Current HIV/AIDS Reports

, Volume 12, Issue 4, pp 523–531 | Cite as

Cell Phone-Based and Adherence Device Technologies for HIV Care and Treatment in Resource-Limited Settings: Recent Advances

  • Jeffrey I. Campbell
  • Jessica E. HabererEmail author
HIV and Technology (J Simoni and K Horvath, Section Editors)
Part of the following topical collections:
  1. Topical Collection on HIV and Technology


Numerous cell phone-based and adherence monitoring technologies have been developed to address barriers to effective HIV prevention, testing, and treatment. Because most people living with HIV and AIDS reside in resource-limited settings (RLS), it is important to understand the development and use of these technologies in RLS. Recent research on cell phone-based technologies has focused on HIV education, linkage to and retention in care, disease tracking, and antiretroviral therapy adherence reminders. Advances in adherence devices have focused on real-time adherence monitors, which have been used for both antiretroviral therapy and pre-exposure prophylaxis. Real-time monitoring has recently been combined with cell phone-based technologies to create real-time adherence interventions using short message service (SMS). New developments in adherence technologies are exploring ingestion monitoring and metabolite detection to confirm adherence. This article provides an overview of recent advances in these two families of technologies and includes research on their acceptability and cost-effectiveness when available. It additionally outlines key challenges and needed research as use of these technologies continues to expand and evolve.


Cell phones Electronic adherence monitoring Technology HIV antiretroviral therapy 


Compliance with Ethics Guidelines

Conflict of Interest

Dr. Haberer reports grants from NIH, during the conduct of the study; personal fees from World Health Organization, personal fees from FHI 360, personal fees from NIH, outside the submitted work. Mr. Campbell reports grants from NIH, during the conduct of the study.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


This study was supported from NIH grant numbers R21AI108329, R34H100940.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Organization WH. Global update on the health sector response to HIV, 2014. WHO Press 2014; World Health Organization, Geneva. 2014. Last accessed 18 July 2015.
  2. 2.
    Organization WH. Number of deaths due to HIV/AIDS. 2015. Last accessed 31 May 2015
  3. 3.
    Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505. doi: 10.1056/NEJMoa1105243.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    “Technology”. Merriam-Webster Dictionary. Last accessed 4 June 2015.
  5. 5.
    World Bank. Information and communication technologies, infoDev (Program), World Bank. Maximizing mobile: 2012 information and communications for development. Information and Communications for Development, vol. 2012. Washington, D.C.: World Bank: InfoDev; 2012.Google Scholar
  6. 6.
    Organization WH. mHealth: New horizons for health through mobile technologies: second global survey on eHealth. World Health Organization, Geneva, Switzerland. 2011. Last accessed 30 May 2015.
  7. 7.
    Center PR. Cell phones in Africa: communication lifeline. 2015. Last accessed 4 June 2015.
  8. 8.
    Union IT. ICT facts and figures. International Telecommunication Union Geneva, Switzerland. 2015. Last accessed 4 June 2015.
  9. 9.
    van Velthoven MH, Brusamento S, Majeed A, Car J. Scope and effectiveness of mobile phone messaging for HIV/AIDS care: a systematic review. Psychol Health Med. 2013;18(2):182–202. doi: 10.1080/13548506.2012.701310.CrossRefPubMedGoogle Scholar
  10. 10.
    Hall CS, Fottrell E, Wilkinson S, Byass P. Assessing the impact of mHealth interventions in low- and middle-income countries–what has been shown to work? Glob Health Action. 2014;7:25606. doi: 10.3402/gha.v7.25606.PubMedGoogle Scholar
  11. 11.
    Tomlinson M, Rotheram-Borus MJ, Swartz L, Tsai AC. Scaling up mHealth: where is the evidence? PLoS Med. 2013;10(2):e1001382. doi: 10.1371/journal.pmed.1001382.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Consulting VW. mHealth for Development: the opportunity of mobile technology for healthcare in the developing world. Washington, DC and Berkshire, UK: UN Foundation-Vodafone Foundation Partnership. 2009. Last accessed 30 May 2015.
  13. 13.
    Mendoza G, Levine R, Kibuka T, Okoko L. mHealth compendium, volume 4. Arlington, VA: African Strategies for Health, Management Sciences for Health. 2014. Last accessed 30 May 2015.
  14. 14.
    Chib A, Wilkin H, Ling LX, Hoefman B, Van Biejma H. You have an important message! Evaluating the effectiveness of a text message HIV/AIDS campaign in Northwest Uganda. J Health Commun. 2012;17 Suppl 1:146–57. doi: 10.1080/10810730.2011.649104.CrossRefPubMedGoogle Scholar
  15. 15.
    Chib A, Wilkin H, Hoefman B. Vulnerabilities in mHealth implementation: a Ugandan HIV/AIDS SMS campaign. Glob Health Promot. 2013;20(1 Suppl):26–32. doi: 10.1177/1757975912462419.CrossRefPubMedGoogle Scholar
  16. 16.
    Siedner MJ, Santorino D, Haberer JE, Bangsberg DR. Know your audience: predictors of success for a patient-centered texting app to augment linkage to HIV care in rural Uganda. J Med Internet Res. 2015;17(3):e78. doi: 10.2196/jmir.3859.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Siedner MJ, Santorino D, Lankowski AJ, Kanyesigye M, Bwana MB, Haberer JE et al. A combination SMS and transportation reimbursement intervention to improve HIV care following abnormal CD4 test results in rural Uganda: an observational cohort study. BMC Med. 2015;13(160). doi: 10.1186/s12916-015-0397-1.
  18. 18. WelTel Retain: promoting engagement in pre-ART HIV care through SMS. 2015. Last accessed 31 May 2015.
  19. 19.
    Lester RT, Ritvo P, Mills EJ, Kariri A, Karanja S, Chung MH, et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet. 2010;376(9755):1838–45. doi: 10.1016/S0140-6736(10)61997-6.CrossRefPubMedGoogle Scholar
  20. 20.
    Finocchario-Kessler S, Gautney BJ, Khamadi S, Okoth V, Goggin K, Spinler JK, et al. If you text them, they will come: using the HIV infant tracking system to improve early infant diagnosis quality and retention in Kenya. AIDS. 2014;28 Suppl 3:S313–21. doi: 10.1097/QAD.0000000000000332.PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Bigna JJ, Noubiap JJ, Kouanfack C, Plottel CS, Koulla-Shiro S. Effect of mobile phone reminders on follow-up medical care of children exposed to or infected with HIV in Cameroon (MORE CARE): a multicentre, single-blind, factorial, randomised controlled trial. Lancet Infect Dis. 2014;14(7):600–8. doi: 10.1016/S1473-3099(14)70741-8.CrossRefPubMedGoogle Scholar
  22. 22.
    Schwartz SR, Clouse K, Yende N, Van Rie A, Bassett J, Ratshefola M, et al. Acceptability and feasibility of a mobile phone-based case management intervention to retain mothers and infants from an option B+ program in postpartum HIV care. Matern Child Health J. 2015. doi: 10.1007/s10995-015-1715-0.Google Scholar
  23. 23.
    Dryden-Peterson S, Bennett K, Hughes MD, Veres A, John O, Pradhananga R, et al. An augmented SMS intervention to improve access to antenatal CD4 testing and ART initiation in HIV-infected pregnant women: a cluster randomized trial. PLoS One. 2015;10(2):e0117181. doi: 10.1371/journal.pone.0117181.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Nsanzimana S, Ruton H, Lowrance DW, Cishahayo S, Nyemazi JP, Muhayimpundu R, et al. Cell phone-based and internet-based monitoring and evaluation of the National Antiretroviral Treatment Program during rapid scale-up in Rwanda: TRACnet, 2004-2010. J Acquir Immune Defic Syndr. 2012;59(2):e17–23. doi: 10.1097/QAI.0b013e31823e2278.CrossRefPubMedGoogle Scholar
  25. 25.
    Chin CD, Cheung YK, Laksanasopin T, Modena MM, Chin SY, Sridhara AA, et al. Mobile device for disease diagnosis and data tracking in resource-limited settings. Clin Chem. 2013;59(4):629–40. doi: 10.1373/clinchem.2012.199596.CrossRefPubMedGoogle Scholar
  26. 26.•
    Finitsis DJ, Pellowski JA, Johnson BT. Text message intervention designs to promote adherence to antiretroviral therapy (ART): a meta-analysis of randomized controlled trials. PLoS One. 2014;9(2):e88166. doi: 10.1371/journal.pone.0088166. This recent meta-analysis summarizes a broad range of data from RLS and the developed world on the efficacy of SMS-based reminders.PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Mbuagbaw L, van der Kop ML, Lester RT, Thirumurthy H, Pop-Eleches C, Ye C, et al. Mobile phone text messages for improving adherence to antiretroviral therapy (ART): an individual patient data meta-analysis of randomised trials. BMJ Open. 2013;3(12):e003950. doi: 10.1136/bmjopen-2013-003950.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Mills EJ, Lester R, Thorlund K, Lorenzi M, Muldoon K, Kanters S et al. Interventions to promote adherence to antiretroviral therapy in Africa: a network meta-analysis. Lancet HIV.1(3):e104-11. doi: 10.1016/S2352-3018(14)00003-4.
  29. 29.
    Pop-Eleches C, Thirumurthy H, Habyarimana JP, Zivin JG, Goldstein MP, de Walque D, et al. Mobile phone technologies improve adherence to antiretroviral treatment in a resource-limited setting: a randomized controlled trial of text message reminders. AIDS. 2011;25(6):825–34. doi: 10.1097/QAD.0b013e32834380c1.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Horvath T, Azman H, Kennedy GE, Rutherford GW. Mobile phone text messaging for promoting adherence to antiretroviral therapy in patients with HIV infection. Cochrane Database Syst Rev. 2012;3:CD009756. doi: 10.1002/14651858.CD009756.PubMedGoogle Scholar
  31. 31.
    Shet A, De Costa A, Kumarasamy N, Rodrigues R, Rewari BB, Ashorn P, et al. Effect of mobile telephone reminders on treatment outcome in HIV: evidence from a randomised controlled trial in India. BMJ. 2014;349:g5978. doi: 10.1136/bmj.g5978.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Rodrigues R, Shet A, Antony J, Sidney K, Arumugam K, Krishnamurthy S, et al. Supporting adherence to antiretroviral therapy with mobile phone reminders: results from a cohort in South India. PLoS One. 2012;7(8):e40723. doi: 10.1371/journal.pone.0040723.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Maduka O, Tobin-West CI. Adherence counseling and reminder text messages improve uptake of antiretroviral therapy in a tertiary hospital in Nigeria. Niger J Clin Pract. 2013;16(3):302–8. doi: 10.4103/1119-3077.113451.CrossRefPubMedGoogle Scholar
  34. 34.
    Simoni JM, Montgomery A, Martin E, New M, Demas PA, Rana S. Adherence to antiretroviral therapy for pediatric HIV infection: a qualitative systematic review with recommendations for research and clinical management. Pediatrics. 2007;119(6):e1371–83. doi: 10.1542/peds.2006-1232.CrossRefPubMedGoogle Scholar
  35. 35.•
    Sabin LL, Bachman DeSilva M, Gill CJ, Zhong L, Vian T, Wubin X, et al. Improving adherence to antiretroviral therapy with triggered real time text message reminders: the China through technology study (CATS). J Acquir Immune Defic Syndr. 2015. doi: 10.1097/QAI.0000000000000651. This paper presents the first of two trials to combine electronic adherence monitoring and cell phone-based reminders, using a responsive reminder system based on detected non-adherence.Google Scholar
  36. 36.
    Mbuagbaw L, Thabane L, Ongolo-Zogo P, Lester RT, Mills EJ, Smieja M, et al. The Cameroon mobile phone SMS (CAMPS) trial: a randomized trial of text messaging versus usual care for adherence to antiretroviral therapy. PLoS One. 2012;7(12):e46909. doi: 10.1371/journal.pone.0046909.PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Rodrigues R, Bogg L, Shet A, Kumar DS, De Costa A. Mobile phones to support adherence to antiretroviral therapy: what would it cost the Indian National AIDS Control Programme? J Int AIDS Soc. 2014;17:19036. doi: 10.7448/IAS.17.1.19036.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Siedner MJ, Haberer JE, Bwana MB, Ware NC, Bangsberg DR. High acceptability for cell phone text messages to improve communication of laboratory results with HIV-infected patients in rural Uganda: a cross-sectional survey study. BMC Med Inform Decis Mak. 2012;12:56. doi: 10.1186/1472-6947-12-56.PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Tran BX, Houston S. Mobile phone-based antiretroviral adherence support in Vietnam: feasibility, patient’s preference, and willingness-to-pay. AIDS Behav. 2012;16(7):1988–92. doi: 10.1007/s10461-012-0271-5.CrossRefPubMedGoogle Scholar
  40. 40.
    Smillie K, Van Borek N, van der Kop ML, Lukhwaro A, Li N, Karanja S, et al. Mobile health for early retention in HIV care: a qualitative study in Kenya (WelTel Retain). African J AIDS Res : AJAR. 2014;13(4):331–8. doi: 10.2989/16085906.2014.961939.CrossRefGoogle Scholar
  41. 41.
    da Costa TM, Barbosa BJ, Gomes e Costa DA, Sigulem D, de Fatima Marin H, Filho AC, et al. Results of a randomized controlled trial to assess the effects of a mobile SMS-based intervention on treatment adherence in HIV/AIDS-infected Brazilian women and impressions and satisfaction with respect to incoming messages. Int J Med Inform. 2012;81(4):257–69. doi: 10.1016/j.ijmedinf.2011.10.002.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Rana Y, Haberer J, Huang H, Kambugu A, Mukasa B, Thirumurthy H, et al. Short message service (SMS)-based intervention to improve treatment adherence among HIV-positive youth in Uganda: focus group findings. PLoS One. 2015;10(4):e0125187. doi: 10.1371/journal.pone.0125187.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Bigna JJ, Noubiap JJ, Plottel CS, Kouanfack C, Koulla-Shiro S. Barriers to the implementation of mobile phone reminders in pediatric HIV care: a pre-trial analysis of the Cameroonian MORE CARE study. BMC Health Serv Res. 2014;14:523. doi: 10.1186/s12913-014-0523-3.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Xiao Y, Ji G, Tian C, Li H, Biao W, Hu Z. Acceptability and factors associated with willingness to receive short messages for improving antiretroviral therapy adherence in China. AIDS Care. 2014;26(8):952–8. doi: 10.1080/09540121.2013.869540.CrossRefPubMedGoogle Scholar
  45. 45.
    Reid MJ, Dhar SI, Cary M, Liang P, Thompson J, Gabaitiri L, et al. Opinions and attitudes of participants in a randomized controlled trial examining the efficacy of SMS reminders to enhance antiretroviral adherence: a cross-sectional survey. J Acquir Immune Defic Syndr. 2014;65(2):e86–8. doi: 10.1097/QAI.0b013e3182a9c72b.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Nhavoto JA, Gronlund A, Chaquilla WP. SMSaude: design, development, and implementation of a remote/mobile patient management system to improve retention in care for HIV/AIDS and tuberculosis patients. JMIR mHealth uHealth. 2015;3(1):e26. doi: 10.2196/mhealth.3854.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Checchi KD, Huybrechts KF, Avorn J, Kesselheim AS. Electronic medication packaging devices and medication adherence: a systematic review. JAMA. 2014;312(12):1237–47. doi: 10.1001/jama.2014.10059.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Conway B. The role of adherence to antiretroviral therapy in the management of HIV infection. J Acquir Immune Defic Syndr. 2007;45 Suppl 1:S14–8. doi: 10.1097/QAI.0b013e3180600766.CrossRefPubMedGoogle Scholar
  49. 49.
    Hinkin CH, Barclay TR, Castellon SA, Levine AJ, Durvasula RS, Marion SD, et al. Drug use and medication adherence among HIV-1 infected individuals. AIDS Behav. 2007;11(2):185–94. doi: 10.1007/s10461-006-9152-0.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Bangsberg DR, Hecht FM, Charlebois ED, Zolopa AR, Holodniy M, Sheiner L, et al. Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an indigent population. AIDS. 2000;14(4):357–66.CrossRefPubMedGoogle Scholar
  51. 51.
    Haberer JE, Kiwanuka J, Nansera D, Ragland K, Mellins C, Bangsberg DR. Multiple measures reveal antiretroviral adherence successes and challenges in HIV-infected Ugandan children. PLoS One. 2012;7(5):e36737. doi: 10.1371/journal.pone.0036737.PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Sabin LL, DeSilva MB, Hamer DH, Xu K, Zhang J, Li T, et al. Using electronic drug monitor feedback to improve adherence to antiretroviral therapy among HIV-positive patients in China. AIDS Behav. 2010;14(3):580–9. doi: 10.1007/s10461-009-9615-1.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Haberer JE, Kahane J, Kigozi I, Emenyonu N, Hunt P, Martin J, et al. Real-time adherence monitoring for HIV antiretroviral therapy. AIDS Behav. 2010;14(6):1340–6. doi: 10.1007/s10461-010-9799-4.PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Haberer JE, Kiwanuka J, Nansera D, Muzoora C, Hunt PW, So J, et al. Realtime adherence monitoring of antiretroviral therapy among HIV-infected adults and children in rural Uganda. AIDS. 2013;27(13):2166–8. doi: 10.1097/QAD.0b013e328363b53f.CrossRefPubMedGoogle Scholar
  55. 55.
    van der Straten A, Montgomery E, Pillay D, Cheng H, Naidoo A, Cele Z, et al. Feasibility, performance, and acceptability of the Wisebag for potential monitoring of daily gel applicator use in Durban, South Africa. AIDS Behav. 2013;17(2):640–8. doi: 10.1007/s10461-012-0330-y.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Bangsberg DR. A paradigm shift to prevent HIV drug resistance. PLoS Med. 2008;5(5):e111. doi: 10.1371/journal.pmed.0050111.PubMedCentralCrossRefPubMedGoogle Scholar
  57. 57.•
    Orrell C, Cohen K, Mauff K, Bangsberg D, Maartens G, Wood R. A randomised controlled trial of real-time electronic adherence monitoring with text message dosing reminders in people starting first-line antiretroviral therapy. J Acquir Immune Defic Syndr. 2015. This paper is the second of two trials that linked SMS-based adherence reminders to non-adherence detected by real-time electronic monitoring.Google Scholar
  58. 58.
    Haberer J, Musinguzi N, Boum YI, Siedner J, Mocello A, Hunt P et al. Duration of antiretroviral therapy adherence interruption is associated with risk of virologic rebound as determined by real-time adherence monitoring in rural Uganda. J Acquir Immune Defic Syndr. 2015. doi: 10.1097/QAI.0000000000000737.
  59. 59.
    DiCarlo LA. Role for direct electronic verification of pharmaceutical ingestion in pharmaceutical development. Contemp Clin Trials. 2012;33(4):593–600. doi: 10.1016/j.cct.2012.03.008.CrossRefPubMedGoogle Scholar
  60. 60.
    Morey TE, Wasdo S, Wishin J, Quinn B, van der Straten A, Booth M, et al. Feasibility of a breath test for monitoring adherence to vaginal administration of antiretroviral microbicide gels. J Clin Pharmacol. 2013;53(1):103–11. doi: 10.1177/0091270011434157.CrossRefPubMedGoogle Scholar
  61. 61.
    Boyd P, Desjardins D, Kumar S, Fetherston SM, Le-Grand R, Dereuddre-Bosquet N, et al. A temperature-monitoring vaginal ring for measuring adherence. PLoS One. 2015;10(5):e0125682. doi: 10.1371/journal.pone.0125682.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Bachman Desilva M, Gifford AL, Keyi X, Li Z, Feng C, Brooks M, et al. Feasibility and acceptability of a real-time adherence device among HIV-positive IDU patients in China. AIDS Res Treat. 2013;2013:957862. doi: 10.1155/2013/957862.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Massachusetts General Hospital Center for Global HealthBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations