Skip to main content

Advertisement

Log in

Therapeutic Options for Low Bone Mineral Density in HIV-Infected Subjects

  • Antiretroviral Therapies (A Pozniak, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

With the advent of effective antiretroviral therapy (ART), the recognition and management of long-term complications of HIV infection and ART are increasingly important for HIV physicians. Low bone mineral density (BMD) is more common in those with HIV infection and this review will outline therapeutic options for the management of low bone mineral density relevant to HIV-infected populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993 Jun;94(6):646–50.

  2. Bhavan KP, Kampalath VN, Overton ET. The aging of the HIV epidemic. Curr HIV/AIDS Rep. 2008;5(3):150–8.

    Article  PubMed  Google Scholar 

  3. Martin CP, Fain MJ, Klotz SA. The older HIV-positive adult: a critical review of the medical literature. Am J Med. 2008;121(12):1032–7.

    Article  PubMed  Google Scholar 

  4. Rockville MDoHaHS. Bone health and osteoporosis: a report of the Surgeon General. In: Department of Health and Human Services, editor. 2004.

  5. van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone. 2001;29(6):517–22.

    Article  PubMed  Google Scholar 

  6. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74.

    Article  PubMed  Google Scholar 

  7. • Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504. This was the first paper to demonstrate an increased risk of fragility fracture in HIV-infected patients. However, data correlating the increased fracture risk were lacking.

    Article  PubMed  CAS  Google Scholar 

  8. • Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin Infect Dis. 2011;52(8):1061–8. This paper demonstrates a significantly increased risk of fracture in those with HIV infection compared to the general population. While the BMD of the subjects is unknown, there was a significant increase in fractures at sites associated with bone fragility, ie, wrist, vertebrae, and hip.

    Article  PubMed  Google Scholar 

  9. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One. 2011;6(2):e17217.

    Article  PubMed  CAS  Google Scholar 

  10. Chrischilles EA, Butler CD, Davis CS, Wallace RB. A model of lifetime osteoporosis impact. Arch Intern Med. 1991;151(10):2026–32.

    Article  PubMed  CAS  Google Scholar 

  11. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–81.

    Article  PubMed  CAS  Google Scholar 

  12. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12 [Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  13. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.

    Article  PubMed  CAS  Google Scholar 

  14. Libois A, Clumeck N, Kabeya K, Gerard M, De Wit S, Poll B, et al. Risk factors of osteopenia in HIV-infected women: no role of antiretroviral therapy. Maturitas. 2009;65(1):51–4.

    Article  PubMed  Google Scholar 

  15. Calmy A, Fux CA, Norris R, Vallier N, Delhumeau C, Samaras K, et al. Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis. 2009;200(11):1746–54 [Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  16. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23(7):817–24 [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  17. Madeddu G, Spanu A, Chessa F, Calia GM, Lovigu C, Mannazzu M, et al. Serum leptin and bone metabolism in HIV patients treated with highly active antiretroviral therapy. Q J Nucl Med Mol Imaging. 2009;53(3):290–301.

    PubMed  Google Scholar 

  18. Tomazic J, Ul K, Volcansek G, Gorensek S, Pfeifer M, Karner P, et al. Prevalence and risk factors for osteopenia/osteoporosis in an HIV-infected male population. Wien Klin Wochenschr. 2007;119(21–22):639–46.

    Article  PubMed  Google Scholar 

  19. Brown TT, Ruppe MD, Kassner R, Kumar P, Kehoe T, Dobs AS, et al. Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. J Clin Endocrinol Metab. 2004;89(3):1200–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mondy K, Yarasheski K, Powderly WG, Whyte M, Claxton S, DeMarco D, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin Infect Dis. 2003;36(4):482–90.

    Article  PubMed  Google Scholar 

  21. Moore AL, Vashisht A, Sabin CA, Mocroft A, Madge S, Phillips AN, et al. Reduced bone mineral density in HIV-positive individuals. AIDS. 2001;15(13):1731–3.

    Article  PubMed  CAS  Google Scholar 

  22. Fausto A, Bongiovanni M, Cicconi P, Menicagli L, Ligabo EV, Melzi S, et al. Potential predictive factors of osteoporosis in HIV-positive subjects. Bone. 2006;38(6):893–7.

    Article  PubMed  Google Scholar 

  23. Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS. 2001;15(6):703–9.

    Article  PubMed  CAS  Google Scholar 

  24. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS. 2007;21(5):617–23.

    Article  PubMed  Google Scholar 

  25. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, Schoenbaum EE. HIV infection and bone mineral density in middle-aged women. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2006;42(7):1014–20.

    Article  CAS  Google Scholar 

  26. Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45.

    Article  PubMed  CAS  Google Scholar 

  27. Nolan D, Upton R, McKinnon E, John M, James I, Adler B, et al. Stable or increasing bone mineral density in HIV-infected patients treated with nelfinavir or indinavir. AIDS. 2001;15(10):1275–80.

    Article  PubMed  CAS  Google Scholar 

  28. Cazanave C, Lawson-Ayayi S, Barthe N, Uwamaliya-Nziyumvira B, Kpozehouen A, Mehsen N, et al. Changes in bone mineral density: 2-year follow-up of the ANRS CO3 aquitaine cohort. CROI. 2010: Abstract 747.

  29. Bonjoch A, Figueras M, Estany C, Perez-Alvarez N, Rosales J, del Rio L, et al. High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study. AIDS. 2010;24(18):2827–33 [Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  30. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS. 2009;23(11):1367–76.

    Article  PubMed  Google Scholar 

  31. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010;51(8):963–72 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  Google Scholar 

  32. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801 [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  33. van Voderen MGA, Mallon PW, Murray B, Doran P, van Agtmael MA, Danner SA, et al. Changes in bone biomarkers in antiretroviral naïve HIV-infected men randomised to nevirapine/lopinavir/ritonavir (NVP/LPV/r) or zidovudine/lamivudine/lopinavir/ritonavir (AZT/3TC/LPV/r) help explain limited loss of bone mineral density over first 12 months. 18th Conference on Retroviruses and Opportunistic Infections. 2011;Feb 27-Mar 2 2011, Boston, MA:Abstract O-296.

  34. Brown TT, Ross AC, Storer N, Labbato D, McComsey GA. Bone turnover, osteoprotegerin/RANKL and inflammation with antiretroviral initiation: tenofovir versus non-tenofovir regimens. Antivir Ther. 2011;16(7):1063–72 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  35. EACS. EACS Prevention and Management of Non-Infectious Co-Morbidities in HIV 2009.

  36. McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2010;51(8):937–46 [Research Support, Non-U.S. Gov't Review].

    Article  Google Scholar 

  37. Ryan PJ, Blake GM, Herd R, Parker J, Fogelman I. Post-menopausal vertebral osteoporosis: can dual energy X-ray absorptiometry forearm bone density substitute for axial measurements? Br J Rheumatol. 1994;33(6):546–9 [Comparative Study].

    Article  PubMed  CAS  Google Scholar 

  38. Patel R, Blake GM, Panayiotou E, Fogelman I. Clinical evaluation of a phalangeal bone mineral density assessment system. J Clin Densitom. 2010;13(3):292–300 [Evaluation Studies].

    Article  PubMed  Google Scholar 

  39. National Osteoporosis Foundation. America’s Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation. In: Foundation NO, editor. Washington, DC2002.

  40. NOG. Guideline for the diagnosis and management of osteoporosis in post-menopausal women and men over the age of 50 years in the U.K. 2010 July 2010.

  41. Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. (7):CD000333.

  42. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66.

    Article  PubMed  CAS  Google Scholar 

  43. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ.341:c3691.

  44. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women's Health Initiative limited access dataset and meta-analysis. BMJ.342:d2040.

  45. Bolland MJ, Grey A, Gamble GD, Reid IR. Calcium and vitamin D supplements and health outcomes: a reanalysis of the Women's Health Initiative (WHI) limited-access data set. Am J Clin Nutr. Oct;94(4):1144–9.

  46. Mithal A, Wahl DA, Bonjour JP, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20 [Research Support, Non-U.S. Gov't Review].

    Article  PubMed  CAS  Google Scholar 

  47. Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis. Feb 1;52(3):396–405.

  48. Adeyemi OM, Agniel D, French AL, Tien PC, Weber K, Glesby MJ, et al. Vitamin D deficiency in HIV-infected and HIV-uninfected women in the United States. J Acquir Immune Defic Syndr. 2011;57(3):197–204 [Research Support, American Recovery and Reinvestment Act Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  49. Stephensen CB, Marquis GS, Kruzich LA, Douglas SD, Aldrovandi GM, Wilson CM. Vitamin D status in adolescents and young adults with HIV infection. Am J Clin Nutr. 2006;83(5):1135–41.

    PubMed  CAS  Google Scholar 

  50. Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011;52(3):396–405 [Research Support, U.S. Gov't, P.H.S.].

    Article  CAS  Google Scholar 

  51. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15(3):425–9 [Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  52. Wohl D, Doroana M, Orkin C, et al. Change in vitamin D levels smaller and risk of development of severe vitamin D deficiency lower among HIV-1-infected, treatment-naive adults receiving TMC278 compared with EFV: 48-week results from the phase III ECHO trial. 18th Conference on Retroviruses and Opportunistic Infections. 2011;February 27-March 2, 2011.:Abstract no. 79LB.

  53. Allavena C, Delpierre C, Rey D, et al. Effects of ARV on vitamin D concentration in HIV-infected patients: a large prospective cohort analysis. 18th Conference on Retroviruses and Opportunistic Infections. 2011;February 27-March 2, 2011.:Abstract no. 826.

  54. Fox J, Peters B, Prakash M, Arribas J, Hill A, Moecklinghoff C. Improvement in vitamin D deficiency following antiretroviral regime change: Results from the MONET trial. AIDS Res Hum Retrovir. 2011;27(1):29–34 [Randomized Controlled Trial].

    Article  PubMed  CAS  Google Scholar 

  55. Mueller NJ, Fux CA, Ledergerber B, Elzi L, Schmid P, Dang T, et al. High prevalence of severe vitamin D deficiency in combined antiretroviral therapy-naive and successfully treated Swiss HIV patients. AIDS. May 15;24(8):1127–34.

  56. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011 Jun 6.

  57. Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des.16(27):2950–60.

  58. Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci. 2007;1117:209–57.

    Article  PubMed  CAS  Google Scholar 

  59. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet. 1996;348(9041):1535–41.

    Article  PubMed  CAS  Google Scholar 

  60. Black DM, Thompson DE, Bauer DC, Ensrud K, Musliner T, Hochberg MC, et al. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. J Clin Endocrinol Metab. 2000;85(11):4118–24.

    Article  PubMed  CAS  Google Scholar 

  61. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA. 1999;282(14):1344–52.

    Article  PubMed  CAS  Google Scholar 

  62. Delmas PD, Recker RR, Chesnut 3rd CH, Skag A, Stakkestad JA, Emkey R, et al. Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int. 2004;15(10):792–8.

    Article  PubMed  CAS  Google Scholar 

  63. Chesnut IC, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19(8):1241–9.

    Article  CAS  Google Scholar 

  64. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    Article  PubMed  CAS  Google Scholar 

  65. Orwoll E, Ettinger M, Weiss S, Miller P, Kendler D, Graham J, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343(9):604–10.

    Article  PubMed  CAS  Google Scholar 

  66. Zhong ZM, Chen JT. Anti-fracture efficacy of risedronic acid in men: a meta-analysis of randomized controlled trials. Clin Drug Investig. 2009;29(5):349–57.

    Article  PubMed  CAS  Google Scholar 

  67. Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid in reducing clinical fracture and mortality after hip fracture. N Engl J Med. 2007;357:nihpa40967.

    Google Scholar 

  68. Green J, Czanner G, Reeves G, Watson J, Wise L, Beral V. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case–control analysis within a UK primary care cohort. BMJ.341:c4444.

  69. Cardwell CR, Abnet CC, Cantwell MM, Murray LJ. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA. Aug 11;304(6):657–63.

  70. Maerevoet M, Martin C, Duck L. Osteonecrosis of the jaw and bisphosphonates. N Engl J Med. 2005;353(1):99–102. discussion 99-.

