Skip to main content

Advertisement

Log in

Viral and cellular dynamics in HIV disease

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The control mechanisms that maintain a steady state viral load during chronic HIV-1 infection are critical to understanding the pathophysiology of HIV disease. The conceptual features of the two alternative models of viral control, referred to in this article as target cell limitation and immune control, are compared to the data regarding the viral and cellular dynamics of HIV-1 infection and the pattern of changes induced by effective antiretroviral drug therapy. The available data support the model that an antigen-driven immune response is the primary mechanism that limits viral growth in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wei X, Ghosh SK, Taylor ME, et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995, 373:117–122.

    Article  PubMed  CAS  Google Scholar 

  2. Ho DD, Neumann AU, Perelson AS, et al.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373:123–126.

    Article  PubMed  CAS  Google Scholar 

  3. Wu H, Kuritzkes DR, McClernon DR, et al.: Characterization of viral dynamics in human immunodeficiency virus type 1-infected patients treated with combination antiretroviral therapy: relationships to host factors, cellular restoration, and virologic end points. J Infect Dis 1999, 179:799–807.

    Article  PubMed  CAS  Google Scholar 

  4. Notermans DW, Goudsmit J, Danner SA, et al.: Rate of HIV-1 decline following antiretroviral therapy is related to viral load at baseline and drug regimen. AIDS 1998, 12:1483–1490.

    Article  PubMed  CAS  Google Scholar 

  5. Perelson AS, Essunger P, Cao Y, et al.: Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 1997, 387:188–191. A description of a mathematical model that attempts to account for viral replication and the decay of different forms of virus after HAART.

    Article  PubMed  CAS  Google Scholar 

  6. Grossman Z, Feinberg MB, Paul WE: Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication. Proc Natl Acad Sci U S A 1998, 95:6314–6319.

    Article  PubMed  CAS  Google Scholar 

  7. Bucy RP: Immune clearance of HIV-1 replication active cells: a model of two patterns of steady-state HIV infection. AIDS Res Hum Retroviruses 1999, 15:223–227. A simple model of viral replication controlled by an antigen-driven immune response is proposed and related to the dynamics of latent infection and the kinetics of viral load changes after HAART.

    Article  PubMed  CAS  Google Scholar 

  8. Bucy RP: Viral and cellular dynamics in HIV disease. Curr Infect Dis Rep 2001, 3:295–301.

    PubMed  Google Scholar 

  9. Pierson T, McArthur J, Siliciano RF: Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 2000, 18:665–708.

    Article  PubMed  CAS  Google Scholar 

  10. Pakker NG, Notermans DW, de Boer RJ, et al.: Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nat Med 1998, 2:208–214.

    Article  Google Scholar 

  11. Hakim FT, Cepeda R, Kaimei S, et al.: Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 1997, 90:3789–3798.

    PubMed  CAS  Google Scholar 

  12. Bucy RP, Hockett RD, Derdeyn CA, et al.: Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 1999, 103:1391–1398.

    PubMed  CAS  Google Scholar 

  13. Davey RT Jr, Bhat N, Yoder C, et al.: HIV-1 and T-cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A 1999, 96:15109–15114.

    Article  PubMed  CAS  Google Scholar 

  14. Haase AT, Henry K, Zupancic M, et al.: Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 1996, 274:985–989.

    Article  PubMed  CAS  Google Scholar 

  15. Tenner-Racz K, Stellbrink HJ, van Lunzen J, et al.: The unenlarged lymph nodes of HIV-1-infected, asymptomatic patients with high CD4 T-cell counts are sites for virus replication and CD4 T-cell proliferation: the impact of highly active antiretroviral therapy. J Exp Med 1998, 187:949–959.

    Article  PubMed  CAS  Google Scholar 

  16. Hockett RD, Kilby JM, Derdeyn CA, et al.: Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J Exp Med 1999, 189:1545–1554.

    Article  PubMed  CAS  Google Scholar 

  17. Perelson AS, Neumann AU, Markowitz M, et al.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996, 271:1582–1586.

    Article  PubMed  CAS  Google Scholar 

  18. Bonhoeffer S, May RM, Shaw GM, Nowak MA: Virus dynamics and drug therapy. Proc Natl Acad Sci U S A 1997, 94:6971–6976.

