Advertisement

Current HIV/AIDS Reports

, Volume 16, Issue 1, pp 66–75 | Cite as

Brain PET Imaging: Value for Understanding the Pathophysiology of HIV-associated Neurocognitive Disorder (HAND)

  • Sanhita Sinharay
  • Dima A. HammoudEmail author
Central Nervous System and Cognition (SS Spudich, Section Editor)
  • 295 Downloads
Part of the following topical collections:
  1. Topical Collection on Central Nervous System and Cognition

Abstract

Purpose of Review

The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies.

Recent Findings

In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND.

Summary

The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.

Keywords

HIV HIV-associated neurocognitive disorder (HAND) Brain PET imaging Inflammation Neurotransmitters Amyloid deposition 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies with human subjects performed by the authors have been previously published and complied with all applicable ethical standards. All reported studies with animal subjects performed by the authors were approved by the Institutional Animal Care and Use Committee of the National Institutes of Health and were performed in accordance with the guide for the Care and Use of Laboratory Animals.

References

  1. 1.
    McArthur JC, Steiner J, Sacktor N, Nath A. Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol. 2010;67(6):699–714.PubMedGoogle Scholar
  2. 2.
    Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.  https://doi.org/10.1007/s13365-010-0006-1.PubMedCrossRefGoogle Scholar
  3. 3.
    Gates TM, Cysique LA. The chronicity of HIV infection should drive the research strategy of NeuroHIV treatment studies: a critical review. CNS Drugs. 2016;30(1):53–69.  https://doi.org/10.1007/s40263-015-0302-7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Brew BJ. Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS (London, England). 2004;18(Suppl 1):S75–8.CrossRefGoogle Scholar
  5. 5.
    Pence BW, Mills JC, Bengtson AM, Gaynes BN, Breger TL, Cook RL, et al. Association of increased chronicity of depression with HIV appointment attendance, treatment failure, and mortality among HIV-infected adults in the United States. JAMA Psychiatry. 2018;75:379–85.  https://doi.org/10.1001/jamapsychiatry.2017.4726.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Spudich SS, Ances BM. CROI 2017: neurologic complications of HIV infection. Top Antivir Med. 2017;25(2):69–76.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Farhadian S, Patel P, Spudich S. Neurological complications of HIV infection. Curr Infect Dis Rep. 2017;19(12):50.  https://doi.org/10.1007/s11908-017-0606-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Keegan MR, Chittiprol S, Letendre SL, Winston A, Fuchs D, Boasso A, et al. Tryptophan metabolism and its relationship with depression and cognitive impairment among HIV-infected individuals. Int J Tryptophan Res. 2016;9:79–88.  https://doi.org/10.4137/ijtr.s36464.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sperner-Unterweger B, Kohl C, Fuchs D. Immune changes and neurotransmitters: possible interactions in depression? Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:268–76.  https://doi.org/10.1016/j.pnpbp.2012.10.006.CrossRefGoogle Scholar
  10. 10.
    Hammoud DA, Endres CJ, Hammond E, Uzuner O, Brown A, Nath A, et al. Imaging serotonergic transmission with [11C]DASB-PET in depressed and non-depressed patients infected with HIV. NeuroImage. 2010;49(3):2588–95.  https://doi.org/10.1016/j.neuroimage.2009.10.037.PubMedCrossRefGoogle Scholar
  11. 11.
    Chang L, Wang GJ, Volkow ND, Ernst T, Telang F, Logan J, et al. Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage. 2008;42(2):869–78.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nagano-Saito A, Liu J, Doyon J, Dagher A. Dopamine modulates default mode network deactivation in elderly individuals during the tower of London task. Neurosci Lett. 2009;458(1):1–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Haynes BI, Pitkanen M, Kulasegaram R, Casey SJ, Schutte M, Towgood K, et al. HIV: ageing, cognition and neuroimaging at 4-year follow-up. HIV Med. 2018;19:376–85.  https://doi.org/10.1111/hiv.12598.PubMedCrossRefGoogle Scholar