    Article  PubMed  Google Scholar 

  71. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296(24):2927–38.

    Article  PubMed  CAS  Google Scholar 

  72. Bolland MJ, Grey AB, Horne AM, Briggs SE, Thomas MG, Ellis-Pegler RB, et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92(4):1283–8.

    Article  PubMed  CAS  Google Scholar 

  73. Guaraldi G, Orlando G, Madeddu G, Vescini F, Ventura P, Campostrini S, et al. Alendronate reduces bone resorption in HIV-associated osteopenia/osteoporosis. HIV Clin Trials. 2004;5(5):269–77 [Clinical Trial Multicenter Study Randomized Controlled Trial].

    Article  PubMed  CAS  Google Scholar 

  74. Huang JS, Wilkie SJ, Sullivan MP, Grinspoon S. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting. J Clin Endocrinol Metab. 2001;86(8):3533–9.

    Article  PubMed  CAS  Google Scholar 

  75. McComsey GA, Kendall MA, Tebas P, Swindells S, Hogg E, Alston-Smith B, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21(18):2473–82.

    Article  PubMed  CAS  Google Scholar 

  76. Mondy K, Powderly WG, Claxton SA, Yarasheski KH, Royal M, Stoneman JS, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38(4):426–31.

    Article  PubMed  CAS  Google Scholar 

  77. Negredo E, Martinez-Lopez E, Paredes R, Rosales J, Perez-Alvarez N, Holgado S, et al. Reversal of HIV-1-associated osteoporosis with once-weekly alendronate. AIDS. 2005;19(3):343–5.

    PubMed  CAS  Google Scholar 

  78. Rozenberg S, Lanoy E, Bentata M, Viard JP, Valantin MA, Missy P, et al. Effect of alendronate on HIV-associated osteoporosis: a randomized, double-blind, placebo-controlled, 96-week trial (ANRS 120). AIDS research and human retroviruses. 2012 Feb 22.

  79. Huang J, Meixner L, Fernandez S, McCutchan JA. A double-blinded, randomized controlled trial of zoledronate therapy for HIV-associated osteopenia and osteoporosis. AIDS. 2009;23(1):51–7 [Randomized Controlled Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  80. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 1996;2(10):1132–6.

    Article  PubMed  CAS  Google Scholar 

  81. Taranta A, Brama M, Teti A, De luca V, Scandurra R, Spera G, et al. The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone. 2002;30(2):368–76.

    Article  PubMed  CAS  Google Scholar 

  82. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    Article  PubMed  CAS  Google Scholar 

  83. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282(7):637–45.

    Article  PubMed  CAS  Google Scholar 

  84. Ensrud KE, Stock JL, Barrett-Connor E, Grady D, Mosca L, Khaw KT, et al. Effects of raloxifene on fracture risk in postmenopausal women: the Raloxifene Use for the Heart Trial. J Bone Miner Res. 2008;23(1):112–20.

    Article  PubMed  CAS  Google Scholar 

  85. Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res. 2001;16(2):348–60.

    Article  PubMed  CAS  Google Scholar 

  86. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, et al. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19(7):1059–66.

    Article  PubMed  CAS  Google Scholar 

  87. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  PubMed  CAS  Google Scholar 

  88. Lewiecki EM, Miller PD, McClung MR, Cohen SB, Bolognese MA, Liu Y, et al. Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res. 2007;22(12):1832–41.

    Article  PubMed  CAS  Google Scholar 

  89. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222–9.

    Article  PubMed  CAS  Google Scholar 

  90. Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S, et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2012;23(1):327–37 [Research Support, Non-U.S. Gov't].

    Article  CAS  Google Scholar 

  91. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  PubMed  CAS  Google Scholar 

  92. Migliaccio S, Brama M, Spera G. The differential effects of bisphosphonates, SERMS (selective estrogen receptor modulators), and parathyroid hormone on bone remodeling in osteoporosis. Clin Interv Aging. 2007;2(1):55–64.

    Article  PubMed  CAS  Google Scholar 

  93. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  PubMed  CAS  Google Scholar 

  94. Orwoll ES, Scheele WH, Paul S, Adami S, Syversen U, Diez-Perez A, et al. The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  95. Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1–34)]. Osteoporos Int. 2004;15(12):992–7.

    Article  PubMed  CAS  Google Scholar 

  96. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349(13):1216–26.

    Article  PubMed  CAS  Google Scholar 

  97. Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2010;95(4):1838–45.

    Article  PubMed  CAS  Google Scholar 

  98. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med. 2003;349(13):1207–15.

    Article  PubMed  CAS  Google Scholar 

  99. Vahle JL, Sato M, Long GG, Young JK, Francis PC, Engelhardt JA, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30(3):312–21.

    Article  PubMed  CAS  Google Scholar 

  100. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459–68 [Clinical Trial Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  101. Cooper C, Reginster JY, Chapurlat R, Christiansen C, Genant H, Bellamy N, et al. Efficacy and safety of oral strontium ranelate for the treatment of knee osteoarthritis: rationale and design of randomised, double-blind, placebo-controlled trial. Curr Med Res Opin. 2012;28(2):231–9.

    Article  PubMed  CAS  Google Scholar 

  102. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005;90(5):2816–22 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  103. Ringe JD, Dorst A, Farahmand P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneimittelforschung. 2010;60(5):267–72.

    Article  PubMed  CAS  Google Scholar 

  104. Curran A, Martinez E, Saumoy M, del Rio L, Crespo M, Larrousse M, et al. Body composition changes after switching from protease inhibitors to raltegravir: SPIRAL-LIP substudy. AIDS. 2012;26(4):475–81 [Research Support, Non-U.S. Gov't].

    Article  PubMed  CAS  Google Scholar 

  105. Bloch M, Tong W, Hoy J, Baker D, Richardson R, Carr A. Improved low BMD and bone turnover markers with switch from Tenofovir to Raltegravir in virologically suppressed HIV-1+ adults at 48 weeks: The TROP Study. CROI. 2012:Abstract 878.

  106. Peris P, Guanabens N, Martinez de Osaba MJ, Monegal A, Alvarez L, Pons F, et al. Clinical characteristics and etiologic factors of premenopausal osteoporosis in a group of Spanish women. Semin Arthritis Rheum. 2002;32(1):64–70.

    Article  PubMed  Google Scholar 

  107. Bhalla AK. Management of osteoporosis in a pre-menopausal woman. Best Pract Res Clin Rheumatol. Jun;24(3):313–27.

  108. Khosla S. Update in male osteoporosis. J Clin Endocrinol Metab. 2010;95(1):3–10.

    Article  PubMed  CAS  Google Scholar 

  109. Smith MR, Fallon MA, Lee H, Finkelstein JS. Raloxifene to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer: a randomized controlled trial. J Clin Endocrinol Metab. 2004;89(8):3841–6.

    Article  PubMed  CAS  Google Scholar 

  110. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International Society for Clinical Densitometry 2007 Adult and Pediatric Official Positions. Bone. 2008;43(6):1115–21.

    Article  PubMed  Google Scholar 

  111. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122.

    PubMed  Google Scholar 

  112. Seibel MJ. Biochemical markers of bone turnover part II: clinical applications in the management of osteoporosis. Clin Biochem Rev. 2006;27(3):123–38.

    PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Irish Health Research Board who fund A.G.C. (award HRA_POR/2010/66).

Disclosure

A. G. Cotter: support, in the form of sponsorship to attend meetings, from M.S.D., Gilead Sciences Ltd., GlaxoSmithKline (Ireland Ltd), and Bristol-Myers Squibb Pharmaceuticals; P. W. G. Mallon: support from Molecular Medicine Ireland, Scientific Foundation Ireland, ViiV Healthcare, Gilead Sciences Ltd., GlaxoSmithKline (Ireland Ltd), Abbott, M.S.D., and Janssen-Cilag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aoife G. Cotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotter, A.G., Mallon, P.W.G. Therapeutic Options for Low Bone Mineral Density in HIV-Infected Subjects. Curr HIV/AIDS Rep 9, 148–159 (2012). https://doi.org/10.1007/s11904-012-0117-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-012-0117-9

Keywords

Navigation