Advertisement

Current HIV/AIDS Reports

, Volume 14, Issue 2, pp 72–81 | Cite as

The Alphabet Soup of HIV Reservoir Markers

  • Radwa R. Sharaf
  • Jonathan Z. Li
HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
Part of the following topical collections:
  1. Topical Collection on HIV Pathogenesis and Treatment

Abstract

Purpose of Review

Despite the success of antiretroviral therapy in suppressing HIV, life-long therapy is required to avoid HIV reactivation from long-lived viral reservoirs. Currently, there is intense interest in searching for therapeutic interventions that can purge the viral reservoir to achieve complete remission in HIV patients off antiretroviral therapy. The evaluation of such interventions relies on our ability to accurately and precisely measure the true size of the viral reservoir. In this review, we assess the most commonly used HIV reservoir assays, as a clear understanding of the strengths and weaknesses of each is vital for the accurate interpretation of results and for the development of improved assays.

Recent Findings

The quantification of intracellular or plasma HIV RNA or DNA levels remains the most commonly used tests for the characterization of the viral reservoir. While cost-effective and high-throughput, these assays are not able to differentiate between replication-competent or defective fractions or quantify the number of infected cells. Viral outgrowth assays provide a lower bound for the fraction of cells that can produce infectious virus, but these assays are laborious, expensive and substantially underestimate the potential reservoir of replication-competent provirus. Newer assays are now available that seek to overcome some of these problems, including full-length proviral sequencing, inducible HIV RNA assays, ultrasensitive p24 assays and murine adoptive transfer techniques.

Summary

The development and evaluation of strategies for HIV remission rely upon our ability to accurately and precisely quantify the size of the remaining viral reservoir. At this time, all current HIV reservoir assays have drawbacks such that combinations of assays are generally needed to gain a more comprehensive view of the viral reservoir. The development of novel, rapid, high-throughput assays that can sensitively quantify the levels of the replication-competent HIV reservoir is still needed.

Keywords

HIV Reservoir Assays QVOA Replication-competent Cure 

Notes

Compliance with Ethical Standards

Conflict of Interest

JL has received research funding and consulted for Gilead and Merck. JL was funded in part by a grant from NIH/NIAID (125109).

Human and Animal Rights and Informed Consent

There were no human or animal experiments performed for the purpose of this review.

