3390/genes10010032.

  163. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13(9):942. https://doi.org/10.15252/msb.20156297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Joseph M. McCune, M.D., Ph.D., Douglas D. Richman, Ph.D, and Luis J. Montaner, D.V.M., D.Phil., for reading and commenting on this article.

Funding

MA-M is funded by Bill & Melinda Gates Foundation, Campbell Foundation, the Foundation for AIDS Research (amfAR), and the NIH grants (R01AI165079, R01NS117458, R01DK123733, R01AG062383, and P30 AI 045008). MA-M and L.B.G are members of the investigation team of the NIH-funded BEAT-HIV Martin Delaney Collaboratory to cure HIV-1 infection (UM1AI164570). : LBG is funded by AIDS Clinical Trials Group (NWCS 539). Rachel E. Locke, Ph.D., provided critical comments and editing.

Author information

Authors and Affiliations

Authors

Contributions

MA-M and L.B.G conceived, designed, and wrote the review.

Corresponding author

Correspondence to Leila B. Giron.

Ethics declarations

Conflict of interest

Authors have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giron, L.B., Abdel-Mohsen, M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 19, 217–233 (2022). https://doi.org/10.1007/s11904-022-00607-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-022-00607-z

Keywords

Navigation