  14. 14.
    Wright PW, Vaida FF, Fernandez RJ, Rutlin J, Price RW, Lee E, et al. Cerebral white matter integrity during primary HIV infection. AIDS (London, England). 2015;29(4):433–42.  https://doi.org/10.1097/qad.0000000000000560.CrossRefGoogle Scholar
  15. 15.
    Ragin AB, Du H, Ochs R, Wu Y, Sammet CL, Shoukry A, et al. Structural brain alterations can be detected early in HIV infection. Neurology. 2012;79(24):2328–34.  https://doi.org/10.1212/WNL.0b013e318278b5b4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Correa DG, Zimmermann N, Ventura N, Tukamoto G, Doring T, Leite SC, et al. Longitudinal evaluation of resting-state connectivity, white matter integrity and cortical thickness in stable HIV infection: preliminary results. Neuroradiol J. 2017;30(6):535–45.  https://doi.org/10.1177/1971400917739273.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Guha A, Brier MR, Ortega M, Westerhaus E, Nelson B, Ances BM. Topographies of cortical and subcortical volume loss in HIV and aging in the cART era. J Acquir Immune Defic Syndr. 2016;73(4):374–83.  https://doi.org/10.1097/qai.0000000000001111.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Descamps M, Hyare H, Stebbing J, Winston A. Magnetic resonance imaging and spectroscopy of the brain in HIV disease. J HIV Ther. 2008;13(3):55–8.PubMedGoogle Scholar
  19. 19.
    Cysique LA, Moffat K, Moore DM, Lane TA, Davies NW, Carr A, et al. HIV, vascular and aging injuries in the brain of clinically stable HIV-infected adults: a (1)H MRS study. PLoS One. 2013;8(4):e61738.  https://doi.org/10.1371/journal.pone.0061738.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hammoud DA, Sinharay S, Steinbach S, Wakim PG, Geannopolous K, Traino K, et al. Global and regional brain hypometabolism on FDG-PET in treated HIV-infected individuals. Neurology. 2018;91(17):e1591-e601.  https://doi.org/10.1212/wnl.0000000000006398.
  21. 21.
    Towgood KJ, Pitkanen M, Kulasegaram R, Fradera A, Soni S, Sibtain N, et al. Regional cerebral blood flow and FDG uptake in asymptomatic HIV-1 men. Hum Brain Mapp. 2013;34(10):2484–93.  https://doi.org/10.1002/hbm.22078.PubMedCrossRefGoogle Scholar
  22. 22.
    Andersen AB, Law I, Krabbe KS, Bruunsgaard H, Ostrowski SR, Ullum H, et al. Cerebral FDG-PET scanning abnormalities in optimally treated HIV patients. J Neuroinflammation. 2010;7:13.  https://doi.org/10.1186/1742-2094-7-13.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology. 2016;86(15):1425–32.  https://doi.org/10.1212/wnl.0000000000002485.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, et al. Regional brain distribution of translocator protein using [(11)C]DPA-713 PET in individuals infected with HIV. J Neurovirol. 2014;20(3):219–32.  https://doi.org/10.1007/s13365-014-0239-5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS (London, England). 2014;28(1):67–72.  https://doi.org/10.1097/01.aids.0000432467.54003.f7.CrossRefGoogle Scholar
  26. 26.
    Wiley CA, Lopresti BJ, Becker JT, Boada F, Lopez OL, Mellors J, et al. Positron emission tomography imaging of peripheral benzodiazepine receptor binding in human immunodeficiency virus-infected subjects with and without cognitive impairment. J Neurovirol. 2006;12(4):262–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, et al. Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. J Neurovirol. 2005;11(4):346–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang GJ, Chang L, Volkow ND, Telang F, Logan J, Ernst T, et al. Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain. 2004;127(Pt 11):2452–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Ances BM, Christensen JJ, Teshome M, Taylor J, Xiong C, Aldea P, et al. Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case-control study. Neurology. 2010;75(2):111–5.  https://doi.org/10.1212/WNL.0b013e3181e7b66e.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ances BM, Benzinger TL, Christensen JJ, Thomas J, Venkat R, Teshome M, et al. 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol. 2012;69(1):72–7.  https://doi.org/10.1001/archneurol.2011.761.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Turner RS, Chadwick M, Horton WA, Simon GL, Jiang X, Esposito G. An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimers Dement (Amsterdam, Netherlands). 2016;4:1–5.  https://doi.org/10.1016/j.dadm.2016.03.009.CrossRefGoogle Scholar
  32. 32.
    Tripathi M, Yadav S, Kumar V, Kumar R, Tripathi M, Gaikwad S, et al. HIV encephalitis with subcortical tau deposition: imaging pathology in vivo using F-18 THK 5117. Eur J Nucl Med Mol Imaging. 2016;43(13):2456–7.  https://doi.org/10.1007/s00259-016-3473-7.PubMedCrossRefGoogle Scholar
  33. 33.
    Beck SE, Queen SE, Metcalf Pate KA, Mangus LM, Abreu CM, Gama L, et al. An SIV/macaque model targeted to study HIV-associated neurocognitive disorders. J Neurovirol. 2018;24(2):204–12.  https://doi.org/10.1007/s13365-017-0582-4.PubMedCrossRefGoogle Scholar
  34. 34.
    Honeycutt JB, Garcia JV. Humanized mice: models for evaluating neuroHIV and cure strategies. J Neurovirol. 2018;24(2):185–91.  https://doi.org/10.1007/s13365-017-0567-3.PubMedCrossRefGoogle Scholar
  35. 35.
    Nixon CC, Mavigner M, Silvestri G, Garcia JV. In vivo models of human immunodeficiency virus persistence and cure strategies. J Infect Dis. 2017;215(suppl_3):S142–s51.  https://doi.org/10.1093/infdis/jiw637.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Williams K, Lackner A, Mallard J. Non-human primate models of SIV infection and CNS neuropathology. Curr Opin Virol. 2016;19:92–8.  https://doi.org/10.1016/j.coviro.2016.07.012.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hatziioannou T, Evans DT. Animal models for HIV/AIDS research. Nat Rev Microbiol. 2012;10(12):852–67.  https://doi.org/10.1038/nrmicro2911.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Reid W, Sadowska M, Denaro F, Rao S, Foulke J, Hayes N, et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci. 2001;98(16):9271–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Casas R, Muthusamy S, Wakim PG, Sinharay S, Lentz MR, Reid WC, et al. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat. NeuroImage Clin. 2018;17:659–66.  https://doi.org/10.1016/j.nicl.2017.11.018.PubMedCrossRefGoogle Scholar
  40. 40.
    Reid WC, Ibrahim WG, Kim SJ, Denaro F, Casas R, Lee DE, et al. Characterization of neuropathology in the HIV-1 transgenic rat at different ages. J Neuroimmunol. 2016;292:116–25.  https://doi.org/10.1016/j.jneuroim.2016.01.022.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Vigorito M, Connaghan KP, Chang SL. The HIV-1 transgenic rat model of neuroHIV. Brain Behav Immun. 2015;48:336–49.  https://doi.org/10.1016/j.bbi.2015.02.020.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee DE, Yue X, Ibrahim WG, Lentz MR, Peterson KL, Jagoda EM, et al. Lack of neuroinflammation in the HIV-1 transgenic rat: an [(18)F]-DPA714 PET imaging study. J Neuroinflammation. 2015;12(1):171.  https://doi.org/10.1186/s12974-015-0390-9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lentz MR, Peterson KL, Ibrahim WG, Lee DE, Sarlls J, Lizak MJ, et al. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV. PLoS One. 2014;9(8):e105752.  https://doi.org/10.1371/journal.pone.0105752.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lee DE, Reid WC, Ibrahim WG, Peterson KL, Lentz MR, Maric D, et al. Imaging dopaminergic dysfunction as a surrogate marker of neuropathology in a small-animal model of HIV. Mol Imaging. 2014;13:1–10.PubMedGoogle Scholar
  45. 45.
    Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9(3):208–14.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kieffer C, Ladinsky MS, Ninh A, Galimidi RP, Bjorkman PJ. Longitudinal imaging of HIV-1 spread in humanized mice with parallel 3D immunofluorescence and electron tomography. elife. 2017;6:e23282.  https://doi.org/10.7554/eLife.23282.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Boska MD, Dash PK, Knibbe J, Epstein AA, Akhter SP, Fields N, et al. Associations between brain microstructures, metabolites, and cognitive deficits during chronic HIV-1 infection of humanized mice. Mol Neurodegener. 2014;9:58.  https://doi.org/10.1186/1750-1326-9-58.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Epstein AA, Narayanasamy P, Dash PK, High R, Bathena SP, Gorantla S, et al. Combinatorial assessments of brain tissue metabolomics and histopathology in rodent models of human immunodeficiency virus infection. J Neuroimmune Pharmacol. 2013;8(5):1224–38.  https://doi.org/10.1007/s11481-013-9461-9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dash PK, Gorantla S, Gendelman HE, Knibbe J, Casale GP, Makarov E, et al. Loss of neuronal integrity during progressive HIV-1 infection of humanized mice. J Neurosci. 2011;31(9):3148–57.  https://doi.org/10.1523/jneurosci.5473-10.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Beck SE, Kelly KM, Queen SE, Adams RJ, Zink MC, Tarwater PM, et al. Macaque species susceptibility to simian immunodeficiency virus: increased incidence of SIV central nervous system disease in pigtailed macaques versus rhesus macaques. J Neurovirol. 2015;21(2):148–58.  https://doi.org/10.1007/s13365-015-0313-7.PubMedCrossRefGoogle Scholar
  51. 51.
    Garcia-Lerma JG, Heneine W. Animal models of antiretroviral prophylaxis for HIV prevention. Curr Opin HIV AIDS. 2012;7(6):505–13.  https://doi.org/10.1097/COH.0b013e328358e484.PubMedCrossRefGoogle Scholar
  52. 52.
    Schmitz JE, Korioth-Schmitz B. Immunopathogenesis of simian immunodeficiency virus infection in nonhuman primates. Curr Opin HIV AIDS. 2013;8(4):273–9.  https://doi.org/10.1097/COH.0b013e328361cf5b.PubMedCrossRefGoogle Scholar
  53. 53.
    Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. Curr Protoc Immunol. 2013;102:Unit 12.4.  https://doi.org/10.1002/0471142735.im1214s102.CrossRefGoogle Scholar
  54. 54.
    Evans DT, Silvestri G. Nonhuman primate models in AIDS research. Curr Opin HIV AIDS. 2013;8(4):255–61.  https://doi.org/10.1097/COH.0b013e328361cee8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dang Q, Whitted S, Goeken RM, Brenchley JM, Matsuda K, Brown CR, et al. Development of neurological disease is associated with increased immune activation in simian immunodeficiency virus-infected macaques. J Virol. 2012;86(24):13795–9.  https://doi.org/10.1128/jvi.02174-12.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Matsuda K, Brown CR, Foley B, Goeken R, Whitted S, Dang Q, et al. Laser capture microdissection assessment of virus compartmentalization in the central nervous systems of macaques infected with neurovirulent simian immunodeficiency virus. J Virol. 2013;87(16):8896–908.  https://doi.org/10.1128/jvi.00874-13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Matsuda K, Dang Q, Brown CR, Keele BF, Wu F, Ourmanov I, et al. Characterization of simian immunodeficiency virus (SIV) that induces SIV encephalitis in rhesus macaques with high frequency: role of TRIM5 and major histocompatibility complex genotypes and early entry to the brain. J Virol. 2014;88(22):13201–11.  https://doi.org/10.1128/jvi.01996-14.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hsu DC, Sunyakumthorn P, Wegner M, Schuetz A, Silsorn D, Estes JD, et al. Central nervous system inflammation and infection during early, nonaccelerated simian-human immunodeficiency virus infection in rhesus macaques. J Virol. 2018;92(11).  https://doi.org/10.1128/jvi.00222-18.
  59. 59.
    Lee KM, Chiu KB, Renner NA, Sansing HA, Didier PJ, MacLean AG. Form follows function: astrocyte morphology and immune dysfunction in SIV neuroAIDS. J Neurovirol. 2014;20(5):474–84.  https://doi.org/10.1007/s13365-014-0267-1.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Meulendyke KA, Pletnikov MV, Engle EL, Tarwater PM, Graham DR, Zink MC. Early minocycline treatment prevents a decrease in striatal dopamine in an SIV model of HIV-associated neurological disease. J Neuroimmune Pharmacol. 2012;7(2):454–64.  https://doi.org/10.1007/s11481-011-9332-1.PubMedCrossRefGoogle Scholar
  61. 61.
    Santangelo PJ, Cicala C, Byrareddy SN, Ortiz KT, Little D, Lindsay KE, et al. Early treatment of SIV+ macaques with an alpha4beta7 mAb alters virus distribution and preserves CD4(+) T cells in later stages of infection. Mucosal Immunol. 2018;11(3):932–46.  https://doi.org/10.1038/mi.2017.112.PubMedCrossRefGoogle Scholar
  62. 62.
    Santangelo PJ, Rogers KA, Zurla C, Blanchard EL, Gumber S, Strait K, et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat Methods. 2015;12(5):427–32.  https://doi.org/10.1038/nmeth.3320.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Freeman ZT, Rice KA, Soto PL, Pate KA, Weed MR, Ator NA, et al. Neurocognitive dysfunction and pharmacological intervention using guanfacine in a rhesus macaque model of self-injurious behavior. Transl Psychiatry. 2015;5:e567.  https://doi.org/10.1038/tp.2015.61.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, et al. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest. 2004;113(7):981–9.  https://doi.org/10.1172/jci20227.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wallace M, Pyzalski R, Horejsh D, Brown C, Djavani M, Lu Y, et al. Whole body positron emission tomography imaging of activated lymphoid tissues during acute simian-human immunodeficiency virus 89.6PD infection in rhesus macaques. Virology. 2000;274(2):255–61.PubMedCrossRefGoogle Scholar
  66. 66.
    Scharko AM, Perlman SB, PWN H, Hanson JM, Uno H, Pauza CD. Whole body positron emission tomography imaging of simian immunodeficiency virus-infected rhesus macaques. Proc Natl Acad Sci U S A. 1996;93(13):6425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Schreiber-Stainthorp W, Srinivasula S, Sinharay S, Shah S, Wang J, Dodd LE, et al., editors. Brain 18F-FDG PET of SIV-infected macaques after treatment interruption or initiation. Boston: CROI; 2018.Google Scholar
  68. 68.
    Rottenberg DA, Sidtis JJ, Strother SC, Schaper KA, Anderson JR, Nelson MJ, et al. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med. 1996;37(7):1133–41.PubMedGoogle Scholar
  69. 69.
    Hinkin CH, van Gorp WG, Mandelkern MA, Gee M, Satz P, Holston S, et al. Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatry Clin Neurosci. 1995;7(2):180–7.  https://doi.org/10.1176/jnp.7.2.180.PubMedCrossRefGoogle Scholar
  70. 70.
    von Giesen HJ, Antke C, Hefter H, Wenserski F, Seitz RJ, Arendt G. Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol. 2000;57(11):1601–7.Google Scholar
  71. 71.
    van Gorp WG, Mandelkern MA, Gee M, Hinkin CH, Stern CE, Paz DK, et al. Cerebral metabolic dysfunction in AIDS: findings in a sample with and without dementia. J Neuropsychiatry Clin Neurosci. 1992;4(3):280–7.  https://doi.org/10.1176/jnp.4.3.280.PubMedCrossRefGoogle Scholar
  72. 72.
    Rottenberg DA, Moeller JR, Strother SC, Sidtis JJ, Navia BA, Dhawan V, et al. The metabolic pathology of the AIDS dementia complex. Ann Neurol. 1987;22(6):700–6.  https://doi.org/10.1002/ana.410220605.PubMedCrossRefGoogle Scholar
  73. 73.
    Rappaport J, Volsky DJ. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol. 2015;21(3):235–41.  https://doi.org/10.1007/s13365-015-0346-y.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lipton SA, Gendelman HE. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med. 1995;332(14):934–40.  https://doi.org/10.1056/nejm199504063321407.PubMedCrossRefGoogle Scholar
  75. 75.
    Boven LA. Macrophages and HIV-1-associated dementia. Arch Immunol Ther Exp. 2000;48(4):273–9.Google Scholar
  76. 76.
    Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci. 2002;202(1–2):13–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Bartels AL, Leenders KL. Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord. 2007;22(13):1852–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Verma P, Asopa RV. Incidental global hypometabolism in the brain of patient with AIDS-related dementia seen on 18F-Fluorodeoxyglucose positron emission tomography/computed tomography. Indian J Nucl Med. 2018;33(1):73–5.  https://doi.org/10.4103/ijnm.IJNM_108_17.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, et al. Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain. 2007;130(Pt 7):1759–66.PubMedCrossRefGoogle Scholar
  80. 80.
    Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med. 2009;50(8):1276–82.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chauveau F, Van Camp N, Dolle F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med. 2009;50(3):468–76.PubMedCrossRefGoogle Scholar
  82. 82.
    Brown AK, Fujita M, Fujimura Y, Liow JS, Stabin M, Ryu YH, et al. Radiation dosimetry and biodistribution in monkey and man of 11C-PBR28: a PET radioligand to image inflammation. J Nucl Med. 2007;48(12):2072–9.  https://doi.org/10.2967/jnumed.107.044842.PubMedCrossRefGoogle Scholar
  83. 83.
    Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, et al. Neurotoxicity and dysfunction of dopaminergic systems associated with AIDS dementia. J Psychopharmacol (Oxford, England). 2000;14(3):222–7.CrossRefGoogle Scholar
  84. 84.
    Marcario JK, Manaye KF, SantaCruz KS, Mouton PR, Berman NE, Cheney PD. Severe subcortical degeneration in macaques infected with neurovirulent simian immunodeficiency virus. J Neurovirol. 2004;10(6):387–99.PubMedCrossRefGoogle Scholar
  85. 85.
    Sinharay S, Lee D, Shah S, Muthusamy S, Papadakis GZ, Zhang X, et al. Cross-sectional and longitudinal small animal PET shows pre and post-synaptic striatal dopaminergic deficits in an animal model of HIV. Nucl Med Biol. 2017;55:27–33.  https://doi.org/10.1016/j.nucmedbio.2017.08.004.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Moran LM, Booze RM, Webb KM, Mactutus CF. Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol. 2013;239:139–47.  https://doi.org/10.1016/j.expneurol.2012.10.008.PubMedCrossRefGoogle Scholar
  87. 87.
    Webb KM, Aksenov MY, Mactutus CF, Booze RM. Evidence for developmental dopaminergic alterations in the human immunodeficiency virus-1 transgenic rat. J Neurovirol. 2010;16(2):168–73.  https://doi.org/10.3109/13550281003690177.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Arseniou S, Arvaniti A, Samakouri M. HIV infection and depression. Psychiatry Clin Neurosci. 2014;68(2):96–109.  https://doi.org/10.1111/pcn.12097.PubMedCrossRefGoogle Scholar
  89. 89.
    Mills JC, Pence BW, Todd JV, Bengtson AM, Breger TL, Edmonds A, et al. Cumulative burden of depression and all-cause mortality in women living with HIV. Clin Infect Dis. 2018;67:1575–81.  https://doi.org/10.1093/cid/ciy264.PubMedCrossRefGoogle Scholar
  90. 90.
    Greeson JM, Gettes DR, Spitsin S, Dube B, Benton TD, Lynch KG, et al. The selective serotonin reuptake inhibitor citalopram decreases human immunodeficiency virus receptor and coreceptor expression in immune cells. Biol Psychiatry. 2016;80(1):33–9.  https://doi.org/10.1016/j.biopsych.2015.11.003.PubMedCrossRefGoogle Scholar
  91. 91.
    Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS, et al. Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry. 2007;62(8):870–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Bhagwagar Z, Murthy N, Selvaraj S, Hinz R, Taylor M, Fancy S, et al. 5-HTT binding in recovered depressed patients and healthy volunteers: a positron emission tomography study with [11C]DASB. Am J Psychiatry. 2007;164(12):1858–65.PubMedCrossRefGoogle Scholar
  93. 93.
    Meyer JH, Houle S, Sagrati S, Carella A, Hussey DF, Ginovart N, et al. Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry. 2004;61(12):1271–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Shah S, Sinharay S, Lee D, Reid WC, Wakim P, Matsuda K, et al., editors. Longitudinal PET imaging of the serotonergic system in SIV-infected nonhuman primates. Boston: CROI; 2018.Google Scholar
  95. 95.
    An SF, Giometto B, Groves M, Miller RF, Beckett AA, Gray F, et al. Axonal damage revealed by accumulation of beta-APP in HIV-positive individuals without AIDS. J Neuropathol Exp Neurol. 1997;56(11):1262–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Esiri MM, Biddolph SC, Morris CS. Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry. 1998;65(1):29–33.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. Accelerated tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006;111(6):529–38.  https://doi.org/10.1007/s00401-006-0037-0.PubMedCrossRefGoogle Scholar
  98. 98.
    Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL. Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS (London, England). 2005;19(4):407–11.CrossRefGoogle Scholar
  99. 99.
    Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, et al. Cerebral beta-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE epsilon4 carriers. AIDS (London, England). 2012;26(18):2327–35.  https://doi.org/10.1097/QAD.0b013e32835a117c.CrossRefGoogle Scholar
  100. 100.
    Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L. CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology. 2005;65(9):1490–2.  https://doi.org/10.1212/01.wnl.0000183293.95787.b7.PubMedCrossRefGoogle Scholar
  101. 101.
    Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, et al. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009;73(23):1982–7.  https://doi.org/10.1212/WNL.0b013e3181c5b445.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Krut JJ, Zetterberg H, Blennow K, Cinque P, Hagberg L, Price RW, et al. Cerebrospinal fluid Alzheimer’s biomarker profiles in CNS infections. J Neurol. 2013;260(2):620–6.  https://doi.org/10.1007/s00415-012-6688-y.PubMedCrossRefGoogle Scholar
  103. 103.
    Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207(11):1703–12.  https://doi.org/10.1093/infdis/jit088.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Steinbrink F, Evers S, Buerke B, Young P, Arendt G, Koutsilieri E, et al. Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol. 2013;20(3):420–8.  https://doi.org/10.1111/ene.12006.PubMedCrossRefGoogle Scholar
  105. 105.
    Villemagne VL, Dore V, Burnham SC, Masters CL, Rowe CC. Imaging tau and amyloid-beta proteinopathies in Alzheimer disease and other conditions. Nat Rev Neurol. 2018;14(4):225–36.  https://doi.org/10.1038/nrneurol.2018.9.PubMedCrossRefGoogle Scholar
  106. 106.
    Ortega M, Ances BM. Role of HIV in amyloid metabolism. J Neuroimmune Pharmacol. 2014;9(4):483–91.  https://doi.org/10.1007/s11481-014-9546-0.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol. 2009;4(2):200–12.  https://doi.org/10.1007/s11481-008-9136-0.PubMedCrossRefGoogle Scholar
  108. 108.
    Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS (London, England). 2005;19(2):127–35.CrossRefGoogle Scholar
  109. 109.
    Ubhi K, Masliah E. Alzheimer’s disease: recent advances and future perspectives. J Alzheimer's Dis. 2013;33(Suppl 1):S185–94.  https://doi.org/10.3233/jad-2012-129028.CrossRefGoogle Scholar
  110. 110.
    Stanley LC, Mrak RE, Woody RC, Perrot LJ, Zhang S, Marshak DR, et al. Glial cytokines as neuropathogenic factors in HIV infection: pathogenic similarities to Alzheimer’s disease. J Neuropathol Exp Neurol. 1994;53(3):231–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Brown LA, Scarola J, Smith AJ, Sanberg PR, Tan J, Giunta B. The role of tau protein in HIV-associated neurocognitive disorders. Mol Neurodegener. 2014;9:40.  https://doi.org/10.1186/1750-1326-9-40.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cooley SA, Strain JF, Beaumont H, Boerwinkle AH, Doyle J, Morris JC et al. Tau positron emission tomography binding is not elevated in HIV-Infected individuals. J Infect Dis. 2018.  https://doi.org/10.1093/infdis/jiy663.

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical CenterNational Institutes of Health (NIH)BethesdaUSA

Personalised recommendations