References

Papers of particular interest have been highlighted as: •• Of major importance

  1. 1.
    Chun TW, Fauci AS. Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci U S A. 1999;96:10958–61.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5:512–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature. 2012;487:482–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Buckheit RW, Salgado M, Martins KO, Blankson JN. The implications of viral reservoirs on the elite control of HIV-1 infection. Cell Mol Life Sci. 2013;70:1009–19.CrossRefPubMedGoogle Scholar
  5. 5.
    Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 2013;9:e1003211.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Søgaard OS, Graversen ME, Leth S, Olesen R, Brinkmann CR, Nissen SK, et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 2015;11:e1005142.Google Scholar
  7. 7.
    Delagrèverie HM, Delaugerre C, Lewin SR, Deeks SG, Li JZ. Ongoing clinical trials of human immunodeficiency virus latency-reversing and immunomodulatory agents. Open Forum Infect Dis. 2016;3:ofw189.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a histone deacetylase inhibitor, for latent virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV. 2014;1:e13–21.CrossRefPubMedGoogle Scholar
  9. 9.
    Vandegraaff N, Kumar R, Burrell CJ. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol. 2001;1:11253–60.CrossRefGoogle Scholar
  10. 10.
    Butler SL, Hansen MS, Bushman FD. A quantitative assay for HIV DNA integration in vivo. Nat Med. 2001;7:631–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387:183–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaiser P, Joos B, Niederöst B, Weber R, Günthard HF, Fischer M. Productive human immunodeficiency virus type 1 infection in peripheral blood predominantly takes place in CD4/CD8 double-negative T lymphocytes. J Virol. 2007;81:9693–706.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pasternak AO, Jurriaans S, Bakker M, Prins JM, Berkhout B, Lukashov V V. Cellular levels of HIV unspliced RNA from patients on combination antiretroviral therapy with undetectable plasma viremia predict the therapy outcome. PLoS One. 2009;4:e8490.Google Scholar
  14. 14.
    Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, et al. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One. 2013;8:e55943.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–10.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bosman KJ, Nijhuis M, van Ham PM, Wensing AMJ, Vervisch K, Vandekerckhove L, et al. Comparison of digital PCR platforms and semi-nested qPCR as a tool to determine the size of the HIV reservoir. Sci Rep. 2015;5:13811.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Abdel-Mohsen M, Chavez L, Tandon R, Chew GM, Deng X, Danesh A, et al. Human galectin-9 is a potent mediator of HIV transcription and reactivation. PLoS Pathog. 2016;12:e1005677.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Klatt NR, Bosinger SE, Peck M, Richert-Spuhler LE, Heigele A, Gile JP, et al. Limited HIV infection of central memory and stem cell memory CD4+ T cells is associated with lack of progression in viremic individuals. PLoS Pathog. 2014;10:e1004345.Google Scholar
  19. 19.
    Nottet HSLM, van Dijk SJ, Fanoy EB, Goedegebuure IW, de Jong D, Vrisekoop N, et al. HIV-1 can persist in aged memory CD4+ T lymphocytes with minimal signs of evolution after 8.3 years of effective highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;50:345–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Yukl SA, Sinclair E, Somsouk M, Hunt PW, Epling L, Killian M, et al. A comparison of methods for measuring rectal HIV levels suggests that HIV DNA resides in cells other than CD4+ T cells, including myeloid cells. AIDS. 2014;28:439–42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yukl SA, Shergill AK, Ho T, Killian M, Girling V, Epling L, et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J Infect Dis. 2013;208:1212–20.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hatano H, Somsouk M, Sinclair E, Harvill K, Gilman L, Cohen M, et al. Comparison of HIV DNA and RNA in gut-associated lymphoid tissue of HIV-infected controllers and noncontrollers. AIDS. 2013;27:2255–60.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rozera G, Abbate I, Bruselles A, Bartolini B, D’Offizi G, Nicastri E, et al. Comparison of real-time PCR methods for measurement of HIV-1 proviral DNA. J Virol Methods. 2010;164:135–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Malnati MS, Scarlatti G, Gatto F, Salvatori F, Cassina G, Rutigliano T, et al. A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat Protoc. 2008;3:1240–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Brussel A, Sonigo P. Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J Virol. 2004;78:11263–71.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yerly S, Gunthard HF, Fagard C, Joos B, Perneger TV, Hirschel B, et al. Proviral HIV-DNA predicts viral rebound and viral setpoint after structured treatment interruptions. AIDS. 2004;18:1951–3.CrossRefPubMedGoogle Scholar
  27. 27.
    Williams JP, Hurst J, Stöhr W, Robinson N, Brown H, Fisher M, et al. HIV-1 DNA predicts disease progression and post-treatment virological control. elife. 2014;3:e03821.PubMedPubMedCentralGoogle Scholar
  28. 28.
