Skip to main content

Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer’s Disease: an Emerging Issue in Geriatric NeuroHIV

Abstract

Purpose of Review

The purpose of this review was to examine characteristics that may distinguish HIV-associated neurocognitive disorder (HAND) from early Alzheimer’s disease (AD).

Recent Findings

Cerebrospinal fluid (CSF) AD biomarkers are perturbed in HIV, yet these alterations may be limited to settings of advanced dementia or unsuppressed plasma HIV RNA. Neuropsychological testing will require extensive batteries to maximize utility. Structural imaging is limited for early AD detection in the setting of HIV, but proper studies are absent. While positron-emission tomography (PET) amyloid imaging has altered the landscape of differential diagnosis for age-associated neurodegenerative disorders, costs are prohibitive.

Summary

Risk for delayed AD diagnosis in the aging HIV-infected population is now among the most pressing issues in geriatric neuroHIV. While clinical, imaging, and biomarker characterizations of AD are extensively defined, fewer data define characteristics of HIV-associated neurocognitive disorder in the setting of suppressed plasma HIV RNA. Data needed to inform the phenotype of AD in the setting of HIV are equally few.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC. Centers for Disease Control and Prevention. Monitoring selected national HIV prevention and care objectives by using HIV surveillance data—United States and 6 dependent areas—2013. HIV Surveillance Supplemental Report 2015;20(No. 2). www.cdc.gov/hiv/library/reports/surveillance/. July 2015.

  2. Valcour V, et al. Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neuro-Oncol. 2008;14(5):362–7.

    CAS  Google Scholar 

  3. DeVaughn S, et al. Aging with HIV-1 infection: motor functions, cognition, and attention—a comparison with Parkinson’s disease. Neuropsychol Rev. 2015;25(4):424–38.

  4. Antinori A, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. •• Turner R, et al. An individual with human immunodeficiency virus, dementia, and central nervous system amyloid deposition. Alzheimer Dis Assoc Disord. 2016;4:1–5. A case study on a 71-year-old HIV-infected man with a mixed AD/HAND diagnosis. In this case CSF biomarkers were not helpful for AD diagnosis, showing decreased amyloid, increased tau and decreased p-tau.

  6. Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. J NeuroImmune Pharmacol. 2009;4(2):200–12.

    CAS  Article  PubMed  Google Scholar 

  7. Becker JT, et al. Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS. 2004;18(Suppl 1):S11–8.

    Article  PubMed  Google Scholar 

  8. Heaton RK, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Simioni S, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010;24(9):1243–50.

    PubMed  Google Scholar 

  10. Nightingale S, et al. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol. 2014;13(11):1139–51.

  11. Milanini B, et al. Cognitive reserve and neuropsychological functioning in older HIV-infected people. J Neuro-Oncol. 2016;22(5):575–83.

    Google Scholar 

  12. Woods SP, et al. Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev. 2009;19(2):152–68.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heaton RK, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol. 2011;17(1):3–16.

    CAS  Google Scholar 

  14. • Saylor D, et al. HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12(5):309. This is a comprehensive review on the clinical features, epidemiology and neuropathogenesis of HAND. It also presents a number of critical and open questions that need to be addressed in future studies.

  15. Rosen HJ, et al. Metacognition in the behavioral variant of frontotemporal dementia and Alzheimer’s disease. Neuropsychology. 2014;28(3):436–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiao S, et al. Deficits in self-awareness impact the diagnosis of asymptomatic neurocognitive impairment in HIV. AIDS Res Hum Retrovir. 2013;29(6):949–56.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neuro-Oncol. 2012;18(5):388–99.

    CAS  Google Scholar 

  18. Clifford K, et al. Progressive brain atrophy despite persistent viral suppression in HIV over age 60. JAIDS. 2017; (in press).

  19. • Gelman BB. Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep. 2015;12(2):272–9. This is a very useful review article on the need for a re-examination of the pathological mechanisms in the era of viral suppression.

  20. Hult B, et al. Neurobiology of HIV. Int Rev Psychiatry. 2008;20(1):3–13.

    Article  PubMed  Google Scholar 

  21. Solomon IH, et al. Brain and liver pathology, amyloid deposition, and interferon responses among older HIV-positive patients in the late HAART era. BMC Infect Dis. 2017;17(1):151.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Esiri MM, Biddolph SC, Morris CS. Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry. 1998;65(1):29–33.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Serrano-Pozo A, et al. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1(1):a006189.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS. 2005;19(2):127–35.

    CAS  Article  PubMed  Google Scholar 

  25. Achim CL, et al. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J NeuroImmune Pharmacol. 2009;4(2):190–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Green DA, et al. Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS. 2005;19(4):407–11.