    Article  PubMed  CAS  Google Scholar 

  19. Ramratnam B, Bonhoeffer S, Binley J, et al.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 1999, 354:1782–1785.

    Article  PubMed  CAS  Google Scholar 

  20. Mellors J, Rinaldo C, Gupta P, et al.: Prognosis in HIV infection predicted by the quantity of virus in plasma. Science 1996, 272:1167–1170.

    Article  PubMed  CAS  Google Scholar 

  21. Lyles RH, Munoz A, Yamashita TE, et al.: Natural history of human immunodeficiency virus type 1 viremia after seroconversion and proximal to AIDS in a large cohort of homosexual men. Multicenter AIDS Cohort Study. J Infect Dis 2000, 181:872–880. An excellent overview of the Multicenter AIDS Cohort Study focusing on the changes in viral load over time.

    Article  PubMed  CAS  Google Scholar 

  22. Chun TW, Carruth L, Finzi D, et al.: Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997, 387:183–188.

    Article  PubMed  CAS  Google Scholar 

  23. Wong JK, Gunthard HF, Havlir DV, et al.: Reduction of HIV-1 in blood and lymph nodes following potent antiretroviral therapy and the virologic correlates of treatment failure. Proc Natl Acad Sci U S A 1997, 94:12574–12579.

    Article  PubMed  CAS  Google Scholar 

  24. Chun TW, Engel D, Berrey MM, et al.: Early establishment of a pool of latently infected, resting CD4(+) T cells during primary HIV-1 infection. Proc Natl Acad Sci U S A 1998, 95:8869–8873.

    Article  PubMed  CAS  Google Scholar 

  25. Finzi D, Hermankova M, Pierson T, et al.: Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997, 278:1295–1300.

    Article  PubMed  CAS  Google Scholar 

  26. Derdeyn CA, Kilby JM, Miralles GD, et al.: Evaluation of distinct blood lymphocyte populations in human immunodeficiency virus type 1 infected subjects in the absence or presence of effective therapy. J Infect Dis 1999, 180:1851–1862. A study using coculture of resting CD4 T cells from patients after prolonged HAART that demonstrates extremely slow decay of the latent pool of infected cells, which is likely a primary obstacle to viral eradication.

    Article  PubMed  CAS  Google Scholar 

  27. Finzi D, Blankson J, Siliciano JD, et al.: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 1999, 5:512–517.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang L, Ramratnam B, Tenner-Racz K, et al.: Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 1999, 340:1605–1613.

    Article  PubMed  CAS  Google Scholar 

  29. Sharkey ME, Teo I, Greenough T, et al.: Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nat Med 2000, 6:76–81.

    Article  PubMed  CAS  Google Scholar 

  30. Bucy RP, Kilby JM: Perspectives on inducing efficient immune control of HIV-1 replication: a new goal for HIV therapeutics? AIDS 2001, 15:S36-S42.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg ES, Altfield M, Poon SH, et al.: Immune control of HIV-1 following early treatment of acute infection. Nature 2000, 407:523–526.

    Article  PubMed  CAS  Google Scholar 

  32. Reimann KA, Snyder GB, Chalifoux LV, et al.: An activated CD8+ lymphocyte appears in lymph nodes of rhesus monkeys early after infection with simian immunodeficiency virus. J Clin Invest 1991, 88:1113–1120.

    Article  PubMed  CAS  Google Scholar 

  33. Shen L, Chen ZW, Letvin NL: The repertoire of cytotoxic T lymphocytes in the recognition of mutant simian immunodeficiency virus variants. J Immunol 1994, 153:5849–5854.

    PubMed  CAS  Google Scholar 

  34. Kuroda MJ, Schmitz JE, Barouch DH, et al.: Analysis of Gagspecific cytotoxic T lymphocytes in simian immunodeficiency virus-infected rhesus monkeys by cell staining with a tetrameric major histocompatibility complex class I peptide complex. J Exp Med 1998, 187:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson RP, Glickman RL, Yang JQ, et al.: Induction of vigorous cytotoxic T-lymphocyte responses by live attenuated simian immunodeficiency virus. J Virol 1997, 71:7711–7718.

    PubMed  CAS  Google Scholar 

  36. Shibata R, Siemon C, Czajak SC, et al.: Live, attenuated simian immunodeficiency virus vaccines elicit potent resistance against a challenge with a human immunodeficiency virus type 1 chimeric virus. J Virol 1997, 71:8141–8148.

    PubMed  CAS  Google Scholar 

  37. Hirsch VM, Goldstein S, Hynes NA, et al.: Prolonged clinical latency and survival of macaques given a whole inactivated simian immunodeficiency virus vaccine. J Infect Dis 1994, 170:51–59.

    PubMed  CAS  Google Scholar 

  38. Schmitz JE, Kuroda MJ, Santra S, et al.: Control of viremia in simian immunodeficiency virus infection by CD8(+) lymphocytes. Science 1999, 283:857–860. This paper demonstrates the critical role for CD8 T cells in the maintenance of steady-state viral load SIV-infected rhesus macaques.

    Article  PubMed  CAS  Google Scholar 

  39. Jin X, Bauer DE, Tuttleton SE, et al.: Dramatic rise in plasma viremia after CD8(+) T-cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999, 189:991–998. This paper demonstrates the critical role for CD8 T cells in maintenance of steady-state viral load SIV-infected rhesus macaques.

    Article  PubMed  CAS  Google Scholar 

  40. De Boer RJ, Perelson AS: Target-cell limited and immune control models of HIV infection: a comparison. J Theor Biol 1998, 190:201–214.

    Article  PubMed  Google Scholar 

  41. Phillips AN: Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 1996, 271:497–499.

    Article  PubMed  CAS  Google Scholar 

  42. Kovacs JA, Baseler M, Dewar RJ, et al.: Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection: a preliminary study. N Engl J Med 1995, 332:567–575.

    Article  PubMed  CAS  Google Scholar 

  43. Staprans SI, Hamilton BL, Follansbee SE, et al.: Activation of virus replication after vaccination of HIV-1-infected individuals. J Exp Med 1995, 182:1727–1737.

    Article  PubMed  CAS  Google Scholar 

  44. O’Brien WA, Grovit-Ferbas K, Namazi A, et al.: Human immunodeficiency virus-type 1 replication can be increased in peripheral blood of seropositive patients after influenza vaccination. Blood 1995, 86:1082–1089.

    PubMed  CAS  Google Scholar 

  45. Stafford MA, Corey L, Cao Y, et al.: Modeling plasma virus concentration during primary HIV infection. J Theor Biol 2000, 203:285–301.

    Article  PubMed  CAS  Google Scholar 

  46. Nowak MA, Bangham CR: Population dynamics of immune responses to persistent viruses. Science 1996, 272:74–79. A formulation of a mathematical model that describes the interaction between active infection and a persistent immune response in a steady-state chronic viral infection.

    Article  PubMed  CAS  Google Scholar 

  47. Ogg GS, Jin X, Bonhoeffer S, et al.: Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998, 279:2103–2106.

    Article  PubMed  CAS  Google Scholar 

  48. Ogg GS, Jin X, Bonhoeffer S, et al.: Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J Virol 1999, 73:797–800.

    PubMed  CAS  Google Scholar 

  49. Mollet L, Li TS, Samri A, et al.: Dynamics of HIV-specific CD8+ T lymphocytes with changes in viral load. J Immunol 2000, 165:1692–1704.

    PubMed  CAS  Google Scholar 

  50. Bergeron L, Sodroski J: Dissociation of unintegrated viral DNA accumulation from single-cell lysis induced by human immunodeficiency virus type 1. J Virol 1992, 66:5777–5787.

    PubMed  CAS  Google Scholar 

  51. Cao J, Park IW, Cooper A, Sodroski J: Molecular determinants of acute single-cell lysis by human immunodeficiency virus type 1. J Virol 1996, 70:1340–1354.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucy, R.P. Viral and cellular dynamics in HIV disease. Curr HIV/AIDS Rep 1, 40–46 (2004). https://doi.org/10.1007/s11904-004-0006-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-004-0006-y

Keywords

Navigation