    •• Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22:1043–9. Study comparing the proportion of intact and defective proviruses in HIV patients treated early vs. late after infection. Compared to the intact proviral assay, CA-DNA assays significantly overestimated the intact reservoir size while QVOA significantly underestimated the intact HIV reservoir size. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu Y, Marsh JW. Gene transcription in HIV infection. Microbes Infect. 2003;5:1023–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Koelsch KK, Liu L, Haubrich R, May S, Havlir D, Günthard HF, et al. Dynamics of total, linear nonintegrated, and integrated HIV-1 DNA in vivo and in vitro. J. Infect. Dis. 2008;197:411–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Besson GJ, Lalama CM, Bosch RJ, Gandhi RT, Bedison MA, Aga E, et al. HIV-1 DNA decay dynamics in blood during more than a decade of suppressive antiretroviral therapy. Clin Infect Dis. 2014;59:1312–21.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Iyer SR, Yu D, Biancotto A, Margolis LB, Wu Y. Measurement of human immunodeficiency virus type 1 preintegration transcription by using Rev-dependent Rev-CEM cells reveals a sizable transcribing DNA population comparable to that from proviral templates. J Virol. 2009;83:8662–73.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yoder KE, Fishel R. PCR-based detection is unable to consistently distinguish HIV 1LTR circles. J Virol Methods. 2006;138:201–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Pace MJ, Graf EH, O’Doherty U. HIV 2-long terminal repeat circular DNA is stable in primary CD4+T cells. Virology. 2013;441:18–21.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chomont N, El-Far M, Ancuta P, Trautmann L, Procopio FA, Yassine-Diab B, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    De Spiegelaere W, Malatinkova E, Lynch L, Van Nieuwerburgh F, Messiaen P, O’Doherty U, et al. Quantification of integrated HIV DNA by repetitive-sampling Alu-HIV PCR on the basis of poisson statistics. Clin Chem. 2014;60:886–95.CrossRefPubMedGoogle Scholar
  37. 37.
    Grover D, Mukerji M, Bhatnagar P, Kannan K, Samir K, Brahmachari SK. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics. 2004;20:813–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Mbisa JL, Delviks-Frankenberry KA, Thomas JA, Gorelick RJ, Pathak VK. Real-time PCR analysis of HIV-1 replication post-entry events. Methods Mol Biol. 2009;485:55–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Agosto LM, Yu JJ, Dai J, Kaletsky R, Monie D, O’Doherty U. HIV-1 integrates into resting CD4+ T cells even at low inoculums as demonstrated with an improved assay for HIV-1 integration. Virology. 2007;368:60–72.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liszewski MK, Yu JJ, O’Doherty U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. Methods. 2009;47:254–60.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet. 2005;366:549–55.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Suspène R, Meyerhans A. Quantification of unintegrated HIV-1 DNA at the single cell level in vivo. PLoS One. 2012;7:e36246.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jung A, Maier R, Vartanian J-P, Bocharov G, Jung V, Fischer U, et al. Recombination: multiply infected spleen cells in HIV patients. Nature. 2002;418:144.CrossRefPubMedGoogle Scholar
  44. 44.
    •• Deleage C, Wietgrefe SW, Del Prete G, Morcock DR, Hao XP, Piatak M, et al. Defining HIV and SIV reservoirs in lymphoid tissues. Pathog Immun. 2016;1:68–106. Study demonstrating the use of RNAscope and DNAscope to detect latently infected cells (vDNA+ vRNA-) and actively infected cells (vDNA+ vRNA+). CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li B, Gladden AD, Altfeld M, Kaldor JM, Cooper DA, Kelleher AD, et al. Rapid reversion of sequence polymorphisms dominates early human immunodeficiency virus type 1 evolution. J Virol. 2007;81:193–201.CrossRefPubMedGoogle Scholar
  46. 46.
    Ho Y-C, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DIS, et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell Elsevier Inc. 2013;155:540–51.Google Scholar
  47. 47.
    Purcell DF, Martin MA. Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol. 1993;67:6365–78.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Pasternak AO, Adema KW, Bakker M, Jurriaans S, Berkhout B, Cornelissen M, et al. Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. J Clin Microbiol. 2008;46:2206–11.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS. 2016;30:343–53.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ledderose C, Heyn J, Limbeck E, Kreth S. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils. BMC Res Notes. 2011;4:427.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gutiérrez C, Serrano-Villar S, Madrid-Elena N, Pérez-Elías MJ, Martín ME, Barbas C, et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS. 2016;30:1385–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Kearney MF, Wiegand A, Shao W, Coffin JM, Mellors JW, Lederman M, et al. Origin of rebound plasma HIV includes cells with identical proviruses that are transcriptionally active before stopping of antiretroviral therapy. J Virol. 2016; 90:1369–1376.Google Scholar
  53. 53.
    Martrus G, Niehrs A, Cornelis R, Rechtien A, García-Beltran W, Lütgehetmann M, et al. Kinetics of HIV-1 latency reversal quantified on the single cell level using a novel flow-based technique. J. Virol. 2016;90:9018–28.Google Scholar
  54. 54.
    Romerio F, Zapata J. Detection and enrichment to near purity of rare HIV-1 infected cells by PrimeFlow RNA. J. Virus Erad. 2015; Suppl 1:1–18 Oral Presentation 3.2.Google Scholar
  55. 55.
    Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, et al. Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe. 2016;20:368–80.CrossRefPubMedGoogle Scholar
  56. 56.
    Palmer S, Wiegand AP, Maldarelli F, Mican JM, Polis M, Dewar RL, et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol. 2003;41:4561–36.Google Scholar
  57. 57.
    Cillo AR, Vagratian D, Bedison MA, Anderson EM, Kearney MF, Fyne E, et al. Improved single-copy assays for quantification of persistent HIV-1 viremia in patients on suppressive antiretroviral therapy. J Clin Microbiol. 2014;52:3944–51.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Somsouk M, Dunham RM, Cohen M, Albright R, Abdel-Mohsen M, Liegler T, et al. The immunologic effects of mesalamine in treated HIV-infected individuals with incomplete CD4+ T cell recovery: a randomized crossover trial. PLoS One. 2014;9:1–19.CrossRefGoogle Scholar
  59. 59.
    Stramer SL, Krysztof DE, Brodsky JP, Fickett TA, Reynolds B, Dodd RY, et al. Comparative analysis of triplex nucleic acid test assays in United States blood donors. Transfusion. 2013;53:2525–37.CrossRefPubMedGoogle Scholar
  60. 60.
    Leth S, Schleimann MH, Nissen SK, Højen JF, Olesen R, Graversen ME, et al. Combined effect of Vacc-4×, recombinant human granulocyte macrophage colony-stimulating factor vaccination, and romidepsin on the HIV-1 reservoir (REDUC): a single-arm, phase 1B/2A trial. Lancet HIV. 2016;3018:1–10.Google Scholar
  61. 61.
    Busch MP, Glynn SA, Wright DJ, Hirschkorn D, Laycock ME, McAuley J, et al. Relative sensitivities of licensed nucleic acid amplification tests for detection of viremia in early human immunodeficiency virus and hepatitis C virus infection. Transfusion. 2005;45:1853–63.CrossRefPubMedGoogle Scholar
  62. 62.
    Hatano H, Delwart EL, Norris PJ, Lee T-H, Dunn-Williams J, Hunt PW, et al. Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol. 2009;83:329–35.CrossRefPubMedGoogle Scholar
  63. 63.
    Tang N, Huang S, Salituro J, Mak WB, Cloherty G, Johanson J, et al. A RealTime HIV-1 viral load assay for automated quantitation of HIV-1 RNA in genetically diverse group M subtypes A-H, group O and group N samples. J Virol Methods. 2007;146:236–45.CrossRefPubMedGoogle Scholar
  64. 64.
    Yukl SA, Li P, Fujimoto K, Lampiris H, Lu CM, Hare CB, et al. Modification of the Abbott RealTime assay for detection of HIV-1 plasma RNA viral loads less than one copy per milliliter. J Virol Methods. 2011;175:261–5.CrossRefPubMedGoogle Scholar
  65. 65.
    Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278:1295–300.CrossRefPubMedGoogle Scholar
  66. 66.
    Siliciano JD, Siliciano RF. Enhanced culture assay for detection and quantitation of latently infected, resting virus in HIV-1-infected individuals. Methods Mol Biol. 2005;304:3–15.PubMedGoogle Scholar
  67. 67.
    Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387:183–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9:727–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Crooks AM, Bateson R, Cope AB, Dahl NP, Griggs MK, Kuruc JD, et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 2015;212:1361–5.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    •• Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, Lysenko ES, et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 2013;9:e1003174.The authors compared 11 different approaches to measure the virus reservoir. Study shows that most assays do not correlate with QVOA results, except for the HIV-1 integrated DNA assay and HIV-1 RNA/DNA ratio in CD4 T cells from rectal tissue. Google Scholar
  71. 71.
    Hermankova M, Siliciano JD, Zhou Y, Monie D, Chadwick K, Margolick JB, et al. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol. 2003;77:7383–92.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, et al. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog. 2014;10:e1004071.Google Scholar
  73. 73.
    Laird GM, Eisele EE, Rabi SA, Lai J, Chioma S, Blankson JN, et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 2013;9:e1003398.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cillo AR, Sobolewski MD, Bosch RJ, Fyne E, Piatak M, Coffin JM, et al. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2014;111:7078–83.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Vesanen M, Markowitz M, Cao Y, Ho DD, Saksela K. Human immunodeficiency virus type-1 mRNA splicing pattern in infected persons is determined by the proportion of newly infected cells. Virology. 1997;236:104–9.CrossRefPubMedGoogle Scholar
  76. 76.
    Procopio FA, Fromentin R, Kulpa DA, Brehm JH, Bebin AG, Strain MC, et al. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine. 2015;2:874–83.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Howell B, Wu G, Swanson M, Lu M, Graham G, Strizki J, et al. Developing and applying ultrasensitive p24 protein immunoassay for HIV lateny. J. Virus Erad. 2015; Suppl 1:1–18 Oral Presentation 3.1.Google Scholar
  78. 78.
    Metcalf Pate KA, Pohlmeyer CW, Walker-Sperling VE, Foote JB, Najarro KM, Cryer CG, et al. A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. J. Infect. Dis. 2015;212:1387–96.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Spivak AM, Andrade A, Eisele E, Hoh R, Bacchetti P, Bumpus NN, et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis. 2014;58:883–90.CrossRefPubMedGoogle Scholar
  80. 80.
    Mothe B, Climent N, Plana M, Rosàs M, Jiménez JL, Muñoz-Fernández MÁ, et al. Safety and immunogenicity of a modified vaccinia Ankara-based HIV-1 vaccine (MVA-B) in HIV-1-infected patients alone or in combination with a drug to reactivate latent HIV-1. J Antimicrob Chemother. 2015;70:1833–42.PubMedGoogle Scholar
  81. 81.
    Siliciano JD, Lai J, Callender M, Pitt E, Zhang H, Margolick JB, et al. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis. 2007;195:833–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Archin NM, Eron JJ, Palmer S, Hartmann-Duff A, Martinson JA, Wiegand A, et al. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS. 2008;22:1131–5.CrossRefPubMedGoogle Scholar
  83. 83.
    Sagot-Lerolle N, Lamine A, Chaix M-L, Boufassa F, Aboulker J-P, Costagliola D, et al. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 2008;22:1125–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Routy JP, Tremblay CL, Angel JB, Trottier B, Rouleau D, Baril JG, et al. Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: results from a multicentre randomized clinical study. HIV Med. 2012;13:291–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang K-H, Dahl NP, et al. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J. Infect. Dis. 2014;210:728–35.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Elliott JH, Wightman F, Solomon A, Ghneim K, Ahlers J, Cameron MJ, et al. Activation of HIV transcription with short-course Vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 2014;10:1–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations