Skip to main content

Advertisement

Log in

New Strategies of ARV: the Road to Simplification

  • HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Simplification of antiretroviral therapy is a strategy aiming to reduce pill burden, drug interactions, and toxicity. This review focuses on the most recent and important studies evaluating a reduction on the number of drugs for HIV treatment, both in naive and virologically suppressed patients.

Recent Findings

Interesting studies have been performed in the past years testing dual therapy and monotherapy, with variable rates of virological control. Novel therapeutics like immunotherapy or long-acting antiretrovirals can also be considered for simplification.

Summary

Reducing the number of drugs for HIV treatment can be an option for selected patients. Current available evidence favors dual therapy over monotherapy. Future research should seek to identify the best candidates for simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed [21 NOV 2017] Latest update on HIV treatment recommendations by the US DHHS.

  2. El-Sadr WM, Lundgren J, Neaton JD, Gordin F, Abrams D, Arduino RC, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355(22):2283–96. https://doi.org/10.1056/NEJMoa062360.

  3. Imaz A, Olmo M, Peñaranda M, Gutiérrez F, Romeu J, Larrousse M, et al. Short-term and long-term clinical and immunological consequences of stopping antiretroviral therapy in HIV-infected patients with preserved immune function. Antivir Ther. 2013;18(1):125–30. https://doi.org/10.3851/IMP2249.

  4. Nachega JB, Parienti JJ, Uthman OA, Gross R, Dowdy DW, Sax PE, et al. Lower pill burden and once-daily antiretroviral treatment regimens for HIV infection: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;58(9):1297–307. https://doi.org/10.1093/cid/ciu046.

  5. Chen Y, Chen K, Kalichman SC. Barriers to HIV medication adherence as a function of regimen simplification. Ann Behav Med. 2017;51(1):67–78. https://doi.org/10.1007/s12160-016-9827-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clay PG, Nag S, Graham CM, Narayanan S. Meta-analysis of studies comparing single and multi-tablet fixed dose combination HIV treatment regimens. Medicine (Baltimore). 2015 Oct;94(42):e1677. https://doi.org/10.1097/MD.0000000000001677.

    Article  CAS  Google Scholar 

  7. Guaraldi G, Palella FJ Jr. Clinical implications of aging with HIV infection: perspectives and the future medical care agenda. AIDS. 2017;31(Suppl 2):S129–35. https://doi.org/10.1097/QAD.0000000000001478.

    Article  PubMed  Google Scholar 

  8. Pasquau J, Hidalgo-Tenorio C. Nuke-sparing regimens for the long-term care of HIV infection. AIDS Rev. 2015;17(4):220–30.

    PubMed  Google Scholar 

  9. • Raffi F, Babiker AG, Richert L, Molina JM, George EC, Antinori A, et al. Ritonavir-boosted darunavir combined with raltegravir or tenofovir–emtricitabine in antiretroviral-naive adults infected with HIV-1: 96 week results from the NEAT001/ANRS143 randomised non-inferiority trial. Lancet. 2014;384(9958):1942–51. https://doi.org/10.1016/S0140-6736(14)61170-3. DRV/r + RAL non-inferior to DRV/r + TDF/FTC in naive participants. Data less favorable when CD4 < 200 cells/μL or high baseline VL.

    Article  CAS  PubMed  Google Scholar 

  10. Lambert-Niclot S, George EC, Pozniak A, White E, Schwimmer C, Jessen H, et al. Antiretroviral resistance at virological failure in the NEAT 001/ANRS 143 trial: raltegravir plus darunavir/ritonavir or tenofovir/emtricitabine plus darunavir/ritonavir as first-line ART. J Antimicrob Chemother. 2016 Apr;71(4):1056–62. https://doi.org/10.1093/jac/dkv427.

  11. Winston A, Stöhr W, Antinori A, Amieva H, Perré P, De Wit S, et al. Changes in cognitive function over 96 weeks in naive patients randomized to darunavir–ritonavir plus either raltegravir or tenofovir–emtricitabine: a substudy of the NEAT001/ANRS143 trial. J Acquir Immune Defic Syndr. 2017;74(2):185–92. https://doi.org/10.1097/QAI.0000000000001189.

  12. Bernardino JI, Mocroft A, Mallon PW, Wallet C, Gerstoft J, Russell C, et al. Bone mineral density and inflammatory and bone biomarkers after darunavir–ritonavir combined with either raltegravir or tenofovir–emtricitabine in antiretroviral-naive adults with HIV-1: a substudy of the NEAT001/ANRS143 randomised trial. Lancet HIV. 2015 Nov;2(11):e464–73. https://doi.org/10.1016/S2352-3018(15)00181-2.

  13. Bedimo RJ, Drechsler H, Jain M, Cutrell J, Zhang S, Li X, et al. The RADAR study: week 48 safety and efficacy of RAltegravir combined with boosted DARunavir compared to tenofovir/emtricitabine combined with boosted darunavir in antiretroviral-naive patients. Impact on bone health. PLoS One. 2014;9(8):e106221. https://doi.org/10.1371/journal.pone.0106221.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reynes J, Trinh R, Pulido F, Soto-Malave R, Gathe J, Qaqish R, et al. Lopinavir/ritonavir combined with raltegravir or tenofovir/emtricitabine in antiretroviral-naive subjects: 96-week results of the PROGRESS study. AIDS Res Hum Retrovir. 2013;29(2):256–65. https://doi.org/10.1089/AID.2011.0275.

  15. Kozal MJ, Lupo S, DeJesus E, Molina JM, McDonald C, Raffi F, et al. A nucleoside- and ritonavir-sparing regimen containing atazanavir plus raltegravir in antiretroviral treatment-naive HIV-infected patients: SPARTAN study results. HIV Clin Trials. 2012;13(3):119–30. https://doi.org/10.1310/hct1303-119.

    Article  CAS  PubMed  Google Scholar 

  16. Stellbrink HJ, Le Fevre E, Carr A, Saag MS, Mukwaya G, Nozza S, et al. Once-daily maraviroc versus tenofovir/emtricitabine each combined with darunavir/ritonavir for initial HIV-1 treatment. AIDS. 2016;30(8):1229–38. https://doi.org/10.1097/QAD.0000000000001058.

  17. Mills A, Mildvan D, Podzamczer D, Fätkenheuer G, Leal M, Than S, et al. Maraviroc once-daily nucleoside analog-sparing regimen in treatment-naive patients: randomized, open-label pilot study. J Acquir Immune Defic Syndr. 2013;62(2):164–70. https://doi.org/10.1097/QAI.0b013e31827b51b5.

    Article  CAS  PubMed  Google Scholar 

  18. Nozza S, Galli L, Antinori A, Chiappetta S, Mazzotta F, Zaccarelli M, et al. Maraviroc 150 mg daily plus lopinavir/ritonavir, a nucleoside/nucleotide reverse transcriptase inhibitor-sparing regimen for HIV-infected naive patients: 48-week final results of VEMAN study. Clin Microbiol Infect. 2015;21(5):510.e1–9. https://doi.org/10.1016/j.cmi.2014.12.006.

    Article  CAS  Google Scholar 

  19. Pulido I, Genebat M, Alvarez-Rios AI, De Pablo-Bernal RS, Rafii-El-Idrissi Benhnia M, Pacheco YM, et al. Immunovirological efficacy of once-daily maraviroc plus ritonavir-boosted atazanavir after 48 weeks in naive HIV-infected patients. Viral Immunol. 2016;29(8):471–7. https://doi.org/10.1089/vim.2016.0046.

    Article  CAS  PubMed  Google Scholar 

  20. • Achhra AC, Mwasakifwa G, Amin J, Boyd MA. Efficacy and safety of contemporary dual-drug antiretroviral regimens as first-line treatment or as a simplification strategy: a systematic review and meta-analysis. Lancet HIV. 2016;3(8):e351–60. https://doi.org/10.1016/S2352-3018(16)30015-7. Carefully selected DT (for VL < 100,000 copies/mL and excluding MVC) can be efficacious compared to TT. Higher relative risk of RAM selection in DT vs. TT.

    Article  PubMed  Google Scholar 

  21. • Cahn P, Andrade-Villanueva J, Arribas JR, Gatell JM, Lama JR, Norton M, et al. Dual therapy with lopinavir and ritonavir plus lamivudine versus triple therapy with lopinavir and ritonavir plus two nucleoside reverse transcriptase inhibitors in antiretroviral-therapy-naive adults with HIV-1 infection: 48 week results of the randomised, open label, non-inferiority GARDEL trial. Lancet Infect Dis. 2014;14(7):572–80. https://doi.org/10.1016/S1473-3099(14)70736-4. LPV/r + 3TC non-inferior to LPV/r + 2NRTIs in naive participants, with fewer treatment discontinuations.

  22. Cahn P on behalf of the GARDEL Study Group. Durability of dual therapy (DT) with lopinavir/ritonavir (LPV/r) and lamivudine (3TC) in comparison to standard triple drug therapy (TT): 96-week results of the GARDEL study. 15th EACS, 21–24 October 2015, Barcelona. Oral abstract LBPS10/1.

  23. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd edition. Geneva: World Health Organization; 2016. Available from: https://www.ncbi.nlm.nih.gov/books/NBK374294/.

  24. •• EACS Guidelines version 8.2, January 2017. Available at http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html. Updated European AIDS Clinical Society guidelines with summarized recommendations; very useful as quick reference guide.

  25. Nozza S, Svicher V, Saracino A, d'Ettorre G, De Luca A, Maggiolo F, et al. State of the art of dual therapy in 2015. AIDS Rev. 2015;17(3):127–34.

  26. • Arribas J, Girard P-M, Paton N, Winston A, Marcelin A-G, Elbirt D, et al. Efficacy of protease inhibitor monotherapy vs. triple therapy: meta-analysis of data from 2303 patients in 13 randomized trials. HIV Med. 2016;17(5):358–67. https://doi.org/10.1111/hiv.12348. TT had superior virologic efficacy than bPI monotherapy, although comparable results were obtained when intensification was included. No higher risk of RAMs with bPI monotherapy.

  27. • Paton NI, Stohr W, Arenas-Pinto A, Fisher M, Williams I, Johnson M, et al. Protease inhibitor monotherapy for long-term management of HIV infection: a randomised, controlled, open-label, non-inferiority trial. Lancet HIV. 2015;2:e417–26. PIVOT trial: bPI monotherapy non-inferior to standard therapy for loss of future treatment options. Higher rates of viral rebound with bPIs but most participants regained suppression (mainly by intensification).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Girard P, Antinori A, Arribas J, Ripamont D, Bicer C, Netzle-Sveine B, et al. Week 96 efficacy and safety of darunavir/ritonavir monotherapy vs. darunavir/ritonavir with two nucleoside reverse transcriptase inhibitors in the PROTEA trial. HIV Med. 2017;18(1):5–12. https://doi.org/10.1111/hiv.12386.

  29. Antinori A, Clarke A, Svedhem-Johansson V, Arribas J, Arenas-Pinto A, Fehr J, et al. Week 48 efficacy and central nervous system analysis of darunavir/ritonavir monotherapy versus darunavir/ritonavir with two nucleoside analogues. AIDS. 2015;29(14):1811–20. https://doi.org/10.1097/QAD.0000000000000778.

    Article  CAS  PubMed  Google Scholar 

  30. Arenas-Pinto A, Stöhr W, Jäger HR, Haddow L, Clarke A, Johnson M, et al. Neurocognitive function and neuroimaging markers in virologically suppressed HIV-positive patients randomized to ritonavir-boosted protease inhibitor monotherapy or standard combination ART: a cross-sectional substudy from the PIVOT trial. Clin Infect Dis. 2016;63(2):257–64. https://doi.org/10.1093/cid/ciw279.

  31. Arenas-Pinto A, Stöhr W, Clarke A, Williams I, Beeching NJ, Minton J, et al. Evaluation of CSF virological escape in patients on long-term PI monotherapy. Antivir Ther. 2017;22(6):535–8. https://doi.org/10.3851/IMP3146.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pett SL, Amin J, Horban A, Andrade-Villanueva J, Losso M, Porteiro N, et al. Maraviroc, as a switch option, in HIV-1-infected individuals with stable, well-controlled HIV replication and R5-tropic virus on their first nucleoside/nucleotide reverse transcriptase inhibitor plus ritonavir-boosted protease inhibitor regimen: week 48 results of the randomized, multicenter MARCH study. Clin Infect Dis. 2016;63(1):122–32. https://doi.org/10.1093/cid/ciw207.

  33. Barber T, Imaz A, Boffito M, Podzamczer D, Pozniak A, Fortuny R, et al. CSF inflammatory markers after adding maraviroc to monotherapy darunavir/ritonavir. CROI 2017 Seattle. Poster. Session Number: P-F6. Abstract No: 382.

  34. Arribas JR, Girard PM, Landman R, Pich J, Mallolas J, Martinez-Rebollar M, et al. Dual treatment with lopinavir-ritonavir plus lamivudine versus triple treatment with lopinavir-ritonavir plus lamivudine or emtricitabine and a second nucleos(t)ide reverse transcriptase inhibitor for maintenance of HIV-1 viral suppression (OLE): a randomised, open-label, non-inferiority trial. Lancet Infect Dis. 2015;15(7):785–92. https://doi.org/10.1016/S1473-3099(15)00096-1.

    Article  CAS  PubMed  Google Scholar 

  35. Perez-Molina JA, Rubio R, Rivero A, Pasquau J, Suarez-Lozano I, Riera M, et al. Simplification to dual therapy (atazanavir/ritonavir + lamivudine) versus standard triple therapy [atazanavir/ritonavir + two nucleos(t)ides] in virologically stable patients on antiretroviral therapy: 96 week results from an open-label, non-inferiority, randomized clinical trial (SALT study). J Antimicrob Chemother. 2017;72(1):246–53. https://doi.org/10.1093/jac/dkw379.

    Article  CAS  PubMed  Google Scholar 

  36. Di Giambenedetto S, Fabbiani M, Quiros Roldan E, Latini A, D'Ettorre G, Antinori A, et al. Treatment simplification to atazanavir/ritonavir+lamivudine versus maintenance of atazanavir/ritonavir+ two NRTIs in virologically suppressed HIV-1-infected patients: 48 week results from a randomized trial (ATLAS-M). J Antimicrob Chemother. 2017;72(4):1163–71. https://doi.org/10.1093/jac/dkw557.

  37. Gagliardini R, Fabbiani M, Quiros Roldan E, Latini A, D’Ettorre G, Antinori A, et al. Simplification to atazanavir/ritonavir lamivudine versus maintaining atazanavir/ritonavir 2NRTIs in virologically suppressed HIV-infected patients: 96-week data of the ATLAS-M trial. Glasgow Congress on HIV Therapy, 23–26 October 2016. Oral abstract O121. Webcast: https://vimeo.com/188653451

  38. Pulido F, Ribera E, Lagarde M, Perez-Valero I, Santos J, Iribarren JA, et al. Non-inferiority of dual-therapy with darunavir/ritonavir plus 3TC versus triple-therapy with DRV/r plus TDF/FTC or ABC/3TC for maintenance of viral suppression: 48-week results of the DUAL-GESIDA 8014 trial. International Congress of Drug Therapy in HIV Infection 23–26 October 2016, Glasgow, UK. Abstract No O331. Webcast: https://vimeo.com/189136474.

  39. • Cahn P, Rolón MJ, Figueroa MI, Gun A, Patterson P, Sued O. Dolutegravir–lamivudine as initial therapy in HIV-1 infected, ARV-naive patients, 48-week results of the PADDLE (Pilot Antiretroviral Design with Dolutegravir LamivudinE) study. J Int AIDS Soc. 2017;20(1):1–7. https://doi.org/10.7448/IAS.20.01.21678. First study demonstrating efficacy of dual therapy with DTG + 3TC in naive participants.

    Article  Google Scholar 

  40. Figueroa MI, Rolón MJ, Patterson P, Gun A, Cahn P, Sued O. Dolutegravir-lamivudine as initial therapy in HIV-infected, ARV naive patients: 96 week results of the PADDLE trial. 9th International AIDS Society (IAS) Conference on HIV Science (IAS 2017). Paris, 23–26th July 2017. Poster No. MOPEB0287.

  41. Taiwo BO, Zheng L, Nyaku AN, Stefanescu A, Sax PE, Haas D et al. ACTG A5353: a pilot study of dolutegravir (DTG) + lamivudine (3TC) for initial treatment of HIV-1-infected participants with HIV-1 RNA &LT; 500,000 copies/mL. 9th International AIDS Society (IAS) Conference on HIV Science (IAS 2017). Paris, 23–26th July 2017. Oral Abstract MOAB0107LB.

  42. ClinicalTrials.gov [internet]. An efficacy, safety, and tolerability study comparing dolutegravir plus lamivudine with dolutegravir plus tenofovir/emtricitabine in treatment naive HIV infected subject (Gemini1). https://clinicaltrials.gov/ct2/show/NCT02831673.

  43. Girouard MP, Sax PE, Parker RA, Taiwo B, Freedberg KA, Gulick RM, et al. The cost-effectiveness and budget impact of 2-drug dolutegravir-lamivudine regimens for the treatment of HIV infection in the United States. Clin Infect Dis. 2016;62(6):784–91. https://doi.org/10.1093/cid/civ981.

  44. Sued O, Figueroa MI, Gun A, Belloso W, Cecchini D, Lopardo G, et al. Dual therapy with darunavir/ritonavir plus lamivudine for HIV-1 treatment initiation: week 24 results of the randomized ANDES study. 9th International AIDS Society (IAS) Conference on HIV Science (IAS 2017). Paris, 23–26th July 2017. Oral Abstract MOAB0106LB.

  45. • Llibre JM, Hung CC, Brinson C, Castelli F, Girard PM, Lesley Kahl L et al. Phase III SWORD 1&2: switch to DTG+RPV maintains virologic suppression through 48 wks. Conference on Retroviruses and Opportunistic Infections. Seattle, February 13-16, 2017. Session O-4. Abstract 44LB. DTG + RPV successfully maintains viral suppression after switch. Higher rates of discontinuation noted with DT than TT.

  46. Joly V, Burdet C, Landman R, Raffi F, Katlama C, Cabié A, et al. Promising results of dolutegravir + lamivudine maintenance in ANRS 167 LAMIDOL trial. Conference on Retroviruses and Opportunistic Infections; February 13–16, 2017; Seattle. Abstract 458.

  47. Wijting I, Rokx C, Boucher C, de Vries - Sluijs D, Schurink K, Andrinopoulou E, et al. Dolutegravir as maintenance monotherapy for HIV-1: a randomized clinical trial. Conference on Retroviruses and Opportunistic Infections; February 13–16, 2017; Seattle. Abstract 451LB.

  48. Blanco J, Oldenbuettel C, Thomas R, Mallolas J, Wolf E, Brenner B, et al. Pathways of resistance in subjects failing dolutegravir monotherapy. CROI 2017, 13–16 February 2017, Seattle. Oral abstract 42LB. http://www.croiwebcasts.org/console/player/33379 (webcast).

  49. Margolis DA, Brinson CC, Smith GH, de Vente J, Hagins DP, Eron JJ, et al. Cabotegravir plus rilpivirine, once a day, after induction with cabotegravir plus nucleoside reverse transcriptase inhibitors in antiretroviral-naive adults with HIV-1 infection (LATTE): a randomised, phase 2b, dose-ranging trial. Lancet Infect Dis. 2015;15(10):1145–55. https://doi.org/10.1016/S1473-3099(15)00152-8.

    Article  CAS  PubMed  Google Scholar 

  50. Margolis D, Brinson C, Smith G, Eron JJ, Richmond GJ, LeBlanc RP, et al. Long-term safety and efficacy of cab and RPV as 2-drug oral maintenance therapy. CROI 2017, 13-16 February 2017, SeattleAbstract Number: 442.

  51. Margolis DA, Podzamczer D, Stellbrink H-J, Lutz T, Angel JB, Richmond G et al. Cabotegravir + rilpivirine as long-acting main- tenance therapy: LATTE-2 week 48 results. 21st International AIDS Conference (AIDS 2016); Durban, South Africa 2016. THAB0206LB - Oral Abstract.

  52. • Margolis DA, Gonzalez-Garcia J, Stellbrink HJ, Eron JJ, Yazdanpanah Y, Podzamczer D, et al. Long-acting intramuscular cabotegravir and rilpivirine in adults with HIV-1 infection (LATTE-2): 96-week results of a randomised, open-label, phase 2b, non-inferiority trial. Lancet. 2017;6736(17):31917–7. https://doi.org/10.1016/S0140-6736(17)31917-7. Comparable rates of virologic suppression are obtained with long-acting intramuscular CAB + RPV for maintenance treatment every 4 or 8 weeks vs. standard oral TT.

  53. A phase III, randomized, multicenter, parallel-group, non-inferiority, open-label study evaluating the efficacy, safety, and tolerability of switching to long-acting cabotegravir plus long-acting rilpivirine from current INI-, NNRTI-, or PI-based antiretroviral regimen in HIV-1-infected adults who are virologically suppressed. https://clinicaltrials.gov/ct2/show/NCT02951052. Accesed May 2017.

  54. A phase III, randomized, multicenter, parallel-group, open-label study evaluating the efficacy, safety, and tolerability of long-acting intramuscular cabotegravir and rilpivirine for maintenance of virologic suppression following switch from an integrase inhibitor single tablet regimen in hiv-1 infected antiretroviral therapy naive adult participants. https://clinicaltrials.gov/ct2/show/NCT02938520.Accesed May 2017.

  55. Friedman E, Schuermann D, Rudd DJ, Fox-Bosetti S, Zhang S, Robberechts M, et al. A single monotherapy dose of MK-8591, a novel NRTI, suppresses HIV for 10 days. In: Conference on Retroviruses and Opportunstic Infections (CROI 2016). Boston, Massachusetts; 2016. Session PH1, Abstract 437LB.

  56. Maeda K, Takamatsu Y, Das D, Kohgo S, Hattori S, Hayashi H, et al. 4′-modified NRTIs’ potent anti-HIV activity stems from strong RT active-site binding. Conference on Retroviruses and Opportunistic Infections. Seattle, February 13–16, 2017. Abstract 503.

  57. A single-dose clinical trial to study the safety, tolerability, pharmacokinetics, and anti-retroviral activity of MK-8591 monotherapy in anti-retroviral therapy (ART)-naive, HIV-1 infected patients. https://clinicaltrials.gov/ct2/show/NCT02217904. Accessed May 2017.

  58. US Food & Drug Administration (FDA): “Vedolizumab”. Reference ID: 3509973. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125476s000lbl.pdf. Accessed May 2017.

  59. Byrareddy SN, Arthos J, Cicala C, Villinger F, Ortiz KT, Little D, et al. Sustained virologic control in SIV+ macaques after antiretroviral and α4β7 antibody therapy. Science. 2016;354(6309):197–202. https://doi.org/10.1126/science.aag1276.

  60. Guzzo C, Ichikawa D, Park C, Rehm C, Cicala C, Arthos J, et al. Virion incorporation of integrin α4β7: implications for HIV-1 pathogenesis. Conference on Retroviruses and Opportunistic Infections. Seattle, February 13-16, 2017. Abstract 64LB, session O-5. http://www.croiwebcasts.org/p/2017croi/croi33472.

  61. An exploratory, open-label study of vedolizumab (anti-alpha4beta7 antibody) in subjects with HIV infection undergoing analytical treatment interruption. NCT02788175. https://clinicaltrials.gov/ct2/show/NCT02788175. Accessed May 2017.

  62. Vedolizumab treatment in antiretroviral drug treated chronic HIV infection. HAVARTI study. NCT03147859. https://clinicaltrials.gov/ct2/show/NCT03147859. Accessed May 2017.

  63. Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET, Petrone ME, et al. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N Engl J Med. 2016;375(21):2037–50. https://doi.org/10.1056/NEJMoa1608243.

  64. Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat Rev Drug Discov. 2016;15(12):823–34. https://doi.org/10.1038/nrd.2016.173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bournazos S, Gazumyan A, Seaman MS, Nussenzweig MC, Ravetch JV. Bispecific anti-HIV-1 antibodies with enhanced breadth and potency. Cell. 2016;165(7):1609–20. https://doi.org/10.1016/j.cell.2016.04.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang Y, Yu J, Lanzi A, Yao X, Andrews CD, Tsai L, et al. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell. 2016;165(7):1621–31. https://doi.org/10.1016/j.cell.2016.05.024.

  67. Lalezari J, Dhody K, Kowalczyk U, Kazempour K, Pourhassan N, Maddon PJ. PRO140 single-agent maintenance therapy for HIV-1 infection: a 2-year update. Conference on Retroviruses and Opportunistic Infections. Seattle, February 13-16, 2017. Session PH1, Abstract number 437. http://www.croiwebcasts.org/p/2017croi/croi33640.

  68. A phase 2b/3, multicenter study to assess the treatment strategy of using PRO 140 SC as long-acting single-agent maintenance therapy for 48 weeks in virologically suppressed subjects with CCR5-tropic HIV-1 infection. NCT02859961. https://clinicaltrials.gov. Accessed May 2017.

  69. Wang CY, Wong W, Tsai HC, Chen YH, Liao MJ, Lynn S. A phase 2 open-label trial of antibody UB-421 monotherapy as a substitute for HAART. Conference on Retroviruses and Opportunistic Infections. Seattle, February 13–16, 2017. Session PH1, Abstract number 450LB.

  70. A phase III, randomized, open-label, controlled trial to investigate the efficacy and safety of UB-421 monotherapy as substitution for stable antiretroviral therapy in HIV-1 infected adults. NCT03149211. https://clinicaltrials.gov/ct2/show/NCT03149211. Accessed May 2017.

Download references

Funding

Supported by Red Temática Cooperativa de Investigación en Sida and grant PI16/00837 from Fondo de Investigaciones Sanitarias (supported by FEDER funds). Instituto de Salud Carlos III. N.S.-A. is supported by a predoctoral fellowship from Fondo de Investigaciones Sanitarias. R.dM.B is supported by a Río Hortega fellowship from Fondo de Investigaciones Sanitarias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose R. Arribas.

Ethics declarations

Conflict of Interest

Rosa de Miguel Buckley reports grants from Fondo de Investigaciones Sanitarias, outside the submitted work.

Rocio Montejano reports grants from Fondo de Investigaciones Sanitarias and personal fees from Janssen, outside the submitted work.

Natalia Stella-Ascariz reports grants from Instituto de Salud Carlos III, outside the submitted work.

Jose R. Arribas reports personal fees from Gilead, VIIV, Janssen, MSD, and Teva, and grants from Gilead, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Miguel Buckley, R., Montejano, R., Stella-Ascariz, N. et al. New Strategies of ARV: the Road to Simplification. Curr HIV/AIDS Rep 15, 11–19 (2018). https://doi.org/10.1007/s11904-018-0371-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-018-0371-6

Keywords

Navigation