    CAS  Article  PubMed  Google Scholar 

  27. Anthony IC, et al. Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol. 2006;111(6):529–38.

    CAS  Article  PubMed  Google Scholar 

  28. Gelman BB, Schuenke K. Brain aging in acquired immunodeficiency syndrome: increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. J Neuro-Oncol. 2004;10(2):98–108.

    CAS  Google Scholar 

  29. Clifford DB, et al. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009;73(23):1982–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Khanlou N, et al. Increased frequency of alpha-synuclein in the substantia nigra in human immunodeficiency virus infection. J Neuro-Oncol. 2009;15(2):131–8.

    CAS  Google Scholar 

  31. • Ortega M, Ances BM. Role of HIV in amyloid metabolism. J NeuroImmune Pharmacol. 2014;9(4):483–91. This work offers a broad overview of the multiple steps in the amyloid pathway that are disrupted by HIV as measured by CSF biomarkers and amyloid PET imaging.

  32. Andras IE, Toborek M. Amyloid beta accumulation in HIV-1-infected brain: the role of the blood brain barrier. IUBMB Life. 2013;65(1):43–9.

    CAS  Article  PubMed  Google Scholar 

  33. Mocchetti I, et al. Human immunodeficiency virus-associated dementia: a link between accumulation of viral proteins and neuronal degeneration. Curr Trends Neurol. 2014;8:71–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahimian P, He JJ. HIV/neuroAIDS biomarkers. Prog Neurobiol. 2016. doi:10.1016/j.pneurobio.2016.04.003

  35. •• Peterson J, et al. Cerebrospinal fluid (CSF) neuronal biomarkers across the spectrum of HIV infection: hierarchy of injury and detection. PLoS One. 2014;9(12):e116081. This study shows change in 6 CSF neuronal biomarkers according to different stages of HIV-infection and immunosuppression. It proposes a hierarchical model of progression to severe HIV-related CNS injury reflected by specific changes in CSF biomarkers. Given the cross-sectional study design, future longitudinal studies might be most valuable in better informing the evolving neuropathology over the course of HIV-infection.

  36. Gisslen M, et al. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol. 2009;9:63.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim J, Yoon JH, Kim YS. HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One. 2013;8(11):e77972.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD. Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging. 2013;34(10):2370–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Liu CC, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Valcour V, et al. Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol. 2004;157(1–2):197–202.

    CAS  Article  PubMed  Google Scholar 

  41. Nir TM, et al. Mapping white matter integrity in elderly people with HIV. Hum Brain Mapp. 2014;35(3):975–92.

    Article  PubMed  Google Scholar 

  42. Wendelken L, Jahanshad N, Rosen H, Busovaca E, Allen I, Coppola G, et al. ApoE e4 is associated with cognition, brain integrity, and atrophy in HIV over age 60. J Acquir Immune Defic Syndr. 2016;73(4):426–32.

  43. Cysique LA, et al. APOE epsilon4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals - a cross-sectional observational study. BMC Neurol. 2015;15:51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Soontornniyomkij V, Moore DJ, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, et al. Cerebral β-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE ε4 carriers. AIDS. 2012;26(18):2327–35.

  45. •• Vera JH, et al. Neuroinflammation in treated HIV-positive individuals: a TSPO PET study. Neurology. 2016;86(15):1425–32. This study provides insight into the pathology of HAND in the era of suppressed plasma virus, showing in vivo neuroinflammation in cognitively normal HIV-infected individuals on effective cART with suppressed plasma virus.

  46. Kreisl WC, et al. (11)C-PBR28 binding to translocator protein increases with progression of Alzheimer’s disease. Neurobiol Aging. 2016;44:53–61.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    CAS  Article  PubMed  Google Scholar 

  48. Sheppard DP, et al. Elevated rates of mild cognitive impairment in HIV disease. J Neuro-Oncol. 2015;21(5):576–84.

  49. •• Makitalo S, et al. The cerebrospinal fluid biomarker profile in an HIV-infected subject with Alzheimer’s disease. AIDS Res Ther. 2015;12:23. A case study on a 63-year-old HIV-infected woman eventually noted to have a clinical history, neuropsychological profile and CSF biomarkers consistent with AD.

  50. Sacktor N, et al. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology. 2016;86(4):334–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Brouillette MJ, et al. Identifying neurocognitive decline at 36 months among HIV-positive participants in the CHARTER cohort using group-based trajectory analysis. PLoS One. 2016;11(5):e0155766.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013;13(11):976–86.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Weintraub S, Wicklund AH, Salmon DP. The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(4):a006171.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cysique LA, Maruff P, Brew BJ. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neuro-Oncol. 2004;10(6):350–7.

    Google Scholar 

  55. Scott JC, et al. Neurocognitive consequences of HIV infection in older adults: an evaluation of the “cortical” hypothesis. AIDS Behav. 2011;15(6):1187–96.

    Article  PubMed  Google Scholar 

  56. Ciccarelli N, et al. Verbal list learning and memory profiles in HIV-infected adults, Alzheimer’s disease, and Parkinson’s disease: an evaluation of the “cortical hypothesis” of NeuroAIDS. Appl Neuropsychol Adult. 2016;1–10. doi:10.1080/23279095.2016.1189424

  57. Milanini BAI, Javandel S, Joanna H, Paul R, Valcour V. Discriminant analysis of neuropsychological testing differentiates HIV-associated neurocognitive disorder from mild cognitive impairment due to Alzheimer’s disease. Toronto: International Society of NeuroVirology; 2016. p. 25–8.

    Google Scholar 

  58. Ances BM, Ellis RJ. Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol. 2007;27(1):86–92.

    Article  PubMed  Google Scholar 

  59. Tarawneh R, Holtzman DM. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med. 2012;2(5):a006148.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scarmeas N, et al. Motor signs during the course of Alzheimer disease. Neurology. 2004;63(6):975–82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Milanini B, et al. Psychiatric symptom burden in older people living with HIV with and without cognitive impairment: the UCSF HIV over 60 cohort study. AIDS Care. 2017;29(9);1178-85.

  62. Mega MS, et al. The spectrum of behavioral changes in Alzheimer’s disease. Neurology. 1996;46(1):130–5.

    CAS  Article  PubMed  Google Scholar 

  63. Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351(1):56–67.

    CAS  Article  PubMed  Google Scholar 

  64. FM M, et al. Prevalence of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer’s disease, and its relationship with cognitive impairment. Curr Alzheimer Res. 2010;7(6):517–26.

    Article  Google Scholar 

  65. Boublay N, Schott AM, Krolak-Salmon P. Neuroimaging correlates of neuropsychiatric symptoms in Alzheimer’s disease: a review of 20 years of research. Eur J Neurol. 2016;23(10):1500–9.

    CAS  Article  PubMed  Google Scholar 

  66. Krut JJ, Price R., Zetterberg H, Fuchs D, Hagberg L, Yilmaz A, Cinque P, Nilsson S, Gisslén M. No support for premature central nervous system aging in HIV-1 when measured by cerebrospinal fluid phosphorylated tau (p-tau). Virulence. 2016;19:1-6.

  67. Brew BJ, et al. CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology. 2005;65(9):1490–2.

    CAS  Article  PubMed  Google Scholar 

  68. Peluso MJ, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207(11):1703–12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Krut JJ, et al. Cerebrospinal fluid Alzheimer’s biomarker profiles in CNS infections. J Neurol. 2013;260(2):620–6.

    CAS  Article  PubMed  Google Scholar 

  70. Krut JJ, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, et al. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS One. 2014;9(2):e88591.

  71. Gisslen M, et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine. 2016;3:135–40.

    Article  PubMed  Google Scholar 

  72. Zetterberg H, et al. Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression. JAMA Neurol. 2016;73(1):60–7.

    Article  PubMed  Google Scholar 

  73. Gongvatana A, et al. White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. J Neuro-Oncol. 2009;15(2):187–95.

    Google Scholar 

  74. Thompson PM, et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci U S A. 2005;102(43):15647–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Klunder AD, Chiang M, Dutton RA, Lee SE, Toga AW, Lopez OL, et al. Mapping cerebellar degeneration in HIV/AIDS. Neuroreport. 2008;19(17):1655–9.

  76. Pfefferbaum A, et al. Regional brain structural dysmorphology in human immunodeficiency virus infection: effects of acquired immune deficiency syndrome, alcoholism, and age. Biol Psychiatry. 2012;72(5):361–70.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kallianpur KJ, et al. Peripheral blood HIV DNA is associated with atrophy of cerebellar and subcortical gray matter. Neurology. 2013;80(19):1792–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. McMurtray A, et al. Small-vessel vascular disease in human immunodeficiency virus infection: the Hawaii aging with HIV cohort study. Cerebrovasc Dis. 2007;24(2–3):236–41.

    Article  PubMed  Google Scholar 

  79. Jernigan TL, et al. Clinical factors related to brain structure in HIV: the CHARTER study. J Neuro-Oncol. 2011;17(3):248–57.

    Google Scholar 

  80. Ances BM, et al. Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr. 2012;59(5):469–77.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Becker JT, et al. Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology. 2012;54(2):113–21.

    Article  PubMed  Google Scholar 

  82. Clark US, Cohen RA. Brain dysfunction in the era of combination antiretroviral therapy: implications for the treatment of the aging population of HIV-infected individuals. Curr Opin Investig Drugs. 2010;11(8):884–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pini L, et al. Brain atrophy in Alzheimer’s disease and aging. Ageing Res Rev. 2016;30:25–48.

    Article  PubMed  Google Scholar 

  84. • Zhang Y, et al. Extracting patterns of morphometry distinguishing HIV associated neurodegeneration from mild cognitive impairment via group cardinality constrained classification. Hum Brain Mapp. 2016;37(12):4523–38. This study employed machine learning technology to differentiate HAND from Mild Cognitive Impairment (MCI) due to Alzheimer’s Disease (AD) and found that 8 brain regions were able to distinguish the two with 90% accuracy. Future studies are needed to validate these findings.

  85. Soontornniyomkij V, et al. HIV protease inhibitor exposure predicts cerebral small vessel disease. AIDS. 2014;28(9):1297-306.

  86. Watson C, et al. White matter hyperintensities correlate to cognition and fiber tract integrity in older adults with HIV. J Neuro-Oncol. 2017;23(3):422–9.

    Google Scholar 

  87. Su T, et al. White matter structure alterations in HIV-1-infected men with sustained suppression of viraemia on treatment. AIDS. 2016;30(2):311–22.

    CAS  Article  PubMed  Google Scholar 

  88. • Underwood J, et al. Grey and white matter abnormalities in treated HIV-disease and their relationship to cognitive function. Clin Infect Dis. 2017. doi:10.1093/cid/cix301. By using machine learning approach to combine cognitive, diffusion and volumetric data this study found widespread white matter abnormalities that correlated with cognitive impairment among successfully treated HIV-infected patients.

  89. Chen Y, et al. White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage. 2009;47(4):1154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stebbins GT, Murphy CM. Diffusion tensor imaging in Alzheimer’s disease and mild cognitive impairment. Behav Neurol. 2009;21(1):39–49.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Rabinovici GD, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77(23):2034–42.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. • Ances BM, et al. 11C-PiB imaging of human immunodeficiency virus-associated neurocognitive disorder. Arch Neurol. 2012;69(1):72–7. A study of 11C-PiB in HIV-infected individuals that found no increased 11C-PiB binding in cognitively impaired patients, suggesting that 11C-PiB may help differentiate HAND from AD.

  93. Ances BM, Morris CJ, Teshome M, Taylor J, Xiong C, Aldea P, et al. Cognitively unimpaired HIV-positive subjects do not have increased 11C-PiB: a case-control study. Neurology. 2010;75(2):111–5.

  94. Sathekge M, McFarren A, Dadachova E. Role of nuclear medicine in neuroHIV: PET, SPECT, and beyond. Nucl Med Commun. 2014;35(8):792–6.

    PubMed  PubMed Central  Google Scholar 

  95. Ishii K. PET approaches for diagnosis of dementia. AJNR Am J Neuroradiol. 2014;35(11):2030–8.

    CAS  Article  PubMed  Google Scholar 

  96. Vera JH, et al. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy. Eur J Nucl Med Mol Imaging. 2017;44(5):895–902.

    Article  PubMed  Google Scholar 

  97. Tripathi M, et al. HIV encephalitis with subcortical tau deposition: imaging pathology in vivo using F-18 THK 5117. Eur J Nucl Med Mol Imaging. 2016;43(13):2456–7.

    Article  PubMed  Google Scholar 

  98. Dani M, Brooks DJ, Edison P. Tau imaging in neurodegenerative diseases. Eur J Nucl Med Mol Imaging. 2016;43(6):1139–50.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by grants K24 MH098759 and R01 MH113406 from the NIH National Institute of Mental Health as well as P50 AG023501 from the NIH National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Milanini.

Ethics declarations

Conflict of Interest

Benedetta Milanini reports no conflict of interest.

Victor Valcour has received consulting fees from ViiV Healthcare, Merck, IAS-USA.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Central Nervous System and Cognition

Electronic Supplementary Material

ESM 1

Summary of key features differentiating HAND from Alzheimer’s disease (DOCX 25 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milanini, B., Valcour, V. Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer’s Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep 14, 123–132 (2017). https://doi.org/10.1007/s11904-017-0361-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-017-0361-0

Keywords

  • HIV
  • HAND
  • Alzheimer’s disease
  • Cognitive impairment
  • Biomarkers
  • Neurodegeneration